1
0
mirror of https://github.com/ocornut/imgui.git synced 2024-11-17 12:27:20 +01:00
imgui/examples/opengl_example/stb_image.h

4745 lines
156 KiB
C

/* stb_image - v1.46 - public domain JPEG/PNG reader - http://nothings.org/stb_image.c
when you control the images you're loading
no warranty implied; use at your own risk
Do this:
#define STB_IMAGE_IMPLEMENTATION
before you include this file in *one* C or C++ file to create the implementation.
#define STBI_ASSERT(x) to avoid using assert.h.
QUICK NOTES:
Primarily of interest to game developers and other people who can
avoid problematic images and only need the trivial interface
JPEG baseline (no JPEG progressive)
PNG 1/2/4/8-bit-per-channel (16 bpc not supported)
TGA (not sure what subset, if a subset)
BMP non-1bpp, non-RLE
PSD (composited view only, no extra channels)
GIF (*comp always reports as 4-channel)
HDR (radiance rgbE format)
PIC (Softimage PIC)
- decode from memory or through FILE (define STBI_NO_STDIO to remove code)
- decode from arbitrary I/O callbacks
- overridable dequantizing-IDCT, YCbCr-to-RGB conversion (define STBI_SIMD)
Latest revisions:
1.xx (2014-09-26) 1/2/4-bit PNG support (both grayscale and paletted)
1.46 (2014-08-26) fix broken tRNS chunk in non-paletted PNG
1.45 (2014-08-16) workaround MSVC-ARM internal compiler error by wrapping malloc
1.44 (2014-08-07) warnings
1.43 (2014-07-15) fix MSVC-only bug in 1.42
1.42 (2014-07-09) no _CRT_SECURE_NO_WARNINGS; error-path fixes; STBI_ASSERT
1.41 (2014-06-25) fix search&replace that messed up comments/error messages
1.40 (2014-06-22) gcc warning
1.39 (2014-06-15) TGA optimization bugfix, multiple BMP fixes
1.38 (2014-06-06) suppress MSVC run-time warnings, fix accidental rename of 'skip'
1.37 (2014-06-04) remove duplicate typedef
1.36 (2014-06-03) converted to header file, allow reading incorrect iphoned-images without iphone flag
1.35 (2014-05-27) warnings, bugfixes, TGA optimization, etc
See end of file for full revision history.
TODO:
stbi_info support for BMP,PSD,HDR,PIC
============================ Contributors =========================
Image formats Bug fixes & warning fixes
Sean Barrett (jpeg, png, bmp) Marc LeBlanc
Nicolas Schulz (hdr, psd) Christpher Lloyd
Jonathan Dummer (tga) Dave Moore
Jean-Marc Lienher (gif) Won Chun
Tom Seddon (pic) the Horde3D community
Thatcher Ulrich (psd) Janez Zemva
Jonathan Blow
Laurent Gomila
Extensions, features Aruelien Pocheville
Jetro Lauha (stbi_info) Ryamond Barbiero
James "moose2000" Brown (iPhone PNG) David Woo
Ben "Disch" Wenger (io callbacks) Roy Eltham
Martin "SpartanJ" Golini Luke Graham
Omar Cornut (1/2/4-bit png) Thomas Ruf
John Bartholomew
Optimizations & bugfixes Ken Hamada
Fabian "ryg" Giesen Cort Stratton
Arseny Kapoulkine Blazej Dariusz Roszkowski
Thibault Reuille
Paul Du Bois
Guillaume George
Jerry Jansson
If your name should be here but Hayaki Saito
isn't, let Sean know. Johan Duparc
Ronny Chevalier
Michal Cichon
*/
#ifndef STBI_INCLUDE_STB_IMAGE_H
#define STBI_INCLUDE_STB_IMAGE_H
// Limitations:
// - no jpeg progressive support
// - non-HDR formats support 8-bit samples only (jpeg, png)
// - no delayed line count (jpeg) -- IJG doesn't support either
// - no 1-bit BMP
// - GIF always returns *comp=4
//
// Basic usage (see HDR discussion below):
// int x,y,n;
// unsigned char *data = stbi_load(filename, &x, &y, &n, 0);
// // ... process data if not NULL ...
// // ... x = width, y = height, n = # 8-bit components per pixel ...
// // ... replace '0' with '1'..'4' to force that many components per pixel
// // ... but 'n' will always be the number that it would have been if you said 0
// stbi_image_free(data)
//
// Standard parameters:
// int *x -- outputs image width in pixels
// int *y -- outputs image height in pixels
// int *comp -- outputs # of image components in image file
// int req_comp -- if non-zero, # of image components requested in result
//
// The return value from an image loader is an 'unsigned char *' which points
// to the pixel data. The pixel data consists of *y scanlines of *x pixels,
// with each pixel consisting of N interleaved 8-bit components; the first
// pixel pointed to is top-left-most in the image. There is no padding between
// image scanlines or between pixels, regardless of format. The number of
// components N is 'req_comp' if req_comp is non-zero, or *comp otherwise.
// If req_comp is non-zero, *comp has the number of components that _would_
// have been output otherwise. E.g. if you set req_comp to 4, you will always
// get RGBA output, but you can check *comp to easily see if it's opaque.
//
// An output image with N components has the following components interleaved
// in this order in each pixel:
//
// N=#comp components
// 1 grey
// 2 grey, alpha
// 3 red, green, blue
// 4 red, green, blue, alpha
//
// If image loading fails for any reason, the return value will be NULL,
// and *x, *y, *comp will be unchanged. The function stbi_failure_reason()
// can be queried for an extremely brief, end-user unfriendly explanation
// of why the load failed. Define STBI_NO_FAILURE_STRINGS to avoid
// compiling these strings at all, and STBI_FAILURE_USERMSG to get slightly
// more user-friendly ones.
//
// Paletted PNG, BMP, GIF, and PIC images are automatically depalettized.
//
// ===========================================================================
//
// iPhone PNG support:
//
// By default we convert iphone-formatted PNGs back to RGB; nominally they
// would silently load as BGR, except the existing code should have just
// failed on such iPhone PNGs. But you can disable this conversion by
// by calling stbi_convert_iphone_png_to_rgb(0), in which case
// you will always just get the native iphone "format" through.
//
// Call stbi_set_unpremultiply_on_load(1) as well to force a divide per
// pixel to remove any premultiplied alpha *only* if the image file explicitly
// says there's premultiplied data (currently only happens in iPhone images,
// and only if iPhone convert-to-rgb processing is on).
//
// ===========================================================================
//
// HDR image support (disable by defining STBI_NO_HDR)
//
// stb_image now supports loading HDR images in general, and currently
// the Radiance .HDR file format, although the support is provided
// generically. You can still load any file through the existing interface;
// if you attempt to load an HDR file, it will be automatically remapped to
// LDR, assuming gamma 2.2 and an arbitrary scale factor defaulting to 1;
// both of these constants can be reconfigured through this interface:
//
// stbi_hdr_to_ldr_gamma(2.2f);
// stbi_hdr_to_ldr_scale(1.0f);
//
// (note, do not use _inverse_ constants; stbi_image will invert them
// appropriately).
//
// Additionally, there is a new, parallel interface for loading files as
// (linear) floats to preserve the full dynamic range:
//
// float *data = stbi_loadf(filename, &x, &y, &n, 0);
//
// If you load LDR images through this interface, those images will
// be promoted to floating point values, run through the inverse of
// constants corresponding to the above:
//
// stbi_ldr_to_hdr_scale(1.0f);
// stbi_ldr_to_hdr_gamma(2.2f);
//
// Finally, given a filename (or an open file or memory block--see header
// file for details) containing image data, you can query for the "most
// appropriate" interface to use (that is, whether the image is HDR or
// not), using:
//
// stbi_is_hdr(char *filename);
//
// ===========================================================================
//
// I/O callbacks
//
// I/O callbacks allow you to read from arbitrary sources, like packaged
// files or some other source. Data read from callbacks are processed
// through a small internal buffer (currently 128 bytes) to try to reduce
// overhead.
//
// The three functions you must define are "read" (reads some bytes of data),
// "skip" (skips some bytes of data), "eof" (reports if the stream is at the end).
#ifndef STBI_NO_STDIO
#include <stdio.h>
#endif // STBI_NO_STDIO
#define STBI_VERSION 1
enum
{
STBI_default = 0, // only used for req_comp
STBI_grey = 1,
STBI_grey_alpha = 2,
STBI_rgb = 3,
STBI_rgb_alpha = 4
};
typedef unsigned char stbi_uc;
#ifdef __cplusplus
extern "C" {
#endif
#ifdef STB_IMAGE_STATIC
#define STBIDEF static
#else
#define STBIDEF extern
#endif
//////////////////////////////////////////////////////////////////////////////
//
// PRIMARY API - works on images of any type
//
//
// load image by filename, open file, or memory buffer
//
STBIDEF stbi_uc *stbi_load_from_memory(stbi_uc const *buffer, int len, int *x, int *y, int *comp, int req_comp);
#ifndef STBI_NO_STDIO
STBIDEF stbi_uc *stbi_load (char const *filename, int *x, int *y, int *comp, int req_comp);
STBIDEF stbi_uc *stbi_load_from_file (FILE *f, int *x, int *y, int *comp, int req_comp);
// for stbi_load_from_file, file pointer is left pointing immediately after image
#endif
typedef struct
{
int (*read) (void *user,char *data,int size); // fill 'data' with 'size' bytes. return number of bytes actually read
void (*skip) (void *user,int n); // skip the next 'n' bytes, or 'unget' the last -n bytes if negative
int (*eof) (void *user); // returns nonzero if we are at end of file/data
} stbi_io_callbacks;
STBIDEF stbi_uc *stbi_load_from_callbacks (stbi_io_callbacks const *clbk, void *user, int *x, int *y, int *comp, int req_comp);
#ifndef STBI_NO_HDR
STBIDEF float *stbi_loadf_from_memory(stbi_uc const *buffer, int len, int *x, int *y, int *comp, int req_comp);
#ifndef STBI_NO_STDIO
STBIDEF float *stbi_loadf (char const *filename, int *x, int *y, int *comp, int req_comp);
STBIDEF float *stbi_loadf_from_file (FILE *f, int *x, int *y, int *comp, int req_comp);
#endif
STBIDEF float *stbi_loadf_from_callbacks (stbi_io_callbacks const *clbk, void *user, int *x, int *y, int *comp, int req_comp);
STBIDEF void stbi_hdr_to_ldr_gamma(float gamma);
STBIDEF void stbi_hdr_to_ldr_scale(float scale);
STBIDEF void stbi_ldr_to_hdr_gamma(float gamma);
STBIDEF void stbi_ldr_to_hdr_scale(float scale);
#endif // STBI_NO_HDR
// stbi_is_hdr is always defined
STBIDEF int stbi_is_hdr_from_callbacks(stbi_io_callbacks const *clbk, void *user);
STBIDEF int stbi_is_hdr_from_memory(stbi_uc const *buffer, int len);
#ifndef STBI_NO_STDIO
STBIDEF int stbi_is_hdr (char const *filename);
STBIDEF int stbi_is_hdr_from_file(FILE *f);
#endif // STBI_NO_STDIO
// get a VERY brief reason for failure
// NOT THREADSAFE
STBIDEF const char *stbi_failure_reason (void);
// free the loaded image -- this is just free()
STBIDEF void stbi_image_free (void *retval_from_stbi_load);
// get image dimensions & components without fully decoding
STBIDEF int stbi_info_from_memory(stbi_uc const *buffer, int len, int *x, int *y, int *comp);
STBIDEF int stbi_info_from_callbacks(stbi_io_callbacks const *clbk, void *user, int *x, int *y, int *comp);
#ifndef STBI_NO_STDIO
STBIDEF int stbi_info (char const *filename, int *x, int *y, int *comp);
STBIDEF int stbi_info_from_file (FILE *f, int *x, int *y, int *comp);
#endif
// for image formats that explicitly notate that they have premultiplied alpha,
// we just return the colors as stored in the file. set this flag to force
// unpremultiplication. results are undefined if the unpremultiply overflow.
STBIDEF void stbi_set_unpremultiply_on_load(int flag_true_if_should_unpremultiply);
// indicate whether we should process iphone images back to canonical format,
// or just pass them through "as-is"
STBIDEF void stbi_convert_iphone_png_to_rgb(int flag_true_if_should_convert);
// ZLIB client - used by PNG, available for other purposes
STBIDEF char *stbi_zlib_decode_malloc_guesssize(const char *buffer, int len, int initial_size, int *outlen);
STBIDEF char *stbi_zlib_decode_malloc_guesssize_headerflag(const char *buffer, int len, int initial_size, int *outlen, int parse_header);
STBIDEF char *stbi_zlib_decode_malloc(const char *buffer, int len, int *outlen);
STBIDEF int stbi_zlib_decode_buffer(char *obuffer, int olen, const char *ibuffer, int ilen);
STBIDEF char *stbi_zlib_decode_noheader_malloc(const char *buffer, int len, int *outlen);
STBIDEF int stbi_zlib_decode_noheader_buffer(char *obuffer, int olen, const char *ibuffer, int ilen);
// define faster low-level operations (typically SIMD support)
#ifdef STBI_SIMD
typedef void (*stbi_idct_8x8)(stbi_uc *out, int out_stride, short data[64], unsigned short *dequantize);
// compute an integer IDCT on "input"
// input[x] = data[x] * dequantize[x]
// write results to 'out': 64 samples, each run of 8 spaced by 'out_stride'
// CLAMP results to 0..255
typedef void (*stbi_YCbCr_to_RGB_run)(stbi_uc *output, stbi_uc const *y, stbi_uc const *cb, stbi_uc const *cr, int count, int step);
// compute a conversion from YCbCr to RGB
// 'count' pixels
// write pixels to 'output'; each pixel is 'step' bytes (either 3 or 4; if 4, write '255' as 4th), order R,G,B
// y: Y input channel
// cb: Cb input channel; scale/biased to be 0..255
// cr: Cr input channel; scale/biased to be 0..255
STBIDEF void stbi_install_idct(stbi_idct_8x8 func);
STBIDEF void stbi_install_YCbCr_to_RGB(stbi_YCbCr_to_RGB_run func);
#endif // STBI_SIMD
#ifdef __cplusplus
}
#endif
//
//
//// end header file /////////////////////////////////////////////////////
#endif // STBI_INCLUDE_STB_IMAGE_H
#ifdef STB_IMAGE_IMPLEMENTATION
#ifndef STBI_NO_HDR
#include <math.h> // ldexp
#include <string.h> // strcmp, strtok
#endif
#ifndef STBI_NO_STDIO
#include <stdio.h>
#endif
#include <stdlib.h>
#include <string.h>
#ifndef STBI_ASSERT
#include <assert.h>
#define STBI_ASSERT(x) assert(x)
#endif
#include <stdarg.h>
#include <stddef.h> // ptrdiff_t on osx
#ifndef _MSC_VER
#ifdef __cplusplus
#define stbi_inline inline
#else
#define stbi_inline
#endif
#else
#define stbi_inline __forceinline
#endif
#ifdef _MSC_VER
typedef unsigned short stbi__uint16;
typedef signed short stbi__int16;
typedef unsigned int stbi__uint32;
typedef signed int stbi__int32;
#else
#include <stdint.h>
typedef uint16_t stbi__uint16;
typedef int16_t stbi__int16;
typedef uint32_t stbi__uint32;
typedef int32_t stbi__int32;
#endif
// should produce compiler error if size is wrong
typedef unsigned char validate_uint32[sizeof(stbi__uint32)==4 ? 1 : -1];
#ifdef _MSC_VER
#define STBI_NOTUSED(v) (void)(v)
#else
#define STBI_NOTUSED(v) (void)sizeof(v)
#endif
#ifdef _MSC_VER
#define STBI_HAS_LROTL
#endif
#ifdef STBI_HAS_LROTL
#define stbi_lrot(x,y) _lrotl(x,y)
#else
#define stbi_lrot(x,y) (((x) << (y)) | ((x) >> (32 - (y))))
#endif
///////////////////////////////////////////////
//
// stbi__context struct and start_xxx functions
// stbi__context structure is our basic context used by all images, so it
// contains all the IO context, plus some basic image information
typedef struct
{
stbi__uint32 img_x, img_y;
int img_n, img_out_n;
stbi_io_callbacks io;
void *io_user_data;
int read_from_callbacks;
int buflen;
stbi_uc buffer_start[128];
stbi_uc *img_buffer, *img_buffer_end;
stbi_uc *img_buffer_original;
} stbi__context;
static void stbi__refill_buffer(stbi__context *s);
// initialize a memory-decode context
static void stbi__start_mem(stbi__context *s, stbi_uc const *buffer, int len)
{
s->io.read = NULL;
s->read_from_callbacks = 0;
s->img_buffer = s->img_buffer_original = (stbi_uc *) buffer;
s->img_buffer_end = (stbi_uc *) buffer+len;
}
// initialize a callback-based context
static void stbi__start_callbacks(stbi__context *s, stbi_io_callbacks *c, void *user)
{
s->io = *c;
s->io_user_data = user;
s->buflen = sizeof(s->buffer_start);
s->read_from_callbacks = 1;
s->img_buffer_original = s->buffer_start;
stbi__refill_buffer(s);
}
#ifndef STBI_NO_STDIO
static int stbi__stdio_read(void *user, char *data, int size)
{
return (int) fread(data,1,size,(FILE*) user);
}
static void stbi__stdio_skip(void *user, int n)
{
fseek((FILE*) user, n, SEEK_CUR);
}
static int stbi__stdio_eof(void *user)
{
return feof((FILE*) user);
}
static stbi_io_callbacks stbi__stdio_callbacks =
{
stbi__stdio_read,
stbi__stdio_skip,
stbi__stdio_eof,
};
static void stbi__start_file(stbi__context *s, FILE *f)
{
stbi__start_callbacks(s, &stbi__stdio_callbacks, (void *) f);
}
//static void stop_file(stbi__context *s) { }
#endif // !STBI_NO_STDIO
static void stbi__rewind(stbi__context *s)
{
// conceptually rewind SHOULD rewind to the beginning of the stream,
// but we just rewind to the beginning of the initial buffer, because
// we only use it after doing 'test', which only ever looks at at most 92 bytes
s->img_buffer = s->img_buffer_original;
}
static int stbi__jpeg_test(stbi__context *s);
static stbi_uc *stbi__jpeg_load(stbi__context *s, int *x, int *y, int *comp, int req_comp);
static int stbi__jpeg_info(stbi__context *s, int *x, int *y, int *comp);
static int stbi__png_test(stbi__context *s);
static stbi_uc *stbi__png_load(stbi__context *s, int *x, int *y, int *comp, int req_comp);
static int stbi__png_info(stbi__context *s, int *x, int *y, int *comp);
static int stbi__bmp_test(stbi__context *s);
static stbi_uc *stbi__bmp_load(stbi__context *s, int *x, int *y, int *comp, int req_comp);
static int stbi__tga_test(stbi__context *s);
static stbi_uc *stbi__tga_load(stbi__context *s, int *x, int *y, int *comp, int req_comp);
static int stbi__tga_info(stbi__context *s, int *x, int *y, int *comp);
static int stbi__psd_test(stbi__context *s);
static stbi_uc *stbi__psd_load(stbi__context *s, int *x, int *y, int *comp, int req_comp);
#ifndef STBI_NO_HDR
static int stbi__hdr_test(stbi__context *s);
static float *stbi__hdr_load(stbi__context *s, int *x, int *y, int *comp, int req_comp);
#endif
static int stbi__pic_test(stbi__context *s);
static stbi_uc *stbi__pic_load(stbi__context *s, int *x, int *y, int *comp, int req_comp);
static int stbi__gif_test(stbi__context *s);
static stbi_uc *stbi__gif_load(stbi__context *s, int *x, int *y, int *comp, int req_comp);
static int stbi__gif_info(stbi__context *s, int *x, int *y, int *comp);
// this is not threadsafe
static const char *stbi__g_failure_reason;
STBIDEF const char *stbi_failure_reason(void)
{
return stbi__g_failure_reason;
}
static int stbi__err(const char *str)
{
stbi__g_failure_reason = str;
return 0;
}
static void *stbi__malloc(size_t size)
{
return malloc(size);
}
// stbi__err - error
// stbi__errpf - error returning pointer to float
// stbi__errpuc - error returning pointer to unsigned char
#ifdef STBI_NO_FAILURE_STRINGS
#define stbi__err(x,y) 0
#elif defined(STBI_FAILURE_USERMSG)
#define stbi__err(x,y) stbi__err(y)
#else
#define stbi__err(x,y) stbi__err(x)
#endif
#define stbi__errpf(x,y) ((float *) (stbi__err(x,y)?NULL:NULL))
#define stbi__errpuc(x,y) ((unsigned char *) (stbi__err(x,y)?NULL:NULL))
STBIDEF void stbi_image_free(void *retval_from_stbi_load)
{
free(retval_from_stbi_load);
}
#ifndef STBI_NO_HDR
static float *stbi__ldr_to_hdr(stbi_uc *data, int x, int y, int comp);
static stbi_uc *stbi__hdr_to_ldr(float *data, int x, int y, int comp);
#endif
static unsigned char *stbi_load_main(stbi__context *s, int *x, int *y, int *comp, int req_comp)
{
if (stbi__jpeg_test(s)) return stbi__jpeg_load(s,x,y,comp,req_comp);
if (stbi__png_test(s)) return stbi__png_load(s,x,y,comp,req_comp);
if (stbi__bmp_test(s)) return stbi__bmp_load(s,x,y,comp,req_comp);
if (stbi__gif_test(s)) return stbi__gif_load(s,x,y,comp,req_comp);
if (stbi__psd_test(s)) return stbi__psd_load(s,x,y,comp,req_comp);
if (stbi__pic_test(s)) return stbi__pic_load(s,x,y,comp,req_comp);
#ifndef STBI_NO_HDR
if (stbi__hdr_test(s)) {
float *hdr = stbi__hdr_load(s, x,y,comp,req_comp);
return stbi__hdr_to_ldr(hdr, *x, *y, req_comp ? req_comp : *comp);
}
#endif
// test tga last because it's a crappy test!
if (stbi__tga_test(s))
return stbi__tga_load(s,x,y,comp,req_comp);
return stbi__errpuc("unknown image type", "Image not of any known type, or corrupt");
}
#ifndef STBI_NO_STDIO
FILE *stbi__fopen(char const *filename, char const *mode)
{
FILE *f;
#if defined(_MSC_VER) && _MSC_VER >= 1400
if (0 != fopen_s(&f, filename, mode))
f=0;
#else
f = fopen(filename, mode);
#endif
return f;
}
STBIDEF unsigned char *stbi_load(char const *filename, int *x, int *y, int *comp, int req_comp)
{
FILE *f = stbi__fopen(filename, "rb");
unsigned char *result;
if (!f) return stbi__errpuc("can't fopen", "Unable to open file");
result = stbi_load_from_file(f,x,y,comp,req_comp);
fclose(f);
return result;
}
STBIDEF unsigned char *stbi_load_from_file(FILE *f, int *x, int *y, int *comp, int req_comp)
{
unsigned char *result;
stbi__context s;
stbi__start_file(&s,f);
result = stbi_load_main(&s,x,y,comp,req_comp);
if (result) {
// need to 'unget' all the characters in the IO buffer
fseek(f, - (int) (s.img_buffer_end - s.img_buffer), SEEK_CUR);
}
return result;
}
#endif //!STBI_NO_STDIO
STBIDEF unsigned char *stbi_load_from_memory(stbi_uc const *buffer, int len, int *x, int *y, int *comp, int req_comp)
{
stbi__context s;
stbi__start_mem(&s,buffer,len);
return stbi_load_main(&s,x,y,comp,req_comp);
}
unsigned char *stbi_load_from_callbacks(stbi_io_callbacks const *clbk, void *user, int *x, int *y, int *comp, int req_comp)
{
stbi__context s;
stbi__start_callbacks(&s, (stbi_io_callbacks *) clbk, user);
return stbi_load_main(&s,x,y,comp,req_comp);
}
#ifndef STBI_NO_HDR
float *stbi_loadf_main(stbi__context *s, int *x, int *y, int *comp, int req_comp)
{
unsigned char *data;
#ifndef STBI_NO_HDR
if (stbi__hdr_test(s))
return stbi__hdr_load(s,x,y,comp,req_comp);
#endif
data = stbi_load_main(s, x, y, comp, req_comp);
if (data)
return stbi__ldr_to_hdr(data, *x, *y, req_comp ? req_comp : *comp);
return stbi__errpf("unknown image type", "Image not of any known type, or corrupt");
}
float *stbi_loadf_from_memory(stbi_uc const *buffer, int len, int *x, int *y, int *comp, int req_comp)
{
stbi__context s;
stbi__start_mem(&s,buffer,len);
return stbi_loadf_main(&s,x,y,comp,req_comp);
}
float *stbi_loadf_from_callbacks(stbi_io_callbacks const *clbk, void *user, int *x, int *y, int *comp, int req_comp)
{
stbi__context s;
stbi__start_callbacks(&s, (stbi_io_callbacks *) clbk, user);
return stbi_loadf_main(&s,x,y,comp,req_comp);
}
#ifndef STBI_NO_STDIO
float *stbi_loadf(char const *filename, int *x, int *y, int *comp, int req_comp)
{
float *result;
FILE *f = stbi__fopen(filename, "rb");
if (!f) return stbi__errpf("can't fopen", "Unable to open file");
result = stbi_loadf_from_file(f,x,y,comp,req_comp);
fclose(f);
return result;
}
float *stbi_loadf_from_file(FILE *f, int *x, int *y, int *comp, int req_comp)
{
stbi__context s;
stbi__start_file(&s,f);
return stbi_loadf_main(&s,x,y,comp,req_comp);
}
#endif // !STBI_NO_STDIO
#endif // !STBI_NO_HDR
// these is-hdr-or-not is defined independent of whether STBI_NO_HDR is
// defined, for API simplicity; if STBI_NO_HDR is defined, it always
// reports false!
int stbi_is_hdr_from_memory(stbi_uc const *buffer, int len)
{
#ifndef STBI_NO_HDR
stbi__context s;
stbi__start_mem(&s,buffer,len);
return stbi__hdr_test(&s);
#else
STBI_NOTUSED(buffer);
STBI_NOTUSED(len);
return 0;
#endif
}
#ifndef STBI_NO_STDIO
STBIDEF int stbi_is_hdr (char const *filename)
{
FILE *f = stbi__fopen(filename, "rb");
int result=0;
if (f) {
result = stbi_is_hdr_from_file(f);
fclose(f);
}
return result;
}
STBIDEF int stbi_is_hdr_from_file(FILE *f)
{
#ifndef STBI_NO_HDR
stbi__context s;
stbi__start_file(&s,f);
return stbi__hdr_test(&s);
#else
return 0;
#endif
}
#endif // !STBI_NO_STDIO
STBIDEF int stbi_is_hdr_from_callbacks(stbi_io_callbacks const *clbk, void *user)
{
#ifndef STBI_NO_HDR
stbi__context s;
stbi__start_callbacks(&s, (stbi_io_callbacks *) clbk, user);
return stbi__hdr_test(&s);
#else
return 0;
#endif
}
#ifndef STBI_NO_HDR
static float stbi__h2l_gamma_i=1.0f/2.2f, stbi__h2l_scale_i=1.0f;
static float stbi__l2h_gamma=2.2f, stbi__l2h_scale=1.0f;
void stbi_hdr_to_ldr_gamma(float gamma) { stbi__h2l_gamma_i = 1/gamma; }
void stbi_hdr_to_ldr_scale(float scale) { stbi__h2l_scale_i = 1/scale; }
void stbi_ldr_to_hdr_gamma(float gamma) { stbi__l2h_gamma = gamma; }
void stbi_ldr_to_hdr_scale(float scale) { stbi__l2h_scale = scale; }
#endif
//////////////////////////////////////////////////////////////////////////////
//
// Common code used by all image loaders
//
enum
{
SCAN_load=0,
SCAN_type,
SCAN_header
};
static void stbi__refill_buffer(stbi__context *s)
{
int n = (s->io.read)(s->io_user_data,(char*)s->buffer_start,s->buflen);
if (n == 0) {
// at end of file, treat same as if from memory, but need to handle case
// where s->img_buffer isn't pointing to safe memory, e.g. 0-byte file
s->read_from_callbacks = 0;
s->img_buffer = s->buffer_start;
s->img_buffer_end = s->buffer_start+1;
*s->img_buffer = 0;
} else {
s->img_buffer = s->buffer_start;
s->img_buffer_end = s->buffer_start + n;
}
}
stbi_inline static stbi_uc stbi__get8(stbi__context *s)
{
if (s->img_buffer < s->img_buffer_end)
return *s->img_buffer++;
if (s->read_from_callbacks) {
stbi__refill_buffer(s);
return *s->img_buffer++;
}
return 0;
}
stbi_inline static int stbi__at_eof(stbi__context *s)
{
if (s->io.read) {
if (!(s->io.eof)(s->io_user_data)) return 0;
// if feof() is true, check if buffer = end
// special case: we've only got the special 0 character at the end
if (s->read_from_callbacks == 0) return 1;
}
return s->img_buffer >= s->img_buffer_end;
}
static void stbi__skip(stbi__context *s, int n)
{
if (s->io.read) {
int blen = (int) (s->img_buffer_end - s->img_buffer);
if (blen < n) {
s->img_buffer = s->img_buffer_end;
(s->io.skip)(s->io_user_data, n - blen);
return;
}
}
s->img_buffer += n;
}
static int stbi__getn(stbi__context *s, stbi_uc *buffer, int n)
{
if (s->io.read) {
int blen = (int) (s->img_buffer_end - s->img_buffer);
if (blen < n) {
int res, count;
memcpy(buffer, s->img_buffer, blen);
count = (s->io.read)(s->io_user_data, (char*) buffer + blen, n - blen);
res = (count == (n-blen));
s->img_buffer = s->img_buffer_end;
return res;
}
}
if (s->img_buffer+n <= s->img_buffer_end) {
memcpy(buffer, s->img_buffer, n);
s->img_buffer += n;
return 1;
} else
return 0;
}
static int stbi__get16be(stbi__context *s)
{
int z = stbi__get8(s);
return (z << 8) + stbi__get8(s);
}
static stbi__uint32 stbi__get32be(stbi__context *s)
{
stbi__uint32 z = stbi__get16be(s);
return (z << 16) + stbi__get16be(s);
}
static int stbi__get16le(stbi__context *s)
{
int z = stbi__get8(s);
return z + (stbi__get8(s) << 8);
}
static stbi__uint32 stbi__get32le(stbi__context *s)
{
stbi__uint32 z = stbi__get16le(s);
return z + (stbi__get16le(s) << 16);
}
//////////////////////////////////////////////////////////////////////////////
//
// generic converter from built-in img_n to req_comp
// individual types do this automatically as much as possible (e.g. jpeg
// does all cases internally since it needs to colorspace convert anyway,
// and it never has alpha, so very few cases ). png can automatically
// interleave an alpha=255 channel, but falls back to this for other cases
//
// assume data buffer is malloced, so malloc a new one and free that one
// only failure mode is malloc failing
static stbi_uc stbi__compute_y(int r, int g, int b)
{
return (stbi_uc) (((r*77) + (g*150) + (29*b)) >> 8);
}
static unsigned char *stbi__convert_format(unsigned char *data, int img_n, int req_comp, unsigned int x, unsigned int y)
{
int i,j;
unsigned char *good;
if (req_comp == img_n) return data;
STBI_ASSERT(req_comp >= 1 && req_comp <= 4);
good = (unsigned char *) stbi__malloc(req_comp * x * y);
if (good == NULL) {
free(data);
return stbi__errpuc("outofmem", "Out of memory");
}
for (j=0; j < (int) y; ++j) {
unsigned char *src = data + j * x * img_n ;
unsigned char *dest = good + j * x * req_comp;
#define COMBO(a,b) ((a)*8+(b))
#define CASE(a,b) case COMBO(a,b): for(i=x-1; i >= 0; --i, src += a, dest += b)
// convert source image with img_n components to one with req_comp components;
// avoid switch per pixel, so use switch per scanline and massive macros
switch (COMBO(img_n, req_comp)) {
CASE(1,2) dest[0]=src[0], dest[1]=255; break;
CASE(1,3) dest[0]=dest[1]=dest[2]=src[0]; break;
CASE(1,4) dest[0]=dest[1]=dest[2]=src[0], dest[3]=255; break;
CASE(2,1) dest[0]=src[0]; break;
CASE(2,3) dest[0]=dest[1]=dest[2]=src[0]; break;
CASE(2,4) dest[0]=dest[1]=dest[2]=src[0], dest[3]=src[1]; break;
CASE(3,4) dest[0]=src[0],dest[1]=src[1],dest[2]=src[2],dest[3]=255; break;
CASE(3,1) dest[0]=stbi__compute_y(src[0],src[1],src[2]); break;
CASE(3,2) dest[0]=stbi__compute_y(src[0],src[1],src[2]), dest[1] = 255; break;
CASE(4,1) dest[0]=stbi__compute_y(src[0],src[1],src[2]); break;
CASE(4,2) dest[0]=stbi__compute_y(src[0],src[1],src[2]), dest[1] = src[3]; break;
CASE(4,3) dest[0]=src[0],dest[1]=src[1],dest[2]=src[2]; break;
default: STBI_ASSERT(0);
}
#undef CASE
}
free(data);
return good;
}
#ifndef STBI_NO_HDR
static float *stbi__ldr_to_hdr(stbi_uc *data, int x, int y, int comp)
{
int i,k,n;
float *output = (float *) stbi__malloc(x * y * comp * sizeof(float));
if (output == NULL) { free(data); return stbi__errpf("outofmem", "Out of memory"); }
// compute number of non-alpha components
if (comp & 1) n = comp; else n = comp-1;
for (i=0; i < x*y; ++i) {
for (k=0; k < n; ++k) {
output[i*comp + k] = (float) (pow(data[i*comp+k]/255.0f, stbi__l2h_gamma) * stbi__l2h_scale);
}
if (k < comp) output[i*comp + k] = data[i*comp+k]/255.0f;
}
free(data);
return output;
}
#define stbi__float2int(x) ((int) (x))
static stbi_uc *stbi__hdr_to_ldr(float *data, int x, int y, int comp)
{
int i,k,n;
stbi_uc *output = (stbi_uc *) stbi__malloc(x * y * comp);
if (output == NULL) { free(data); return stbi__errpuc("outofmem", "Out of memory"); }
// compute number of non-alpha components
if (comp & 1) n = comp; else n = comp-1;
for (i=0; i < x*y; ++i) {
for (k=0; k < n; ++k) {
float z = (float) pow(data[i*comp+k]*stbi__h2l_scale_i, stbi__h2l_gamma_i) * 255 + 0.5f;
if (z < 0) z = 0;
if (z > 255) z = 255;
output[i*comp + k] = (stbi_uc) stbi__float2int(z);
}
if (k < comp) {
float z = data[i*comp+k] * 255 + 0.5f;
if (z < 0) z = 0;
if (z > 255) z = 255;
output[i*comp + k] = (stbi_uc) stbi__float2int(z);
}
}
free(data);
return output;
}
#endif
//////////////////////////////////////////////////////////////////////////////
//
// "baseline" JPEG/JFIF decoder (not actually fully baseline implementation)
//
// simple implementation
// - channel subsampling of at most 2 in each dimension
// - doesn't support delayed output of y-dimension
// - simple interface (only one output format: 8-bit interleaved RGB)
// - doesn't try to recover corrupt jpegs
// - doesn't allow partial loading, loading multiple at once
// - still fast on x86 (copying globals into locals doesn't help x86)
// - allocates lots of intermediate memory (full size of all components)
// - non-interleaved case requires this anyway
// - allows good upsampling (see next)
// high-quality
// - upsampled channels are bilinearly interpolated, even across blocks
// - quality integer IDCT derived from IJG's 'slow'
// performance
// - fast huffman; reasonable integer IDCT
// - uses a lot of intermediate memory, could cache poorly
// - load http://nothings.org/remote/anemones.jpg 3 times on 2.8Ghz P4
// stb_jpeg: 1.34 seconds (MSVC6, default release build)
// stb_jpeg: 1.06 seconds (MSVC6, processor = Pentium Pro)
// IJL11.dll: 1.08 seconds (compiled by intel)
// IJG 1998: 0.98 seconds (MSVC6, makefile provided by IJG)
// IJG 1998: 0.95 seconds (MSVC6, makefile + proc=PPro)
// huffman decoding acceleration
#define FAST_BITS 9 // larger handles more cases; smaller stomps less cache
typedef struct
{
stbi_uc fast[1 << FAST_BITS];
// weirdly, repacking this into AoS is a 10% speed loss, instead of a win
stbi__uint16 code[256];
stbi_uc values[256];
stbi_uc size[257];
unsigned int maxcode[18];
int delta[17]; // old 'firstsymbol' - old 'firstcode'
} stbi__huffman;
typedef struct
{
#ifdef STBI_SIMD
unsigned short dequant2[4][64];
#endif
stbi__context *s;
stbi__huffman huff_dc[4];
stbi__huffman huff_ac[4];
stbi_uc dequant[4][64];
// sizes for components, interleaved MCUs
int img_h_max, img_v_max;
int img_mcu_x, img_mcu_y;
int img_mcu_w, img_mcu_h;
// definition of jpeg image component
struct
{
int id;
int h,v;
int tq;
int hd,ha;
int dc_pred;
int x,y,w2,h2;
stbi_uc *data;
void *raw_data;
stbi_uc *linebuf;
} img_comp[4];
stbi__uint32 code_buffer; // jpeg entropy-coded buffer
int code_bits; // number of valid bits
unsigned char marker; // marker seen while filling entropy buffer
int nomore; // flag if we saw a marker so must stop
int scan_n, order[4];
int restart_interval, todo;
} stbi__jpeg;
static int stbi__build_huffman(stbi__huffman *h, int *count)
{
int i,j,k=0,code;
// build size list for each symbol (from JPEG spec)
for (i=0; i < 16; ++i)
for (j=0; j < count[i]; ++j)
h->size[k++] = (stbi_uc) (i+1);
h->size[k] = 0;
// compute actual symbols (from jpeg spec)
code = 0;
k = 0;
for(j=1; j <= 16; ++j) {
// compute delta to add to code to compute symbol id
h->delta[j] = k - code;
if (h->size[k] == j) {
while (h->size[k] == j)
h->code[k++] = (stbi__uint16) (code++);
if (code-1 >= (1 << j)) return stbi__err("bad code lengths","Corrupt JPEG");
}
// compute largest code + 1 for this size, preshifted as needed later
h->maxcode[j] = code << (16-j);
code <<= 1;
}
h->maxcode[j] = 0xffffffff;
// build non-spec acceleration table; 255 is flag for not-accelerated
memset(h->fast, 255, 1 << FAST_BITS);
for (i=0; i < k; ++i) {
int s = h->size[i];
if (s <= FAST_BITS) {
int c = h->code[i] << (FAST_BITS-s);
int m = 1 << (FAST_BITS-s);
for (j=0; j < m; ++j) {
h->fast[c+j] = (stbi_uc) i;
}
}
}
return 1;
}
static void stbi__grow_buffer_unsafe(stbi__jpeg *j)
{
do {
int b = j->nomore ? 0 : stbi__get8(j->s);
if (b == 0xff) {
int c = stbi__get8(j->s);
if (c != 0) {
j->marker = (unsigned char) c;
j->nomore = 1;
return;
}
}
j->code_buffer |= b << (24 - j->code_bits);
j->code_bits += 8;
} while (j->code_bits <= 24);
}
// (1 << n) - 1
static stbi__uint32 stbi__bmask[17]={0,1,3,7,15,31,63,127,255,511,1023,2047,4095,8191,16383,32767,65535};
// decode a jpeg huffman value from the bitstream
stbi_inline static int stbi__jpeg_huff_decode(stbi__jpeg *j, stbi__huffman *h)
{
unsigned int temp;
int c,k;
if (j->code_bits < 16) stbi__grow_buffer_unsafe(j);
// look at the top FAST_BITS and determine what symbol ID it is,
// if the code is <= FAST_BITS
c = (j->code_buffer >> (32 - FAST_BITS)) & ((1 << FAST_BITS)-1);
k = h->fast[c];
if (k < 255) {
int s = h->size[k];
if (s > j->code_bits)
return -1;
j->code_buffer <<= s;
j->code_bits -= s;
return h->values[k];
}
// naive test is to shift the code_buffer down so k bits are
// valid, then test against maxcode. To speed this up, we've
// preshifted maxcode left so that it has (16-k) 0s at the
// end; in other words, regardless of the number of bits, it
// wants to be compared against something shifted to have 16;
// that way we don't need to shift inside the loop.
temp = j->code_buffer >> 16;
for (k=FAST_BITS+1 ; ; ++k)
if (temp < h->maxcode[k])
break;
if (k == 17) {
// error! code not found
j->code_bits -= 16;
return -1;
}
if (k > j->code_bits)
return -1;
// convert the huffman code to the symbol id
c = ((j->code_buffer >> (32 - k)) & stbi__bmask[k]) + h->delta[k];
STBI_ASSERT((((j->code_buffer) >> (32 - h->size[c])) & stbi__bmask[h->size[c]]) == h->code[c]);
// convert the id to a symbol
j->code_bits -= k;
j->code_buffer <<= k;
return h->values[c];
}
// combined JPEG 'receive' and JPEG 'extend', since baseline
// always extends everything it receives.
stbi_inline static int stbi__extend_receive(stbi__jpeg *j, int n)
{
unsigned int m = 1 << (n-1);
unsigned int k;
if (j->code_bits < n) stbi__grow_buffer_unsafe(j);
#if 1
k = stbi_lrot(j->code_buffer, n);
j->code_buffer = k & ~stbi__bmask[n];
k &= stbi__bmask[n];
j->code_bits -= n;
#else
k = (j->code_buffer >> (32 - n)) & stbi__bmask[n];
j->code_bits -= n;
j->code_buffer <<= n;
#endif
// the following test is probably a random branch that won't
// predict well. I tried to table accelerate it but failed.
// maybe it's compiling as a conditional move?
if (k < m)
return (-1 << n) + k + 1;
else
return k;
}
// given a value that's at position X in the zigzag stream,
// where does it appear in the 8x8 matrix coded as row-major?
static stbi_uc stbi__jpeg_dezigzag[64+15] =
{
0, 1, 8, 16, 9, 2, 3, 10,
17, 24, 32, 25, 18, 11, 4, 5,
12, 19, 26, 33, 40, 48, 41, 34,
27, 20, 13, 6, 7, 14, 21, 28,
35, 42, 49, 56, 57, 50, 43, 36,
29, 22, 15, 23, 30, 37, 44, 51,
58, 59, 52, 45, 38, 31, 39, 46,
53, 60, 61, 54, 47, 55, 62, 63,
// let corrupt input sample past end
63, 63, 63, 63, 63, 63, 63, 63,
63, 63, 63, 63, 63, 63, 63
};
// decode one 64-entry block--
static int stbi__jpeg_decode_block(stbi__jpeg *j, short data[64], stbi__huffman *hdc, stbi__huffman *hac, int b)
{
int diff,dc,k;
int t = stbi__jpeg_huff_decode(j, hdc);
if (t < 0) return stbi__err("bad huffman code","Corrupt JPEG");
// 0 all the ac values now so we can do it 32-bits at a time
memset(data,0,64*sizeof(data[0]));
diff = t ? stbi__extend_receive(j, t) : 0;
dc = j->img_comp[b].dc_pred + diff;
j->img_comp[b].dc_pred = dc;
data[0] = (short) dc;
// decode AC components, see JPEG spec
k = 1;
do {
int r,s;
int rs = stbi__jpeg_huff_decode(j, hac);
if (rs < 0) return stbi__err("bad huffman code","Corrupt JPEG");
s = rs & 15;
r = rs >> 4;
if (s == 0) {
if (rs != 0xf0) break; // end block
k += 16;
} else {
k += r;
// decode into unzigzag'd location
data[stbi__jpeg_dezigzag[k++]] = (short) stbi__extend_receive(j,s);
}
} while (k < 64);
return 1;
}
// take a -128..127 value and stbi__clamp it and convert to 0..255
stbi_inline static stbi_uc stbi__clamp(int x)
{
// trick to use a single test to catch both cases
if ((unsigned int) x > 255) {
if (x < 0) return 0;
if (x > 255) return 255;
}
return (stbi_uc) x;
}
#define stbi__f2f(x) (int) (((x) * 4096 + 0.5))
#define stbi__fsh(x) ((x) << 12)
// derived from jidctint -- DCT_ISLOW
#define STBI__IDCT_1D(s0,s1,s2,s3,s4,s5,s6,s7) \
int t0,t1,t2,t3,p1,p2,p3,p4,p5,x0,x1,x2,x3; \
p2 = s2; \
p3 = s6; \
p1 = (p2+p3) * stbi__f2f(0.5411961f); \
t2 = p1 + p3*stbi__f2f(-1.847759065f); \
t3 = p1 + p2*stbi__f2f( 0.765366865f); \
p2 = s0; \
p3 = s4; \
t0 = stbi__fsh(p2+p3); \
t1 = stbi__fsh(p2-p3); \
x0 = t0+t3; \
x3 = t0-t3; \
x1 = t1+t2; \
x2 = t1-t2; \
t0 = s7; \
t1 = s5; \
t2 = s3; \
t3 = s1; \
p3 = t0+t2; \
p4 = t1+t3; \
p1 = t0+t3; \
p2 = t1+t2; \
p5 = (p3+p4)*stbi__f2f( 1.175875602f); \
t0 = t0*stbi__f2f( 0.298631336f); \
t1 = t1*stbi__f2f( 2.053119869f); \
t2 = t2*stbi__f2f( 3.072711026f); \
t3 = t3*stbi__f2f( 1.501321110f); \
p1 = p5 + p1*stbi__f2f(-0.899976223f); \
p2 = p5 + p2*stbi__f2f(-2.562915447f); \
p3 = p3*stbi__f2f(-1.961570560f); \
p4 = p4*stbi__f2f(-0.390180644f); \
t3 += p1+p4; \
t2 += p2+p3; \
t1 += p2+p4; \
t0 += p1+p3;
#ifdef STBI_SIMD
typedef unsigned short stbi_dequantize_t;
#else
typedef stbi_uc stbi_dequantize_t;
#endif
// .344 seconds on 3*anemones.jpg
static void stbi__idct_block(stbi_uc *out, int out_stride, short data[64], stbi_dequantize_t *dequantize)
{
int i,val[64],*v=val;
stbi_dequantize_t *dq = dequantize;
stbi_uc *o;
short *d = data;
// columns
for (i=0; i < 8; ++i,++d,++dq, ++v) {
// if all zeroes, shortcut -- this avoids dequantizing 0s and IDCTing
if (d[ 8]==0 && d[16]==0 && d[24]==0 && d[32]==0
&& d[40]==0 && d[48]==0 && d[56]==0) {
// no shortcut 0 seconds
// (1|2|3|4|5|6|7)==0 0 seconds
// all separate -0.047 seconds
// 1 && 2|3 && 4|5 && 6|7: -0.047 seconds
int dcterm = d[0] * dq[0] << 2;
v[0] = v[8] = v[16] = v[24] = v[32] = v[40] = v[48] = v[56] = dcterm;
} else {
STBI__IDCT_1D(d[ 0]*dq[ 0],d[ 8]*dq[ 8],d[16]*dq[16],d[24]*dq[24],
d[32]*dq[32],d[40]*dq[40],d[48]*dq[48],d[56]*dq[56])
// constants scaled things up by 1<<12; let's bring them back
// down, but keep 2 extra bits of precision
x0 += 512; x1 += 512; x2 += 512; x3 += 512;
v[ 0] = (x0+t3) >> 10;
v[56] = (x0-t3) >> 10;
v[ 8] = (x1+t2) >> 10;
v[48] = (x1-t2) >> 10;
v[16] = (x2+t1) >> 10;
v[40] = (x2-t1) >> 10;
v[24] = (x3+t0) >> 10;
v[32] = (x3-t0) >> 10;
}
}
for (i=0, v=val, o=out; i < 8; ++i,v+=8,o+=out_stride) {
// no fast case since the first 1D IDCT spread components out
STBI__IDCT_1D(v[0],v[1],v[2],v[3],v[4],v[5],v[6],v[7])
// constants scaled things up by 1<<12, plus we had 1<<2 from first
// loop, plus horizontal and vertical each scale by sqrt(8) so together
// we've got an extra 1<<3, so 1<<17 total we need to remove.
// so we want to round that, which means adding 0.5 * 1<<17,
// aka 65536. Also, we'll end up with -128 to 127 that we want
// to encode as 0..255 by adding 128, so we'll add that before the shift
x0 += 65536 + (128<<17);
x1 += 65536 + (128<<17);
x2 += 65536 + (128<<17);
x3 += 65536 + (128<<17);
// tried computing the shifts into temps, or'ing the temps to see
// if any were out of range, but that was slower
o[0] = stbi__clamp((x0+t3) >> 17);
o[7] = stbi__clamp((x0-t3) >> 17);
o[1] = stbi__clamp((x1+t2) >> 17);
o[6] = stbi__clamp((x1-t2) >> 17);
o[2] = stbi__clamp((x2+t1) >> 17);
o[5] = stbi__clamp((x2-t1) >> 17);
o[3] = stbi__clamp((x3+t0) >> 17);
o[4] = stbi__clamp((x3-t0) >> 17);
}
}
#ifdef STBI_SIMD
static stbi_idct_8x8 stbi__idct_installed = stbi__idct_block;
STBIDEF void stbi_install_idct(stbi_idct_8x8 func)
{
stbi__idct_installed = func;
}
#endif
#define STBI__MARKER_none 0xff
// if there's a pending marker from the entropy stream, return that
// otherwise, fetch from the stream and get a marker. if there's no
// marker, return 0xff, which is never a valid marker value
static stbi_uc stbi__get_marker(stbi__jpeg *j)
{
stbi_uc x;
if (j->marker != STBI__MARKER_none) { x = j->marker; j->marker = STBI__MARKER_none; return x; }
x = stbi__get8(j->s);
if (x != 0xff) return STBI__MARKER_none;
while (x == 0xff)
x = stbi__get8(j->s);
return x;
}
// in each scan, we'll have scan_n components, and the order
// of the components is specified by order[]
#define STBI__RESTART(x) ((x) >= 0xd0 && (x) <= 0xd7)
// after a restart interval, stbi__jpeg_reset the entropy decoder and
// the dc prediction
static void stbi__jpeg_reset(stbi__jpeg *j)
{
j->code_bits = 0;
j->code_buffer = 0;
j->nomore = 0;
j->img_comp[0].dc_pred = j->img_comp[1].dc_pred = j->img_comp[2].dc_pred = 0;
j->marker = STBI__MARKER_none;
j->todo = j->restart_interval ? j->restart_interval : 0x7fffffff;
// no more than 1<<31 MCUs if no restart_interal? that's plenty safe,
// since we don't even allow 1<<30 pixels
}
static int stbi__parse_entropy_coded_data(stbi__jpeg *z)
{
stbi__jpeg_reset(z);
if (z->scan_n == 1) {
int i,j;
#ifdef STBI_SIMD
__declspec(align(16))
#endif
short data[64];
int n = z->order[0];
// non-interleaved data, we just need to process one block at a time,
// in trivial scanline order
// number of blocks to do just depends on how many actual "pixels" this
// component has, independent of interleaved MCU blocking and such
int w = (z->img_comp[n].x+7) >> 3;
int h = (z->img_comp[n].y+7) >> 3;
for (j=0; j < h; ++j) {
for (i=0; i < w; ++i) {
if (!stbi__jpeg_decode_block(z, data, z->huff_dc+z->img_comp[n].hd, z->huff_ac+z->img_comp[n].ha, n)) return 0;
#ifdef STBI_SIMD
stbi__idct_installed(z->img_comp[n].data+z->img_comp[n].w2*j*8+i*8, z->img_comp[n].w2, data, z->dequant2[z->img_comp[n].tq]);
#else
stbi__idct_block(z->img_comp[n].data+z->img_comp[n].w2*j*8+i*8, z->img_comp[n].w2, data, z->dequant[z->img_comp[n].tq]);
#endif
// every data block is an MCU, so countdown the restart interval
if (--z->todo <= 0) {
if (z->code_bits < 24) stbi__grow_buffer_unsafe(z);
// if it's NOT a restart, then just bail, so we get corrupt data
// rather than no data
if (!STBI__RESTART(z->marker)) return 1;
stbi__jpeg_reset(z);
}
}
}
} else { // interleaved!
int i,j,k,x,y;
short data[64];
for (j=0; j < z->img_mcu_y; ++j) {
for (i=0; i < z->img_mcu_x; ++i) {
// scan an interleaved mcu... process scan_n components in order
for (k=0; k < z->scan_n; ++k) {
int n = z->order[k];
// scan out an mcu's worth of this component; that's just determined
// by the basic H and V specified for the component
for (y=0; y < z->img_comp[n].v; ++y) {
for (x=0; x < z->img_comp[n].h; ++x) {
int x2 = (i*z->img_comp[n].h + x)*8;
int y2 = (j*z->img_comp[n].v + y)*8;
if (!stbi__jpeg_decode_block(z, data, z->huff_dc+z->img_comp[n].hd, z->huff_ac+z->img_comp[n].ha, n)) return 0;
#ifdef STBI_SIMD
stbi__idct_installed(z->img_comp[n].data+z->img_comp[n].w2*y2+x2, z->img_comp[n].w2, data, z->dequant2[z->img_comp[n].tq]);
#else
stbi__idct_block(z->img_comp[n].data+z->img_comp[n].w2*y2+x2, z->img_comp[n].w2, data, z->dequant[z->img_comp[n].tq]);
#endif
}
}
}
// after all interleaved components, that's an interleaved MCU,
// so now count down the restart interval
if (--z->todo <= 0) {
if (z->code_bits < 24) stbi__grow_buffer_unsafe(z);
// if it's NOT a restart, then just bail, so we get corrupt data
// rather than no data
if (!STBI__RESTART(z->marker)) return 1;
stbi__jpeg_reset(z);
}
}
}
}
return 1;
}
static int stbi__process_marker(stbi__jpeg *z, int m)
{
int L;
switch (m) {
case STBI__MARKER_none: // no marker found
return stbi__err("expected marker","Corrupt JPEG");
case 0xC2: // stbi__SOF - progressive
return stbi__err("progressive jpeg","JPEG format not supported (progressive)");
case 0xDD: // DRI - specify restart interval
if (stbi__get16be(z->s) != 4) return stbi__err("bad DRI len","Corrupt JPEG");
z->restart_interval = stbi__get16be(z->s);
return 1;
case 0xDB: // DQT - define quantization table
L = stbi__get16be(z->s)-2;
while (L > 0) {
int q = stbi__get8(z->s);
int p = q >> 4;
int t = q & 15,i;
if (p != 0) return stbi__err("bad DQT type","Corrupt JPEG");
if (t > 3) return stbi__err("bad DQT table","Corrupt JPEG");
for (i=0; i < 64; ++i)
z->dequant[t][stbi__jpeg_dezigzag[i]] = stbi__get8(z->s);
#ifdef STBI_SIMD
for (i=0; i < 64; ++i)
z->dequant2[t][i] = z->dequant[t][i];
#endif
L -= 65;
}
return L==0;
case 0xC4: // DHT - define huffman table
L = stbi__get16be(z->s)-2;
while (L > 0) {
stbi_uc *v;
int sizes[16],i,n=0;
int q = stbi__get8(z->s);
int tc = q >> 4;
int th = q & 15;
if (tc > 1 || th > 3) return stbi__err("bad DHT header","Corrupt JPEG");
for (i=0; i < 16; ++i) {
sizes[i] = stbi__get8(z->s);
n += sizes[i];
}
L -= 17;
if (tc == 0) {
if (!stbi__build_huffman(z->huff_dc+th, sizes)) return 0;
v = z->huff_dc[th].values;
} else {
if (!stbi__build_huffman(z->huff_ac+th, sizes)) return 0;
v = z->huff_ac[th].values;
}
for (i=0; i < n; ++i)
v[i] = stbi__get8(z->s);
L -= n;
}
return L==0;
}
// check for comment block or APP blocks
if ((m >= 0xE0 && m <= 0xEF) || m == 0xFE) {
stbi__skip(z->s, stbi__get16be(z->s)-2);
return 1;
}
return 0;
}
// after we see stbi__SOS
static int stbi__process_scan_header(stbi__jpeg *z)
{
int i;
int Ls = stbi__get16be(z->s);
z->scan_n = stbi__get8(z->s);
if (z->scan_n < 1 || z->scan_n > 4 || z->scan_n > (int) z->s->img_n) return stbi__err("bad stbi__SOS component count","Corrupt JPEG");
if (Ls != 6+2*z->scan_n) return stbi__err("bad stbi__SOS len","Corrupt JPEG");
for (i=0; i < z->scan_n; ++i) {
int id = stbi__get8(z->s), which;
int q = stbi__get8(z->s);
for (which = 0; which < z->s->img_n; ++which)
if (z->img_comp[which].id == id)
break;
if (which == z->s->img_n) return 0;
z->img_comp[which].hd = q >> 4; if (z->img_comp[which].hd > 3) return stbi__err("bad DC huff","Corrupt JPEG");
z->img_comp[which].ha = q & 15; if (z->img_comp[which].ha > 3) return stbi__err("bad AC huff","Corrupt JPEG");
z->order[i] = which;
}
if (stbi__get8(z->s) != 0) return stbi__err("bad stbi__SOS","Corrupt JPEG");
stbi__get8(z->s); // should be 63, but might be 0
if (stbi__get8(z->s) != 0) return stbi__err("bad stbi__SOS","Corrupt JPEG");
return 1;
}
static int stbi__process_frame_header(stbi__jpeg *z, int scan)
{
stbi__context *s = z->s;
int Lf,p,i,q, h_max=1,v_max=1,c;
Lf = stbi__get16be(s); if (Lf < 11) return stbi__err("bad stbi__SOF len","Corrupt JPEG"); // JPEG
p = stbi__get8(s); if (p != 8) return stbi__err("only 8-bit","JPEG format not supported: 8-bit only"); // JPEG baseline
s->img_y = stbi__get16be(s); if (s->img_y == 0) return stbi__err("no header height", "JPEG format not supported: delayed height"); // Legal, but we don't handle it--but neither does IJG
s->img_x = stbi__get16be(s); if (s->img_x == 0) return stbi__err("0 width","Corrupt JPEG"); // JPEG requires
c = stbi__get8(s);
if (c != 3 && c != 1) return stbi__err("bad component count","Corrupt JPEG"); // JFIF requires
s->img_n = c;
for (i=0; i < c; ++i) {
z->img_comp[i].data = NULL;
z->img_comp[i].linebuf = NULL;
}
if (Lf != 8+3*s->img_n) return stbi__err("bad stbi__SOF len","Corrupt JPEG");
for (i=0; i < s->img_n; ++i) {
z->img_comp[i].id = stbi__get8(s);
if (z->img_comp[i].id != i+1) // JFIF requires
if (z->img_comp[i].id != i) // some version of jpegtran outputs non-JFIF-compliant files!
return stbi__err("bad component ID","Corrupt JPEG");
q = stbi__get8(s);
z->img_comp[i].h = (q >> 4); if (!z->img_comp[i].h || z->img_comp[i].h > 4) return stbi__err("bad H","Corrupt JPEG");
z->img_comp[i].v = q & 15; if (!z->img_comp[i].v || z->img_comp[i].v > 4) return stbi__err("bad V","Corrupt JPEG");
z->img_comp[i].tq = stbi__get8(s); if (z->img_comp[i].tq > 3) return stbi__err("bad TQ","Corrupt JPEG");
}
if (scan != SCAN_load) return 1;
if ((1 << 30) / s->img_x / s->img_n < s->img_y) return stbi__err("too large", "Image too large to decode");
for (i=0; i < s->img_n; ++i) {
if (z->img_comp[i].h > h_max) h_max = z->img_comp[i].h;
if (z->img_comp[i].v > v_max) v_max = z->img_comp[i].v;
}
// compute interleaved mcu info
z->img_h_max = h_max;
z->img_v_max = v_max;
z->img_mcu_w = h_max * 8;
z->img_mcu_h = v_max * 8;
z->img_mcu_x = (s->img_x + z->img_mcu_w-1) / z->img_mcu_w;
z->img_mcu_y = (s->img_y + z->img_mcu_h-1) / z->img_mcu_h;
for (i=0; i < s->img_n; ++i) {
// number of effective pixels (e.g. for non-interleaved MCU)
z->img_comp[i].x = (s->img_x * z->img_comp[i].h + h_max-1) / h_max;
z->img_comp[i].y = (s->img_y * z->img_comp[i].v + v_max-1) / v_max;
// to simplify generation, we'll allocate enough memory to decode
// the bogus oversized data from using interleaved MCUs and their
// big blocks (e.g. a 16x16 iMCU on an image of width 33); we won't
// discard the extra data until colorspace conversion
z->img_comp[i].w2 = z->img_mcu_x * z->img_comp[i].h * 8;
z->img_comp[i].h2 = z->img_mcu_y * z->img_comp[i].v * 8;
z->img_comp[i].raw_data = stbi__malloc(z->img_comp[i].w2 * z->img_comp[i].h2+15);
if (z->img_comp[i].raw_data == NULL) {
for(--i; i >= 0; --i) {
free(z->img_comp[i].raw_data);
z->img_comp[i].data = NULL;
}
return stbi__err("outofmem", "Out of memory");
}
// align blocks for installable-idct using mmx/sse
z->img_comp[i].data = (stbi_uc*) (((size_t) z->img_comp[i].raw_data + 15) & ~15);
z->img_comp[i].linebuf = NULL;
}
return 1;
}
// use comparisons since in some cases we handle more than one case (e.g. stbi__SOF)
#define stbi__DNL(x) ((x) == 0xdc)
#define stbi__SOI(x) ((x) == 0xd8)
#define stbi__EOI(x) ((x) == 0xd9)
#define stbi__SOF(x) ((x) == 0xc0 || (x) == 0xc1)
#define stbi__SOS(x) ((x) == 0xda)
static int decode_jpeg_header(stbi__jpeg *z, int scan)
{
int m;
z->marker = STBI__MARKER_none; // initialize cached marker to empty
m = stbi__get_marker(z);
if (!stbi__SOI(m)) return stbi__err("no stbi__SOI","Corrupt JPEG");
if (scan == SCAN_type) return 1;
m = stbi__get_marker(z);
while (!stbi__SOF(m)) {
if (!stbi__process_marker(z,m)) return 0;
m = stbi__get_marker(z);
while (m == STBI__MARKER_none) {
// some files have extra padding after their blocks, so ok, we'll scan
if (stbi__at_eof(z->s)) return stbi__err("no stbi__SOF", "Corrupt JPEG");
m = stbi__get_marker(z);
}
}
if (!stbi__process_frame_header(z, scan)) return 0;
return 1;
}
static int decode_jpeg_image(stbi__jpeg *j)
{
int m;
j->restart_interval = 0;
if (!decode_jpeg_header(j, SCAN_load)) return 0;
m = stbi__get_marker(j);
while (!stbi__EOI(m)) {
if (stbi__SOS(m)) {
if (!stbi__process_scan_header(j)) return 0;
if (!stbi__parse_entropy_coded_data(j)) return 0;
if (j->marker == STBI__MARKER_none ) {
// handle 0s at the end of image data from IP Kamera 9060
while (!stbi__at_eof(j->s)) {
int x = stbi__get8(j->s);
if (x == 255) {
j->marker = stbi__get8(j->s);
break;
} else if (x != 0) {
return 0;
}
}
// if we reach eof without hitting a marker, stbi__get_marker() below will fail and we'll eventually return 0
}
} else {
if (!stbi__process_marker(j, m)) return 0;
}
m = stbi__get_marker(j);
}
return 1;
}
// static jfif-centered resampling (across block boundaries)
typedef stbi_uc *(*resample_row_func)(stbi_uc *out, stbi_uc *in0, stbi_uc *in1,
int w, int hs);
#define stbi__div4(x) ((stbi_uc) ((x) >> 2))
static stbi_uc *resample_row_1(stbi_uc *out, stbi_uc *in_near, stbi_uc *in_far, int w, int hs)
{
STBI_NOTUSED(out);
STBI_NOTUSED(in_far);
STBI_NOTUSED(w);
STBI_NOTUSED(hs);
return in_near;
}
static stbi_uc* stbi__resample_row_v_2(stbi_uc *out, stbi_uc *in_near, stbi_uc *in_far, int w, int hs)
{
// need to generate two samples vertically for every one in input
int i;
STBI_NOTUSED(hs);
for (i=0; i < w; ++i)
out[i] = stbi__div4(3*in_near[i] + in_far[i] + 2);
return out;
}
static stbi_uc* stbi__resample_row_h_2(stbi_uc *out, stbi_uc *in_near, stbi_uc *in_far, int w, int hs)
{
// need to generate two samples horizontally for every one in input
int i;
stbi_uc *input = in_near;
if (w == 1) {
// if only one sample, can't do any interpolation
out[0] = out[1] = input[0];
return out;
}
out[0] = input[0];
out[1] = stbi__div4(input[0]*3 + input[1] + 2);
for (i=1; i < w-1; ++i) {
int n = 3*input[i]+2;
out[i*2+0] = stbi__div4(n+input[i-1]);
out[i*2+1] = stbi__div4(n+input[i+1]);
}
out[i*2+0] = stbi__div4(input[w-2]*3 + input[w-1] + 2);
out[i*2+1] = input[w-1];
STBI_NOTUSED(in_far);
STBI_NOTUSED(hs);
return out;
}
#define stbi__div16(x) ((stbi_uc) ((x) >> 4))
static stbi_uc *stbi__resample_row_hv_2(stbi_uc *out, stbi_uc *in_near, stbi_uc *in_far, int w, int hs)
{
// need to generate 2x2 samples for every one in input
int i,t0,t1;
if (w == 1) {
out[0] = out[1] = stbi__div4(3*in_near[0] + in_far[0] + 2);
return out;
}
t1 = 3*in_near[0] + in_far[0];
out[0] = stbi__div4(t1+2);
for (i=1; i < w; ++i) {
t0 = t1;
t1 = 3*in_near[i]+in_far[i];
out[i*2-1] = stbi__div16(3*t0 + t1 + 8);
out[i*2 ] = stbi__div16(3*t1 + t0 + 8);
}
out[w*2-1] = stbi__div4(t1+2);
STBI_NOTUSED(hs);
return out;
}
static stbi_uc *stbi__resample_row_generic(stbi_uc *out, stbi_uc *in_near, stbi_uc *in_far, int w, int hs)
{
// resample with nearest-neighbor
int i,j;
STBI_NOTUSED(in_far);
for (i=0; i < w; ++i)
for (j=0; j < hs; ++j)
out[i*hs+j] = in_near[i];
return out;
}
#define float2fixed(x) ((int) ((x) * 65536 + 0.5))
// 0.38 seconds on 3*anemones.jpg (0.25 with processor = Pro)
// VC6 without processor=Pro is generating multiple LEAs per multiply!
static void stbi__YCbCr_to_RGB_row(stbi_uc *out, const stbi_uc *y, const stbi_uc *pcb, const stbi_uc *pcr, int count, int step)
{
int i;
for (i=0; i < count; ++i) {
int y_fixed = (y[i] << 16) + 32768; // rounding
int r,g,b;
int cr = pcr[i] - 128;
int cb = pcb[i] - 128;
r = y_fixed + cr*float2fixed(1.40200f);
g = y_fixed - cr*float2fixed(0.71414f) - cb*float2fixed(0.34414f);
b = y_fixed + cb*float2fixed(1.77200f);
r >>= 16;
g >>= 16;
b >>= 16;
if ((unsigned) r > 255) { if (r < 0) r = 0; else r = 255; }
if ((unsigned) g > 255) { if (g < 0) g = 0; else g = 255; }
if ((unsigned) b > 255) { if (b < 0) b = 0; else b = 255; }
out[0] = (stbi_uc)r;
out[1] = (stbi_uc)g;
out[2] = (stbi_uc)b;
out[3] = 255;
out += step;
}
}
#ifdef STBI_SIMD
static stbi_YCbCr_to_RGB_run stbi__YCbCr_installed = stbi__YCbCr_to_RGB_row;
STBIDEF void stbi_install_YCbCr_to_RGB(stbi_YCbCr_to_RGB_run func)
{
stbi__YCbCr_installed = func;
}
#endif
// clean up the temporary component buffers
static void stbi__cleanup_jpeg(stbi__jpeg *j)
{
int i;
for (i=0; i < j->s->img_n; ++i) {
if (j->img_comp[i].raw_data) {
free(j->img_comp[i].raw_data);
j->img_comp[i].raw_data = NULL;
j->img_comp[i].data = NULL;
}
if (j->img_comp[i].linebuf) {
free(j->img_comp[i].linebuf);
j->img_comp[i].linebuf = NULL;
}
}
}
typedef struct
{
resample_row_func resample;
stbi_uc *line0,*line1;
int hs,vs; // expansion factor in each axis
int w_lores; // horizontal pixels pre-expansion
int ystep; // how far through vertical expansion we are
int ypos; // which pre-expansion row we're on
} stbi__resample;
static stbi_uc *load_jpeg_image(stbi__jpeg *z, int *out_x, int *out_y, int *comp, int req_comp)
{
int n, decode_n;
z->s->img_n = 0; // make stbi__cleanup_jpeg safe
// validate req_comp
if (req_comp < 0 || req_comp > 4) return stbi__errpuc("bad req_comp", "Internal error");
// load a jpeg image from whichever source
if (!decode_jpeg_image(z)) { stbi__cleanup_jpeg(z); return NULL; }
// determine actual number of components to generate
n = req_comp ? req_comp : z->s->img_n;
if (z->s->img_n == 3 && n < 3)
decode_n = 1;
else
decode_n = z->s->img_n;
// resample and color-convert
{
int k;
unsigned int i,j;
stbi_uc *output;
stbi_uc *coutput[4];
stbi__resample res_comp[4];
for (k=0; k < decode_n; ++k) {
stbi__resample *r = &res_comp[k];
// allocate line buffer big enough for upsampling off the edges
// with upsample factor of 4
z->img_comp[k].linebuf = (stbi_uc *) stbi__malloc(z->s->img_x + 3);
if (!z->img_comp[k].linebuf) { stbi__cleanup_jpeg(z); return stbi__errpuc("outofmem", "Out of memory"); }
r->hs = z->img_h_max / z->img_comp[k].h;
r->vs = z->img_v_max / z->img_comp[k].v;
r->ystep = r->vs >> 1;
r->w_lores = (z->s->img_x + r->hs-1) / r->hs;
r->ypos = 0;
r->line0 = r->line1 = z->img_comp[k].data;
if (r->hs == 1 && r->vs == 1) r->resample = resample_row_1;
else if (r->hs == 1 && r->vs == 2) r->resample = stbi__resample_row_v_2;
else if (r->hs == 2 && r->vs == 1) r->resample = stbi__resample_row_h_2;
else if (r->hs == 2 && r->vs == 2) r->resample = stbi__resample_row_hv_2;
else r->resample = stbi__resample_row_generic;
}
// can't error after this so, this is safe
output = (stbi_uc *) stbi__malloc(n * z->s->img_x * z->s->img_y + 1);
if (!output) { stbi__cleanup_jpeg(z); return stbi__errpuc("outofmem", "Out of memory"); }
// now go ahead and resample
for (j=0; j < z->s->img_y; ++j) {
stbi_uc *out = output + n * z->s->img_x * j;
for (k=0; k < decode_n; ++k) {
stbi__resample *r = &res_comp[k];
int y_bot = r->ystep >= (r->vs >> 1);
coutput[k] = r->resample(z->img_comp[k].linebuf,
y_bot ? r->line1 : r->line0,
y_bot ? r->line0 : r->line1,
r->w_lores, r->hs);
if (++r->ystep >= r->vs) {
r->ystep = 0;
r->line0 = r->line1;
if (++r->ypos < z->img_comp[k].y)
r->line1 += z->img_comp[k].w2;
}
}
if (n >= 3) {
stbi_uc *y = coutput[0];
if (z->s->img_n == 3) {
#ifdef STBI_SIMD
stbi__YCbCr_installed(out, y, coutput[1], coutput[2], z->s->img_x, n);
#else
stbi__YCbCr_to_RGB_row(out, y, coutput[1], coutput[2], z->s->img_x, n);
#endif
} else
for (i=0; i < z->s->img_x; ++i) {
out[0] = out[1] = out[2] = y[i];
out[3] = 255; // not used if n==3
out += n;
}
} else {
stbi_uc *y = coutput[0];
if (n == 1)
for (i=0; i < z->s->img_x; ++i) out[i] = y[i];
else
for (i=0; i < z->s->img_x; ++i) *out++ = y[i], *out++ = 255;
}
}
stbi__cleanup_jpeg(z);
*out_x = z->s->img_x;
*out_y = z->s->img_y;
if (comp) *comp = z->s->img_n; // report original components, not output
return output;
}
}
static unsigned char *stbi__jpeg_load(stbi__context *s, int *x, int *y, int *comp, int req_comp)
{
stbi__jpeg j;
j.s = s;
return load_jpeg_image(&j, x,y,comp,req_comp);
}
static int stbi__jpeg_test(stbi__context *s)
{
int r;
stbi__jpeg j;
j.s = s;
r = decode_jpeg_header(&j, SCAN_type);
stbi__rewind(s);
return r;
}
static int stbi__jpeg_info_raw(stbi__jpeg *j, int *x, int *y, int *comp)
{
if (!decode_jpeg_header(j, SCAN_header)) {
stbi__rewind( j->s );
return 0;
}
if (x) *x = j->s->img_x;
if (y) *y = j->s->img_y;
if (comp) *comp = j->s->img_n;
return 1;
}
static int stbi__jpeg_info(stbi__context *s, int *x, int *y, int *comp)
{
stbi__jpeg j;
j.s = s;
return stbi__jpeg_info_raw(&j, x, y, comp);
}
// public domain zlib decode v0.2 Sean Barrett 2006-11-18
// simple implementation
// - all input must be provided in an upfront buffer
// - all output is written to a single output buffer (can malloc/realloc)
// performance
// - fast huffman
// fast-way is faster to check than jpeg huffman, but slow way is slower
#define STBI__ZFAST_BITS 9 // accelerate all cases in default tables
#define STBI__ZFAST_MASK ((1 << STBI__ZFAST_BITS) - 1)
// zlib-style huffman encoding
// (jpegs packs from left, zlib from right, so can't share code)
typedef struct
{
stbi__uint16 fast[1 << STBI__ZFAST_BITS];
stbi__uint16 firstcode[16];
int maxcode[17];
stbi__uint16 firstsymbol[16];
stbi_uc size[288];
stbi__uint16 value[288];
} stbi__zhuffman;
stbi_inline static int stbi__bitreverse16(int n)
{
n = ((n & 0xAAAA) >> 1) | ((n & 0x5555) << 1);
n = ((n & 0xCCCC) >> 2) | ((n & 0x3333) << 2);
n = ((n & 0xF0F0) >> 4) | ((n & 0x0F0F) << 4);
n = ((n & 0xFF00) >> 8) | ((n & 0x00FF) << 8);
return n;
}
stbi_inline static int stbi__bit_reverse(int v, int bits)
{
STBI_ASSERT(bits <= 16);
// to bit reverse n bits, reverse 16 and shift
// e.g. 11 bits, bit reverse and shift away 5
return stbi__bitreverse16(v) >> (16-bits);
}
static int stbi__zbuild_huffman(stbi__zhuffman *z, stbi_uc *sizelist, int num)
{
int i,k=0;
int code, next_code[16], sizes[17];
// DEFLATE spec for generating codes
memset(sizes, 0, sizeof(sizes));
memset(z->fast, 255, sizeof(z->fast));
for (i=0; i < num; ++i)
++sizes[sizelist[i]];
sizes[0] = 0;
for (i=1; i < 16; ++i)
STBI_ASSERT(sizes[i] <= (1 << i));
code = 0;
for (i=1; i < 16; ++i) {
next_code[i] = code;
z->firstcode[i] = (stbi__uint16) code;
z->firstsymbol[i] = (stbi__uint16) k;
code = (code + sizes[i]);
if (sizes[i])
if (code-1 >= (1 << i)) return stbi__err("bad codelengths","Corrupt JPEG");
z->maxcode[i] = code << (16-i); // preshift for inner loop
code <<= 1;
k += sizes[i];
}
z->maxcode[16] = 0x10000; // sentinel
for (i=0; i < num; ++i) {
int s = sizelist[i];
if (s) {
int c = next_code[s] - z->firstcode[s] + z->firstsymbol[s];
z->size [c] = (stbi_uc ) s;
z->value[c] = (stbi__uint16) i;
if (s <= STBI__ZFAST_BITS) {
int k = stbi__bit_reverse(next_code[s],s);
while (k < (1 << STBI__ZFAST_BITS)) {
z->fast[k] = (stbi__uint16) c;
k += (1 << s);
}
}
++next_code[s];
}
}
return 1;
}
// zlib-from-memory implementation for PNG reading
// because PNG allows splitting the zlib stream arbitrarily,
// and it's annoying structurally to have PNG call ZLIB call PNG,
// we require PNG read all the IDATs and combine them into a single
// memory buffer
typedef struct
{
stbi_uc *zbuffer, *zbuffer_end;
int num_bits;
stbi__uint32 code_buffer;
char *zout;
char *zout_start;
char *zout_end;
int z_expandable;
stbi__zhuffman z_length, z_distance;
} stbi__zbuf;
stbi_inline static stbi_uc stbi__zget8(stbi__zbuf *z)
{
if (z->zbuffer >= z->zbuffer_end) return 0;
return *z->zbuffer++;
}
static void stbi__fill_bits(stbi__zbuf *z)
{
do {
STBI_ASSERT(z->code_buffer < (1U << z->num_bits));
z->code_buffer |= stbi__zget8(z) << z->num_bits;
z->num_bits += 8;
} while (z->num_bits <= 24);
}
stbi_inline static unsigned int stbi__zreceive(stbi__zbuf *z, int n)
{
unsigned int k;
if (z->num_bits < n) stbi__fill_bits(z);
k = z->code_buffer & ((1 << n) - 1);
z->code_buffer >>= n;
z->num_bits -= n;
return k;
}
stbi_inline static int stbi__zhuffman_decode(stbi__zbuf *a, stbi__zhuffman *z)
{
int b,s,k;
if (a->num_bits < 16) stbi__fill_bits(a);
b = z->fast[a->code_buffer & STBI__ZFAST_MASK];
if (b < 0xffff) {
s = z->size[b];
a->code_buffer >>= s;
a->num_bits -= s;
return z->value[b];
}
// not resolved by fast table, so compute it the slow way
// use jpeg approach, which requires MSbits at top
k = stbi__bit_reverse(a->code_buffer, 16);
for (s=STBI__ZFAST_BITS+1; ; ++s)
if (k < z->maxcode[s])
break;
if (s == 16) return -1; // invalid code!
// code size is s, so:
b = (k >> (16-s)) - z->firstcode[s] + z->firstsymbol[s];
STBI_ASSERT(z->size[b] == s);
a->code_buffer >>= s;
a->num_bits -= s;
return z->value[b];
}
static int stbi__zexpand(stbi__zbuf *z, int n) // need to make room for n bytes
{
char *q;
int cur, limit;
if (!z->z_expandable) return stbi__err("output buffer limit","Corrupt PNG");
cur = (int) (z->zout - z->zout_start);
limit = (int) (z->zout_end - z->zout_start);
while (cur + n > limit)
limit *= 2;
q = (char *) realloc(z->zout_start, limit);
if (q == NULL) return stbi__err("outofmem", "Out of memory");
z->zout_start = q;
z->zout = q + cur;
z->zout_end = q + limit;
return 1;
}
static int stbi__zlength_base[31] = {
3,4,5,6,7,8,9,10,11,13,
15,17,19,23,27,31,35,43,51,59,
67,83,99,115,131,163,195,227,258,0,0 };
static int stbi__zlength_extra[31]=
{ 0,0,0,0,0,0,0,0,1,1,1,1,2,2,2,2,3,3,3,3,4,4,4,4,5,5,5,5,0,0,0 };
static int stbi__zdist_base[32] = { 1,2,3,4,5,7,9,13,17,25,33,49,65,97,129,193,
257,385,513,769,1025,1537,2049,3073,4097,6145,8193,12289,16385,24577,0,0};
static int stbi__zdist_extra[32] =
{ 0,0,0,0,1,1,2,2,3,3,4,4,5,5,6,6,7,7,8,8,9,9,10,10,11,11,12,12,13,13};
static int stbi__parse_huffman_block(stbi__zbuf *a)
{
for(;;) {
int z = stbi__zhuffman_decode(a, &a->z_length);
if (z < 256) {
if (z < 0) return stbi__err("bad huffman code","Corrupt PNG"); // error in huffman codes
if (a->zout >= a->zout_end) if (!stbi__zexpand(a, 1)) return 0;
*a->zout++ = (char) z;
} else {
stbi_uc *p;
int len,dist;
if (z == 256) return 1;
z -= 257;
len = stbi__zlength_base[z];
if (stbi__zlength_extra[z]) len += stbi__zreceive(a, stbi__zlength_extra[z]);
z = stbi__zhuffman_decode(a, &a->z_distance);
if (z < 0) return stbi__err("bad huffman code","Corrupt PNG");
dist = stbi__zdist_base[z];
if (stbi__zdist_extra[z]) dist += stbi__zreceive(a, stbi__zdist_extra[z]);
if (a->zout - a->zout_start < dist) return stbi__err("bad dist","Corrupt PNG");
if (a->zout + len > a->zout_end) if (!stbi__zexpand(a, len)) return 0;
p = (stbi_uc *) (a->zout - dist);
while (len--)
*a->zout++ = *p++;
}
}
}
static int stbi__compute_huffman_codes(stbi__zbuf *a)
{
static stbi_uc length_dezigzag[19] = { 16,17,18,0,8,7,9,6,10,5,11,4,12,3,13,2,14,1,15 };
stbi__zhuffman z_codelength;
stbi_uc lencodes[286+32+137];//padding for maximum single op
stbi_uc codelength_sizes[19];
int i,n;
int hlit = stbi__zreceive(a,5) + 257;
int hdist = stbi__zreceive(a,5) + 1;
int hclen = stbi__zreceive(a,4) + 4;
memset(codelength_sizes, 0, sizeof(codelength_sizes));
for (i=0; i < hclen; ++i) {
int s = stbi__zreceive(a,3);
codelength_sizes[length_dezigzag[i]] = (stbi_uc) s;
}
if (!stbi__zbuild_huffman(&z_codelength, codelength_sizes, 19)) return 0;
n = 0;
while (n < hlit + hdist) {
int c = stbi__zhuffman_decode(a, &z_codelength);
STBI_ASSERT(c >= 0 && c < 19);
if (c < 16)
lencodes[n++] = (stbi_uc) c;
else if (c == 16) {
c = stbi__zreceive(a,2)+3;
memset(lencodes+n, lencodes[n-1], c);
n += c;
} else if (c == 17) {
c = stbi__zreceive(a,3)+3;
memset(lencodes+n, 0, c);
n += c;
} else {
STBI_ASSERT(c == 18);
c = stbi__zreceive(a,7)+11;
memset(lencodes+n, 0, c);
n += c;
}
}
if (n != hlit+hdist) return stbi__err("bad codelengths","Corrupt PNG");
if (!stbi__zbuild_huffman(&a->z_length, lencodes, hlit)) return 0;
if (!stbi__zbuild_huffman(&a->z_distance, lencodes+hlit, hdist)) return 0;
return 1;
}
static int stbi__parse_uncomperssed_block(stbi__zbuf *a)
{
stbi_uc header[4];
int len,nlen,k;
if (a->num_bits & 7)
stbi__zreceive(a, a->num_bits & 7); // discard
// drain the bit-packed data into header
k = 0;
while (a->num_bits > 0) {
header[k++] = (stbi_uc) (a->code_buffer & 255); // suppress MSVC run-time check
a->code_buffer >>= 8;
a->num_bits -= 8;
}
STBI_ASSERT(a->num_bits == 0);
// now fill header the normal way
while (k < 4)
header[k++] = stbi__zget8(a);
len = header[1] * 256 + header[0];
nlen = header[3] * 256 + header[2];
if (nlen != (len ^ 0xffff)) return stbi__err("zlib corrupt","Corrupt PNG");
if (a->zbuffer + len > a->zbuffer_end) return stbi__err("read past buffer","Corrupt PNG");
if (a->zout + len > a->zout_end)
if (!stbi__zexpand(a, len)) return 0;
memcpy(a->zout, a->zbuffer, len);
a->zbuffer += len;
a->zout += len;
return 1;
}
static int stbi__parse_zlib_header(stbi__zbuf *a)
{
int cmf = stbi__zget8(a);
int cm = cmf & 15;
/* int cinfo = cmf >> 4; */
int flg = stbi__zget8(a);
if ((cmf*256+flg) % 31 != 0) return stbi__err("bad zlib header","Corrupt PNG"); // zlib spec
if (flg & 32) return stbi__err("no preset dict","Corrupt PNG"); // preset dictionary not allowed in png
if (cm != 8) return stbi__err("bad compression","Corrupt PNG"); // DEFLATE required for png
// window = 1 << (8 + cinfo)... but who cares, we fully buffer output
return 1;
}
// @TODO: should statically initialize these for optimal thread safety
static stbi_uc stbi__zdefault_length[288], stbi__zdefault_distance[32];
static void stbi__init_zdefaults(void)
{
int i; // use <= to match clearly with spec
for (i=0; i <= 143; ++i) stbi__zdefault_length[i] = 8;
for ( ; i <= 255; ++i) stbi__zdefault_length[i] = 9;
for ( ; i <= 279; ++i) stbi__zdefault_length[i] = 7;
for ( ; i <= 287; ++i) stbi__zdefault_length[i] = 8;
for (i=0; i <= 31; ++i) stbi__zdefault_distance[i] = 5;
}
static int stbi__parse_zlib(stbi__zbuf *a, int parse_header)
{
int final, type;
if (parse_header)
if (!stbi__parse_zlib_header(a)) return 0;
a->num_bits = 0;
a->code_buffer = 0;
do {
final = stbi__zreceive(a,1);
type = stbi__zreceive(a,2);
if (type == 0) {
if (!stbi__parse_uncomperssed_block(a)) return 0;
} else if (type == 3) {
return 0;
} else {
if (type == 1) {
// use fixed code lengths
if (!stbi__zdefault_distance[31]) stbi__init_zdefaults();
if (!stbi__zbuild_huffman(&a->z_length , stbi__zdefault_length , 288)) return 0;
if (!stbi__zbuild_huffman(&a->z_distance, stbi__zdefault_distance, 32)) return 0;
} else {
if (!stbi__compute_huffman_codes(a)) return 0;
}
if (!stbi__parse_huffman_block(a)) return 0;
}
} while (!final);
return 1;
}
static int stbi__do_zlib(stbi__zbuf *a, char *obuf, int olen, int exp, int parse_header)
{
a->zout_start = obuf;
a->zout = obuf;
a->zout_end = obuf + olen;
a->z_expandable = exp;
return stbi__parse_zlib(a, parse_header);
}
STBIDEF char *stbi_zlib_decode_malloc_guesssize(const char *buffer, int len, int initial_size, int *outlen)
{
stbi__zbuf a;
char *p = (char *) stbi__malloc(initial_size);
if (p == NULL) return NULL;
a.zbuffer = (stbi_uc *) buffer;
a.zbuffer_end = (stbi_uc *) buffer + len;
if (stbi__do_zlib(&a, p, initial_size, 1, 1)) {
if (outlen) *outlen = (int) (a.zout - a.zout_start);
return a.zout_start;
} else {
free(a.zout_start);
return NULL;
}
}
STBIDEF char *stbi_zlib_decode_malloc(char const *buffer, int len, int *outlen)
{
return stbi_zlib_decode_malloc_guesssize(buffer, len, 16384, outlen);
}
STBIDEF char *stbi_zlib_decode_malloc_guesssize_headerflag(const char *buffer, int len, int initial_size, int *outlen, int parse_header)
{
stbi__zbuf a;
char *p = (char *) stbi__malloc(initial_size);
if (p == NULL) return NULL;
a.zbuffer = (stbi_uc *) buffer;
a.zbuffer_end = (stbi_uc *) buffer + len;
if (stbi__do_zlib(&a, p, initial_size, 1, parse_header)) {
if (outlen) *outlen = (int) (a.zout - a.zout_start);
return a.zout_start;
} else {
free(a.zout_start);
return NULL;
}
}
STBIDEF int stbi_zlib_decode_buffer(char *obuffer, int olen, char const *ibuffer, int ilen)
{
stbi__zbuf a;
a.zbuffer = (stbi_uc *) ibuffer;
a.zbuffer_end = (stbi_uc *) ibuffer + ilen;
if (stbi__do_zlib(&a, obuffer, olen, 0, 1))
return (int) (a.zout - a.zout_start);
else
return -1;
}
STBIDEF char *stbi_zlib_decode_noheader_malloc(char const *buffer, int len, int *outlen)
{
stbi__zbuf a;
char *p = (char *) stbi__malloc(16384);
if (p == NULL) return NULL;
a.zbuffer = (stbi_uc *) buffer;
a.zbuffer_end = (stbi_uc *) buffer+len;
if (stbi__do_zlib(&a, p, 16384, 1, 0)) {
if (outlen) *outlen = (int) (a.zout - a.zout_start);
return a.zout_start;
} else {
free(a.zout_start);
return NULL;
}
}
STBIDEF int stbi_zlib_decode_noheader_buffer(char *obuffer, int olen, const char *ibuffer, int ilen)
{
stbi__zbuf a;
a.zbuffer = (stbi_uc *) ibuffer;
a.zbuffer_end = (stbi_uc *) ibuffer + ilen;
if (stbi__do_zlib(&a, obuffer, olen, 0, 0))
return (int) (a.zout - a.zout_start);
else
return -1;
}
// public domain "baseline" PNG decoder v0.10 Sean Barrett 2006-11-18
// simple implementation
// - only 8-bit samples
// - no CRC checking
// - allocates lots of intermediate memory
// - avoids problem of streaming data between subsystems
// - avoids explicit window management
// performance
// - uses stb_zlib, a PD zlib implementation with fast huffman decoding
typedef struct
{
stbi__uint32 length;
stbi__uint32 type;
} stbi__pngchunk;
#define PNG_TYPE(a,b,c,d) (((a) << 24) + ((b) << 16) + ((c) << 8) + (d))
static stbi__pngchunk stbi__get_chunk_header(stbi__context *s)
{
stbi__pngchunk c;
c.length = stbi__get32be(s);
c.type = stbi__get32be(s);
return c;
}
static int stbi__check_png_header(stbi__context *s)
{
static stbi_uc png_sig[8] = { 137,80,78,71,13,10,26,10 };
int i;
for (i=0; i < 8; ++i)
if (stbi__get8(s) != png_sig[i]) return stbi__err("bad png sig","Not a PNG");
return 1;
}
typedef struct
{
stbi__context *s;
stbi_uc *idata, *expanded, *out;
} stbi__png;
enum {
STBI__F_none=0, STBI__F_sub=1, STBI__F_up=2, STBI__F_avg=3, STBI__F_paeth=4,
STBI__F_avg_first, STBI__F_paeth_first
};
static stbi_uc first_row_filter[5] =
{
STBI__F_none, STBI__F_sub, STBI__F_none, STBI__F_avg_first, STBI__F_paeth_first
};
static int stbi__paeth(int a, int b, int c)
{
int p = a + b - c;
int pa = abs(p-a);
int pb = abs(p-b);
int pc = abs(p-c);
if (pa <= pb && pa <= pc) return a;
if (pb <= pc) return b;
return c;
}
#define STBI__BYTECAST(x) ((stbi_uc) ((x) & 255)) // truncate int to byte without warnings
// create the png data from post-deflated data
static int stbi__create_png_image_raw(stbi__png *a, stbi_uc *raw, stbi__uint32 raw_len, int out_n, stbi__uint32 x, stbi__uint32 y, int depth, int color)
{
stbi__context *s = a->s;
stbi__uint32 i,j,stride = x*out_n;
stbi__uint32 img_len;
int k;
int img_n = s->img_n; // copy it into a local for later
stbi_uc* line8 = NULL; // point into raw when depth==8 else temporary local buffer
STBI_ASSERT(out_n == s->img_n || out_n == s->img_n+1);
a->out = (stbi_uc *) stbi__malloc(x * y * out_n);
if (!a->out) return stbi__err("outofmem", "Out of memory");
img_len = ((((img_n * x * depth) + 7) >> 3) + 1) * y;
if (s->img_x == x && s->img_y == y) {
if (raw_len != img_len) return stbi__err("not enough pixels","Corrupt PNG");
} else { // interlaced:
if (raw_len < img_len) return stbi__err("not enough pixels","Corrupt PNG");
}
if (depth != 8) {
line8 = (stbi_uc *) stbi__malloc((x+7) * out_n); // allocate buffer for one scanline
if (!line8) return stbi__err("outofmem", "Out of memory");
}
for (j=0; j < y; ++j) {
stbi_uc *in;
stbi_uc *cur = a->out + stride*j;
stbi_uc *prior = cur - stride;
int filter = *raw++;
if (filter > 4) {
if (depth != 8) free(line8);
return stbi__err("invalid filter","Corrupt PNG");
}
if (depth == 8) {
in = raw;
raw += x*img_n;
}
else {
// unpack 1/2/4-bit into a 8-bit buffer. allows us to keep the common 8-bit path optimal at minimal cost for 1/2/4-bit
// png guarante byte alignment, if width is not multiple of 8/4/2 we'll decode dummy trailing data that will be skipped in the later loop
in = line8;
stbi_uc* decode_out = line8;
stbi_uc scale = (color == 0) ? 0xFF/((1<<depth)-1) : 1; // scale grayscale values to 0..255 range
if (depth == 4) {
for (k=x*img_n; k >= 1; k-=2, raw++) {
*decode_out++ = scale * ((*raw >> 4) );
*decode_out++ = scale * ((*raw ) & 0x0f);
}
} else if (depth == 2) {
for (k=x*img_n; k >= 1; k-=4, raw++) {
*decode_out++ = scale * ((*raw >> 6) );
*decode_out++ = scale * ((*raw >> 4) & 0x03);
*decode_out++ = scale * ((*raw >> 2) & 0x03);
*decode_out++ = scale * ((*raw ) & 0x03);
}
} else if (depth == 1) {
for (k=x*img_n; k >= 1; k-=8, raw++) {
*decode_out++ = scale * ((*raw >> 7) );
*decode_out++ = scale * ((*raw >> 6) & 0x01);
*decode_out++ = scale * ((*raw >> 5) & 0x01);
*decode_out++ = scale * ((*raw >> 4) & 0x01);
*decode_out++ = scale * ((*raw >> 3) & 0x01);
*decode_out++ = scale * ((*raw >> 2) & 0x01);
*decode_out++ = scale * ((*raw >> 1) & 0x01);
*decode_out++ = scale * ((*raw ) & 0x01);
}
}
}
// if first row, use special filter that doesn't sample previous row
if (j == 0) filter = first_row_filter[filter];
// handle first pixel explicitly
for (k=0; k < img_n; ++k) {
switch (filter) {
case STBI__F_none : cur[k] = in[k]; break;
case STBI__F_sub : cur[k] = in[k]; break;
case STBI__F_up : cur[k] = STBI__BYTECAST(in[k] + prior[k]); break;
case STBI__F_avg : cur[k] = STBI__BYTECAST(in[k] + (prior[k]>>1)); break;
case STBI__F_paeth : cur[k] = STBI__BYTECAST(in[k] + stbi__paeth(0,prior[k],0)); break;
case STBI__F_avg_first : cur[k] = in[k]; break;
case STBI__F_paeth_first: cur[k] = in[k]; break;
}
}
if (img_n != out_n) cur[img_n] = 255;
in += img_n;
cur += out_n;
prior += out_n;
// this is a little gross, so that we don't switch per-pixel or per-component
if (img_n == out_n) {
#define CASE(f) \
case f: \
for (i=x-1; i >= 1; --i, in+=img_n,cur+=img_n,prior+=img_n) \
for (k=0; k < img_n; ++k)
switch (filter) {
CASE(STBI__F_none) cur[k] = in[k]; break;
CASE(STBI__F_sub) cur[k] = STBI__BYTECAST(in[k] + cur[k-img_n]); break;
CASE(STBI__F_up) cur[k] = STBI__BYTECAST(in[k] + prior[k]); break;
CASE(STBI__F_avg) cur[k] = STBI__BYTECAST(in[k] + ((prior[k] + cur[k-img_n])>>1)); break;
CASE(STBI__F_paeth) cur[k] = STBI__BYTECAST(in[k] + stbi__paeth(cur[k-img_n],prior[k],prior[k-img_n])); break;
CASE(STBI__F_avg_first) cur[k] = STBI__BYTECAST(in[k] + (cur[k-img_n] >> 1)); break;
CASE(STBI__F_paeth_first) cur[k] = STBI__BYTECAST(in[k] + stbi__paeth(cur[k-img_n],0,0)); break;
}
#undef CASE
} else {
STBI_ASSERT(img_n+1 == out_n);
#define CASE(f) \
case f: \
for (i=x-1; i >= 1; --i, cur[img_n]=255,in+=img_n,cur+=out_n,prior+=out_n) \
for (k=0; k < img_n; ++k)
switch (filter) {
CASE(STBI__F_none) cur[k] = in[k]; break;
CASE(STBI__F_sub) cur[k] = STBI__BYTECAST(in[k] + cur[k-out_n]); break;
CASE(STBI__F_up) cur[k] = STBI__BYTECAST(in[k] + prior[k]); break;
CASE(STBI__F_avg) cur[k] = STBI__BYTECAST(in[k] + ((prior[k] + cur[k-out_n])>>1)); break;
CASE(STBI__F_paeth) cur[k] = STBI__BYTECAST(in[k] + stbi__paeth(cur[k-out_n],prior[k],prior[k-out_n])); break;
CASE(STBI__F_avg_first) cur[k] = STBI__BYTECAST(in[k] + (cur[k-out_n] >> 1)); break;
CASE(STBI__F_paeth_first) cur[k] = STBI__BYTECAST(in[k] + stbi__paeth(cur[k-out_n],0,0)); break;
}
#undef CASE
}
}
if (depth != 8) free(line8);
return 1;
}
static int stbi__create_png_image(stbi__png *a, stbi_uc *raw, stbi__uint32 raw_len, int out_n, int depth, int color, int interlaced)
{
stbi_uc *final;
int p;
if (!interlaced)
return stbi__create_png_image_raw(a, raw, raw_len, out_n, a->s->img_x, a->s->img_y, depth, color);
// de-interlacing
final = (stbi_uc *) stbi__malloc(a->s->img_x * a->s->img_y * out_n);
for (p=0; p < 7; ++p) {
int xorig[] = { 0,4,0,2,0,1,0 };
int yorig[] = { 0,0,4,0,2,0,1 };
int xspc[] = { 8,8,4,4,2,2,1 };
int yspc[] = { 8,8,8,4,4,2,2 };
int i,j,x,y;
// pass1_x[4] = 0, pass1_x[5] = 1, pass1_x[12] = 1
x = (a->s->img_x - xorig[p] + xspc[p]-1) / xspc[p];
y = (a->s->img_y - yorig[p] + yspc[p]-1) / yspc[p];
if (x && y) {
stbi__uint32 img_len = ((((out_n * x * depth) + 7) >> 3) + 1) * y;
if (!stbi__create_png_image_raw(a, raw, raw_len, out_n, x, y, depth, color)) {
free(final);
return 0;
}
for (j=0; j < y; ++j)
for (i=0; i < x; ++i)
memcpy(final + (j*yspc[p]+yorig[p])*a->s->img_x*out_n + (i*xspc[p]+xorig[p])*out_n,
a->out + (j*x+i)*out_n, out_n);
free(a->out);
raw += img_len;
raw_len -= img_len;
}
}
a->out = final;
return 1;
}
static int stbi__compute_transparency(stbi__png *z, stbi_uc tc[3], int out_n)
{
stbi__context *s = z->s;
stbi__uint32 i, pixel_count = s->img_x * s->img_y;
stbi_uc *p = z->out;
// compute color-based transparency, assuming we've
// already got 255 as the alpha value in the output
STBI_ASSERT(out_n == 2 || out_n == 4);
if (out_n == 2) {
for (i=0; i < pixel_count; ++i) {
p[1] = (p[0] == tc[0] ? 0 : 255);
p += 2;
}
} else {
for (i=0; i < pixel_count; ++i) {
if (p[0] == tc[0] && p[1] == tc[1] && p[2] == tc[2])
p[3] = 0;
p += 4;
}
}
return 1;
}
static int stbi__expand_png_palette(stbi__png *a, stbi_uc *palette, int len, int pal_img_n)
{
stbi__uint32 i, pixel_count = a->s->img_x * a->s->img_y;
stbi_uc *p, *temp_out, *orig = a->out;
p = (stbi_uc *) stbi__malloc(pixel_count * pal_img_n);
if (p == NULL) return stbi__err("outofmem", "Out of memory");
// between here and free(out) below, exitting would leak
temp_out = p;
if (pal_img_n == 3) {
for (i=0; i < pixel_count; ++i) {
int n = orig[i]*4;
p[0] = palette[n ];
p[1] = palette[n+1];
p[2] = palette[n+2];
p += 3;
}
} else {
for (i=0; i < pixel_count; ++i) {
int n = orig[i]*4;
p[0] = palette[n ];
p[1] = palette[n+1];
p[2] = palette[n+2];
p[3] = palette[n+3];
p += 4;
}
}
free(a->out);
a->out = temp_out;
STBI_NOTUSED(len);
return 1;
}
static int stbi__unpremultiply_on_load = 0;
static int stbi__de_iphone_flag = 0;
STBIDEF void stbi_set_unpremultiply_on_load(int flag_true_if_should_unpremultiply)
{
stbi__unpremultiply_on_load = flag_true_if_should_unpremultiply;
}
STBIDEF void stbi_convert_iphone_png_to_rgb(int flag_true_if_should_convert)
{
stbi__de_iphone_flag = flag_true_if_should_convert;
}
static void stbi__de_iphone(stbi__png *z)
{
stbi__context *s = z->s;
stbi__uint32 i, pixel_count = s->img_x * s->img_y;
stbi_uc *p = z->out;
if (s->img_out_n == 3) { // convert bgr to rgb
for (i=0; i < pixel_count; ++i) {
stbi_uc t = p[0];
p[0] = p[2];
p[2] = t;
p += 3;
}
} else {
STBI_ASSERT(s->img_out_n == 4);
if (stbi__unpremultiply_on_load) {
// convert bgr to rgb and unpremultiply
for (i=0; i < pixel_count; ++i) {
stbi_uc a = p[3];
stbi_uc t = p[0];
if (a) {
p[0] = p[2] * 255 / a;
p[1] = p[1] * 255 / a;
p[2] = t * 255 / a;
} else {
p[0] = p[2];
p[2] = t;
}
p += 4;
}
} else {
// convert bgr to rgb
for (i=0; i < pixel_count; ++i) {
stbi_uc t = p[0];
p[0] = p[2];
p[2] = t;
p += 4;
}
}
}
}
static int stbi__parse_png_file(stbi__png *z, int scan, int req_comp)
{
stbi_uc palette[1024], pal_img_n=0;
stbi_uc has_trans=0, tc[3];
stbi__uint32 ioff=0, idata_limit=0, i, pal_len=0;
int first=1,k,interlace=0, color=0, depth=0, is_iphone=0;
stbi__context *s = z->s;
z->expanded = NULL;
z->idata = NULL;
z->out = NULL;
if (!stbi__check_png_header(s)) return 0;
if (scan == SCAN_type) return 1;
for (;;) {
stbi__pngchunk c = stbi__get_chunk_header(s);
switch (c.type) {
case PNG_TYPE('C','g','B','I'):
is_iphone = 1;
stbi__skip(s, c.length);
break;
case PNG_TYPE('I','H','D','R'): {
int comp,filter;
if (!first) return stbi__err("multiple IHDR","Corrupt PNG");
first = 0;
if (c.length != 13) return stbi__err("bad IHDR len","Corrupt PNG");
s->img_x = stbi__get32be(s); if (s->img_x > (1 << 24)) return stbi__err("too large","Very large image (corrupt?)");
s->img_y = stbi__get32be(s); if (s->img_y > (1 << 24)) return stbi__err("too large","Very large image (corrupt?)");
depth = stbi__get8(s); if (depth != 1 && depth != 2 && depth != 4 && depth != 8) return stbi__err("1/2/4/8-bit only","PNG not supported: 1/2/4/8-bit only");
color = stbi__get8(s); if (color > 6) return stbi__err("bad ctype","Corrupt PNG");
if (color == 3) pal_img_n = 3; else if (color & 1) return stbi__err("bad ctype","Corrupt PNG");
comp = stbi__get8(s); if (comp) return stbi__err("bad comp method","Corrupt PNG");
filter= stbi__get8(s); if (filter) return stbi__err("bad filter method","Corrupt PNG");
interlace = stbi__get8(s); if (interlace>1) return stbi__err("bad interlace method","Corrupt PNG");
if (!s->img_x || !s->img_y) return stbi__err("0-pixel image","Corrupt PNG");
if (!pal_img_n) {
s->img_n = (color & 2 ? 3 : 1) + (color & 4 ? 1 : 0);
if ((1 << 30) / s->img_x / s->img_n < s->img_y) return stbi__err("too large", "Image too large to decode");
if (scan == SCAN_header) return 1;
} else {
// if paletted, then pal_n is our final components, and
// img_n is # components to decompress/filter.
s->img_n = 1;
if ((1 << 30) / s->img_x / 4 < s->img_y) return stbi__err("too large","Corrupt PNG");
// if SCAN_header, have to scan to see if we have a tRNS
}
break;
}
case PNG_TYPE('P','L','T','E'): {
if (first) return stbi__err("first not IHDR", "Corrupt PNG");
if (c.length > 256*3) return stbi__err("invalid PLTE","Corrupt PNG");
pal_len = c.length / 3;
if (pal_len * 3 != c.length) return stbi__err("invalid PLTE","Corrupt PNG");
for (i=0; i < pal_len; ++i) {
palette[i*4+0] = stbi__get8(s);
palette[i*4+1] = stbi__get8(s);
palette[i*4+2] = stbi__get8(s);
palette[i*4+3] = 255;
}
break;
}
case PNG_TYPE('t','R','N','S'): {
if (first) return stbi__err("first not IHDR", "Corrupt PNG");
if (z->idata) return stbi__err("tRNS after IDAT","Corrupt PNG");
if (pal_img_n) {
if (scan == SCAN_header) { s->img_n = 4; return 1; }
if (pal_len == 0) return stbi__err("tRNS before PLTE","Corrupt PNG");
if (c.length > pal_len) return stbi__err("bad tRNS len","Corrupt PNG");
pal_img_n = 4;
for (i=0; i < c.length; ++i)
palette[i*4+3] = stbi__get8(s);
} else {
if (!(s->img_n & 1)) return stbi__err("tRNS with alpha","Corrupt PNG");
if (c.length != (stbi__uint32) s->img_n*2) return stbi__err("bad tRNS len","Corrupt PNG");
has_trans = 1;
for (k=0; k < s->img_n; ++k)
tc[k] = (stbi_uc) (stbi__get16be(s) & 255); // non 8-bit images will be larger
}
break;
}
case PNG_TYPE('I','D','A','T'): {
if (first) return stbi__err("first not IHDR", "Corrupt PNG");
if (pal_img_n && !pal_len) return stbi__err("no PLTE","Corrupt PNG");
if (scan == SCAN_header) { s->img_n = pal_img_n; return 1; }
if (ioff + c.length > idata_limit) {
stbi_uc *p;
if (idata_limit == 0) idata_limit = c.length > 4096 ? c.length : 4096;
while (ioff + c.length > idata_limit)
idata_limit *= 2;
p = (stbi_uc *) realloc(z->idata, idata_limit); if (p == NULL) return stbi__err("outofmem", "Out of memory");
z->idata = p;
}
if (!stbi__getn(s, z->idata+ioff,c.length)) return stbi__err("outofdata","Corrupt PNG");
ioff += c.length;
break;
}
case PNG_TYPE('I','E','N','D'): {
stbi__uint32 raw_len;
if (first) return stbi__err("first not IHDR", "Corrupt PNG");
if (scan != SCAN_load) return 1;
if (z->idata == NULL) return stbi__err("no IDAT","Corrupt PNG");
z->expanded = (stbi_uc *) stbi_zlib_decode_malloc_guesssize_headerflag((char *) z->idata, ioff, 16384, (int *) &raw_len, !is_iphone);
if (z->expanded == NULL) return 0; // zlib should set error
free(z->idata); z->idata = NULL;
if ((req_comp == s->img_n+1 && req_comp != 3 && !pal_img_n) || has_trans)
s->img_out_n = s->img_n+1;
else
s->img_out_n = s->img_n;
if (!stbi__create_png_image(z, z->expanded, raw_len, s->img_out_n, depth, color, interlace)) return 0;
if (has_trans)
if (!stbi__compute_transparency(z, tc, s->img_out_n)) return 0;
if (is_iphone && stbi__de_iphone_flag && s->img_out_n > 2)
stbi__de_iphone(z);
if (pal_img_n) {
// pal_img_n == 3 or 4
s->img_n = pal_img_n; // record the actual colors we had
s->img_out_n = pal_img_n;
if (req_comp >= 3) s->img_out_n = req_comp;
if (!stbi__expand_png_palette(z, palette, pal_len, s->img_out_n))
return 0;
}
free(z->expanded); z->expanded = NULL;
return 1;
}
default:
// if critical, fail
if (first) return stbi__err("first not IHDR", "Corrupt PNG");
if ((c.type & (1 << 29)) == 0) {
#ifndef STBI_NO_FAILURE_STRINGS
// not threadsafe
static char invalid_chunk[] = "XXXX PNG chunk not known";
invalid_chunk[0] = STBI__BYTECAST(c.type >> 24);
invalid_chunk[1] = STBI__BYTECAST(c.type >> 16);
invalid_chunk[2] = STBI__BYTECAST(c.type >> 8);
invalid_chunk[3] = STBI__BYTECAST(c.type >> 0);
#endif
return stbi__err(invalid_chunk, "PNG not supported: unknown PNG chunk type");
}
stbi__skip(s, c.length);
break;
}
// end of PNG chunk, read and skip CRC
stbi__get32be(s);
}
}
static unsigned char *stbi__do_png(stbi__png *p, int *x, int *y, int *n, int req_comp)
{
unsigned char *result=NULL;
if (req_comp < 0 || req_comp > 4) return stbi__errpuc("bad req_comp", "Internal error");
if (stbi__parse_png_file(p, SCAN_load, req_comp)) {
result = p->out;
p->out = NULL;
if (req_comp && req_comp != p->s->img_out_n) {
result = stbi__convert_format(result, p->s->img_out_n, req_comp, p->s->img_x, p->s->img_y);
p->s->img_out_n = req_comp;
if (result == NULL) return result;
}
*x = p->s->img_x;
*y = p->s->img_y;
if (n) *n = p->s->img_out_n;
}
free(p->out); p->out = NULL;
free(p->expanded); p->expanded = NULL;
free(p->idata); p->idata = NULL;
return result;
}
static unsigned char *stbi__png_load(stbi__context *s, int *x, int *y, int *comp, int req_comp)
{
stbi__png p;
p.s = s;
return stbi__do_png(&p, x,y,comp,req_comp);
}
static int stbi__png_test(stbi__context *s)
{
int r;
r = stbi__check_png_header(s);
stbi__rewind(s);
return r;
}
static int stbi__png_info_raw(stbi__png *p, int *x, int *y, int *comp)
{
if (!stbi__parse_png_file(p, SCAN_header, 0)) {
stbi__rewind( p->s );
return 0;
}
if (x) *x = p->s->img_x;
if (y) *y = p->s->img_y;
if (comp) *comp = p->s->img_n;
return 1;
}
static int stbi__png_info(stbi__context *s, int *x, int *y, int *comp)
{
stbi__png p;
p.s = s;
return stbi__png_info_raw(&p, x, y, comp);
}
// Microsoft/Windows BMP image
static int stbi__bmp_test_raw(stbi__context *s)
{
int r;
int sz;
if (stbi__get8(s) != 'B') return 0;
if (stbi__get8(s) != 'M') return 0;
stbi__get32le(s); // discard filesize
stbi__get16le(s); // discard reserved
stbi__get16le(s); // discard reserved
stbi__get32le(s); // discard data offset
sz = stbi__get32le(s);
r = (sz == 12 || sz == 40 || sz == 56 || sz == 108 || sz == 124);
return r;
}
static int stbi__bmp_test(stbi__context *s)
{
int r = stbi__bmp_test_raw(s);
stbi__rewind(s);
return r;
}
// returns 0..31 for the highest set bit
static int stbi__high_bit(unsigned int z)
{
int n=0;
if (z == 0) return -1;
if (z >= 0x10000) n += 16, z >>= 16;
if (z >= 0x00100) n += 8, z >>= 8;
if (z >= 0x00010) n += 4, z >>= 4;
if (z >= 0x00004) n += 2, z >>= 2;
if (z >= 0x00002) n += 1, z >>= 1;
return n;
}
static int stbi__bitcount(unsigned int a)
{
a = (a & 0x55555555) + ((a >> 1) & 0x55555555); // max 2
a = (a & 0x33333333) + ((a >> 2) & 0x33333333); // max 4
a = (a + (a >> 4)) & 0x0f0f0f0f; // max 8 per 4, now 8 bits
a = (a + (a >> 8)); // max 16 per 8 bits
a = (a + (a >> 16)); // max 32 per 8 bits
return a & 0xff;
}
static int stbi__shiftsigned(int v, int shift, int bits)
{
int result;
int z=0;
if (shift < 0) v <<= -shift;
else v >>= shift;
result = v;
z = bits;
while (z < 8) {
result += v >> z;
z += bits;
}
return result;
}
static stbi_uc *stbi__bmp_load(stbi__context *s, int *x, int *y, int *comp, int req_comp)
{
stbi_uc *out;
unsigned int mr=0,mg=0,mb=0,ma=0, fake_a=0;
stbi_uc pal[256][4];
int psize=0,i,j,compress=0,width;
int bpp, flip_vertically, pad, target, offset, hsz;
if (stbi__get8(s) != 'B' || stbi__get8(s) != 'M') return stbi__errpuc("not BMP", "Corrupt BMP");
stbi__get32le(s); // discard filesize
stbi__get16le(s); // discard reserved
stbi__get16le(s); // discard reserved
offset = stbi__get32le(s);
hsz = stbi__get32le(s);
if (hsz != 12 && hsz != 40 && hsz != 56 && hsz != 108 && hsz != 124) return stbi__errpuc("unknown BMP", "BMP type not supported: unknown");
if (hsz == 12) {
s->img_x = stbi__get16le(s);
s->img_y = stbi__get16le(s);
} else {
s->img_x = stbi__get32le(s);
s->img_y = stbi__get32le(s);
}
if (stbi__get16le(s) != 1) return stbi__errpuc("bad BMP", "bad BMP");
bpp = stbi__get16le(s);
if (bpp == 1) return stbi__errpuc("monochrome", "BMP type not supported: 1-bit");
flip_vertically = ((int) s->img_y) > 0;
s->img_y = abs((int) s->img_y);
if (hsz == 12) {
if (bpp < 24)
psize = (offset - 14 - 24) / 3;
} else {
compress = stbi__get32le(s);
if (compress == 1 || compress == 2) return stbi__errpuc("BMP RLE", "BMP type not supported: RLE");
stbi__get32le(s); // discard sizeof
stbi__get32le(s); // discard hres
stbi__get32le(s); // discard vres
stbi__get32le(s); // discard colorsused
stbi__get32le(s); // discard max important
if (hsz == 40 || hsz == 56) {
if (hsz == 56) {
stbi__get32le(s);
stbi__get32le(s);
stbi__get32le(s);
stbi__get32le(s);
}
if (bpp == 16 || bpp == 32) {
mr = mg = mb = 0;
if (compress == 0) {
if (bpp == 32) {
mr = 0xffu << 16;
mg = 0xffu << 8;
mb = 0xffu << 0;
ma = 0xffu << 24;
fake_a = 1; // @TODO: check for cases like alpha value is all 0 and switch it to 255
STBI_NOTUSED(fake_a);
} else {
mr = 31u << 10;
mg = 31u << 5;
mb = 31u << 0;
}
} else if (compress == 3) {
mr = stbi__get32le(s);
mg = stbi__get32le(s);
mb = stbi__get32le(s);
// not documented, but generated by photoshop and handled by mspaint
if (mr == mg && mg == mb) {
// ?!?!?
return stbi__errpuc("bad BMP", "bad BMP");
}
} else
return stbi__errpuc("bad BMP", "bad BMP");
}
} else {
STBI_ASSERT(hsz == 108 || hsz == 124);
mr = stbi__get32le(s);
mg = stbi__get32le(s);
mb = stbi__get32le(s);
ma = stbi__get32le(s);
stbi__get32le(s); // discard color space
for (i=0; i < 12; ++i)
stbi__get32le(s); // discard color space parameters
if (hsz == 124) {
stbi__get32le(s); // discard rendering intent
stbi__get32le(s); // discard offset of profile data
stbi__get32le(s); // discard size of profile data
stbi__get32le(s); // discard reserved
}
}
if (bpp < 16)
psize = (offset - 14 - hsz) >> 2;
}
s->img_n = ma ? 4 : 3;
if (req_comp && req_comp >= 3) // we can directly decode 3 or 4
target = req_comp;
else
target = s->img_n; // if they want monochrome, we'll post-convert
out = (stbi_uc *) stbi__malloc(target * s->img_x * s->img_y);
if (!out) return stbi__errpuc("outofmem", "Out of memory");
if (bpp < 16) {
int z=0;
if (psize == 0 || psize > 256) { free(out); return stbi__errpuc("invalid", "Corrupt BMP"); }
for (i=0; i < psize; ++i) {
pal[i][2] = stbi__get8(s);
pal[i][1] = stbi__get8(s);
pal[i][0] = stbi__get8(s);
if (hsz != 12) stbi__get8(s);
pal[i][3] = 255;
}
stbi__skip(s, offset - 14 - hsz - psize * (hsz == 12 ? 3 : 4));
if (bpp == 4) width = (s->img_x + 1) >> 1;
else if (bpp == 8) width = s->img_x;
else { free(out); return stbi__errpuc("bad bpp", "Corrupt BMP"); }
pad = (-width)&3;
for (j=0; j < (int) s->img_y; ++j) {
for (i=0; i < (int) s->img_x; i += 2) {
int v=stbi__get8(s),v2=0;
if (bpp == 4) {
v2 = v & 15;
v >>= 4;
}
out[z++] = pal[v][0];
out[z++] = pal[v][1];
out[z++] = pal[v][2];
if (target == 4) out[z++] = 255;
if (i+1 == (int) s->img_x) break;
v = (bpp == 8) ? stbi__get8(s) : v2;
out[z++] = pal[v][0];
out[z++] = pal[v][1];
out[z++] = pal[v][2];
if (target == 4) out[z++] = 255;
}
stbi__skip(s, pad);
}
} else {
int rshift=0,gshift=0,bshift=0,ashift=0,rcount=0,gcount=0,bcount=0,acount=0;
int z = 0;
int easy=0;
stbi__skip(s, offset - 14 - hsz);
if (bpp == 24) width = 3 * s->img_x;
else if (bpp == 16) width = 2*s->img_x;
else /* bpp = 32 and pad = 0 */ width=0;
pad = (-width) & 3;
if (bpp == 24) {
easy = 1;
} else if (bpp == 32) {
if (mb == 0xff && mg == 0xff00 && mr == 0x00ff0000 && ma == 0xff000000)
easy = 2;
}
if (!easy) {
if (!mr || !mg || !mb) { free(out); return stbi__errpuc("bad masks", "Corrupt BMP"); }
// right shift amt to put high bit in position #7
rshift = stbi__high_bit(mr)-7; rcount = stbi__bitcount(mr);
gshift = stbi__high_bit(mg)-7; gcount = stbi__bitcount(mg);
bshift = stbi__high_bit(mb)-7; bcount = stbi__bitcount(mb);
ashift = stbi__high_bit(ma)-7; acount = stbi__bitcount(ma);
}
for (j=0; j < (int) s->img_y; ++j) {
if (easy) {
for (i=0; i < (int) s->img_x; ++i) {
unsigned char a;
out[z+2] = stbi__get8(s);
out[z+1] = stbi__get8(s);
out[z+0] = stbi__get8(s);
z += 3;
a = (easy == 2 ? stbi__get8(s) : 255);
if (target == 4) out[z++] = a;
}
} else {
for (i=0; i < (int) s->img_x; ++i) {
stbi__uint32 v = (stbi__uint32) (bpp == 16 ? stbi__get16le(s) : stbi__get32le(s));
int a;
out[z++] = STBI__BYTECAST(stbi__shiftsigned(v & mr, rshift, rcount));
out[z++] = STBI__BYTECAST(stbi__shiftsigned(v & mg, gshift, gcount));
out[z++] = STBI__BYTECAST(stbi__shiftsigned(v & mb, bshift, bcount));
a = (ma ? stbi__shiftsigned(v & ma, ashift, acount) : 255);
if (target == 4) out[z++] = STBI__BYTECAST(a);
}
}
stbi__skip(s, pad);
}
}
if (flip_vertically) {
stbi_uc t;
for (j=0; j < (int) s->img_y>>1; ++j) {
stbi_uc *p1 = out + j *s->img_x*target;
stbi_uc *p2 = out + (s->img_y-1-j)*s->img_x*target;
for (i=0; i < (int) s->img_x*target; ++i) {
t = p1[i], p1[i] = p2[i], p2[i] = t;
}
}
}
if (req_comp && req_comp != target) {
out = stbi__convert_format(out, target, req_comp, s->img_x, s->img_y);
if (out == NULL) return out; // stbi__convert_format frees input on failure
}
*x = s->img_x;
*y = s->img_y;
if (comp) *comp = s->img_n;
return out;
}
// Targa Truevision - TGA
// by Jonathan Dummer
static int stbi__tga_info(stbi__context *s, int *x, int *y, int *comp)
{
int tga_w, tga_h, tga_comp;
int sz;
stbi__get8(s); // discard Offset
sz = stbi__get8(s); // color type
if( sz > 1 ) {
stbi__rewind(s);
return 0; // only RGB or indexed allowed
}
sz = stbi__get8(s); // image type
// only RGB or grey allowed, +/- RLE
if ((sz != 1) && (sz != 2) && (sz != 3) && (sz != 9) && (sz != 10) && (sz != 11)) return 0;
stbi__skip(s,9);
tga_w = stbi__get16le(s);
if( tga_w < 1 ) {
stbi__rewind(s);
return 0; // test width
}
tga_h = stbi__get16le(s);
if( tga_h < 1 ) {
stbi__rewind(s);
return 0; // test height
}
sz = stbi__get8(s); // bits per pixel
// only RGB or RGBA or grey allowed
if ((sz != 8) && (sz != 16) && (sz != 24) && (sz != 32)) {
stbi__rewind(s);
return 0;
}
tga_comp = sz;
if (x) *x = tga_w;
if (y) *y = tga_h;
if (comp) *comp = tga_comp / 8;
return 1; // seems to have passed everything
}
static int stbi__tga_test(stbi__context *s)
{
int res;
int sz;
stbi__get8(s); // discard Offset
sz = stbi__get8(s); // color type
if ( sz > 1 ) return 0; // only RGB or indexed allowed
sz = stbi__get8(s); // image type
if ( (sz != 1) && (sz != 2) && (sz != 3) && (sz != 9) && (sz != 10) && (sz != 11) ) return 0; // only RGB or grey allowed, +/- RLE
stbi__get16be(s); // discard palette start
stbi__get16be(s); // discard palette length
stbi__get8(s); // discard bits per palette color entry
stbi__get16be(s); // discard x origin
stbi__get16be(s); // discard y origin
if ( stbi__get16be(s) < 1 ) return 0; // test width
if ( stbi__get16be(s) < 1 ) return 0; // test height
sz = stbi__get8(s); // bits per pixel
if ( (sz != 8) && (sz != 16) && (sz != 24) && (sz != 32) )
res = 0;
else
res = 1;
stbi__rewind(s);
return res;
}
static stbi_uc *stbi__tga_load(stbi__context *s, int *x, int *y, int *comp, int req_comp)
{
// read in the TGA header stuff
int tga_offset = stbi__get8(s);
int tga_indexed = stbi__get8(s);
int tga_image_type = stbi__get8(s);
int tga_is_RLE = 0;
int tga_palette_start = stbi__get16le(s);
int tga_palette_len = stbi__get16le(s);
int tga_palette_bits = stbi__get8(s);
int tga_x_origin = stbi__get16le(s);
int tga_y_origin = stbi__get16le(s);
int tga_width = stbi__get16le(s);
int tga_height = stbi__get16le(s);
int tga_bits_per_pixel = stbi__get8(s);
int tga_comp = tga_bits_per_pixel / 8;
int tga_inverted = stbi__get8(s);
// image data
unsigned char *tga_data;
unsigned char *tga_palette = NULL;
int i, j;
unsigned char raw_data[4];
int RLE_count = 0;
int RLE_repeating = 0;
int read_next_pixel = 1;
// do a tiny bit of precessing
if ( tga_image_type >= 8 )
{
tga_image_type -= 8;
tga_is_RLE = 1;
}
/* int tga_alpha_bits = tga_inverted & 15; */
tga_inverted = 1 - ((tga_inverted >> 5) & 1);
// error check
if ( //(tga_indexed) ||
(tga_width < 1) || (tga_height < 1) ||
(tga_image_type < 1) || (tga_image_type > 3) ||
((tga_bits_per_pixel != 8) && (tga_bits_per_pixel != 16) &&
(tga_bits_per_pixel != 24) && (tga_bits_per_pixel != 32))
)
{
return NULL; // we don't report this as a bad TGA because we don't even know if it's TGA
}
// If I'm paletted, then I'll use the number of bits from the palette
if ( tga_indexed )
{
tga_comp = tga_palette_bits / 8;
}
// tga info
*x = tga_width;
*y = tga_height;
if (comp) *comp = tga_comp;
tga_data = (unsigned char*)stbi__malloc( tga_width * tga_height * tga_comp );
if (!tga_data) return stbi__errpuc("outofmem", "Out of memory");
// skip to the data's starting position (offset usually = 0)
stbi__skip(s, tga_offset );
if ( !tga_indexed && !tga_is_RLE) {
for (i=0; i < tga_height; ++i) {
int y = tga_inverted ? tga_height -i - 1 : i;
stbi_uc *tga_row = tga_data + y*tga_width*tga_comp;
stbi__getn(s, tga_row, tga_width * tga_comp);
}
} else {
// do I need to load a palette?
if ( tga_indexed)
{
// any data to skip? (offset usually = 0)
stbi__skip(s, tga_palette_start );
// load the palette
tga_palette = (unsigned char*)stbi__malloc( tga_palette_len * tga_palette_bits / 8 );
if (!tga_palette) {
free(tga_data);
return stbi__errpuc("outofmem", "Out of memory");
}
if (!stbi__getn(s, tga_palette, tga_palette_len * tga_palette_bits / 8 )) {
free(tga_data);
free(tga_palette);
return stbi__errpuc("bad palette", "Corrupt TGA");
}
}
// load the data
for (i=0; i < tga_width * tga_height; ++i)
{
// if I'm in RLE mode, do I need to get a RLE stbi__pngchunk?
if ( tga_is_RLE )
{
if ( RLE_count == 0 )
{
// yep, get the next byte as a RLE command
int RLE_cmd = stbi__get8(s);
RLE_count = 1 + (RLE_cmd & 127);
RLE_repeating = RLE_cmd >> 7;
read_next_pixel = 1;
} else if ( !RLE_repeating )
{
read_next_pixel = 1;
}
} else
{
read_next_pixel = 1;
}
// OK, if I need to read a pixel, do it now
if ( read_next_pixel )
{
// load however much data we did have
if ( tga_indexed )
{
// read in 1 byte, then perform the lookup
int pal_idx = stbi__get8(s);
if ( pal_idx >= tga_palette_len )
{
// invalid index
pal_idx = 0;
}
pal_idx *= tga_bits_per_pixel / 8;
for (j = 0; j*8 < tga_bits_per_pixel; ++j)
{
raw_data[j] = tga_palette[pal_idx+j];
}
} else
{
// read in the data raw
for (j = 0; j*8 < tga_bits_per_pixel; ++j)
{
raw_data[j] = stbi__get8(s);
}
}
// clear the reading flag for the next pixel
read_next_pixel = 0;
} // end of reading a pixel
// copy data
for (j = 0; j < tga_comp; ++j)
tga_data[i*tga_comp+j] = raw_data[j];
// in case we're in RLE mode, keep counting down
--RLE_count;
}
// do I need to invert the image?
if ( tga_inverted )
{
for (j = 0; j*2 < tga_height; ++j)
{
int index1 = j * tga_width * tga_comp;
int index2 = (tga_height - 1 - j) * tga_width * tga_comp;
for (i = tga_width * tga_comp; i > 0; --i)
{
unsigned char temp = tga_data[index1];
tga_data[index1] = tga_data[index2];
tga_data[index2] = temp;
++index1;
++index2;
}
}
}
// clear my palette, if I had one
if ( tga_palette != NULL )
{
free( tga_palette );
}
}
// swap RGB
if (tga_comp >= 3)
{
unsigned char* tga_pixel = tga_data;
for (i=0; i < tga_width * tga_height; ++i)
{
unsigned char temp = tga_pixel[0];
tga_pixel[0] = tga_pixel[2];
tga_pixel[2] = temp;
tga_pixel += tga_comp;
}
}
// convert to target component count
if (req_comp && req_comp != tga_comp)
tga_data = stbi__convert_format(tga_data, tga_comp, req_comp, tga_width, tga_height);
// the things I do to get rid of an error message, and yet keep
// Microsoft's C compilers happy... [8^(
tga_palette_start = tga_palette_len = tga_palette_bits =
tga_x_origin = tga_y_origin = 0;
// OK, done
return tga_data;
}
// *************************************************************************************************
// Photoshop PSD loader -- PD by Thatcher Ulrich, integration by Nicolas Schulz, tweaked by STB
static int stbi__psd_test(stbi__context *s)
{
int r = (stbi__get32be(s) == 0x38425053);
stbi__rewind(s);
return r;
}
static stbi_uc *stbi__psd_load(stbi__context *s, int *x, int *y, int *comp, int req_comp)
{
int pixelCount;
int channelCount, compression;
int channel, i, count, len;
int w,h;
stbi_uc *out;
// Check identifier
if (stbi__get32be(s) != 0x38425053) // "8BPS"
return stbi__errpuc("not PSD", "Corrupt PSD image");
// Check file type version.
if (stbi__get16be(s) != 1)
return stbi__errpuc("wrong version", "Unsupported version of PSD image");
// Skip 6 reserved bytes.
stbi__skip(s, 6 );
// Read the number of channels (R, G, B, A, etc).
channelCount = stbi__get16be(s);
if (channelCount < 0 || channelCount > 16)
return stbi__errpuc("wrong channel count", "Unsupported number of channels in PSD image");
// Read the rows and columns of the image.
h = stbi__get32be(s);
w = stbi__get32be(s);
// Make sure the depth is 8 bits.
if (stbi__get16be(s) != 8)
return stbi__errpuc("unsupported bit depth", "PSD bit depth is not 8 bit");
// Make sure the color mode is RGB.
// Valid options are:
// 0: Bitmap
// 1: Grayscale
// 2: Indexed color
// 3: RGB color
// 4: CMYK color
// 7: Multichannel
// 8: Duotone
// 9: Lab color
if (stbi__get16be(s) != 3)
return stbi__errpuc("wrong color format", "PSD is not in RGB color format");
// Skip the Mode Data. (It's the palette for indexed color; other info for other modes.)
stbi__skip(s,stbi__get32be(s) );
// Skip the image resources. (resolution, pen tool paths, etc)
stbi__skip(s, stbi__get32be(s) );
// Skip the reserved data.
stbi__skip(s, stbi__get32be(s) );
// Find out if the data is compressed.
// Known values:
// 0: no compression
// 1: RLE compressed
compression = stbi__get16be(s);
if (compression > 1)
return stbi__errpuc("bad compression", "PSD has an unknown compression format");
// Create the destination image.
out = (stbi_uc *) stbi__malloc(4 * w*h);
if (!out) return stbi__errpuc("outofmem", "Out of memory");
pixelCount = w*h;
// Initialize the data to zero.
//memset( out, 0, pixelCount * 4 );
// Finally, the image data.
if (compression) {
// RLE as used by .PSD and .TIFF
// Loop until you get the number of unpacked bytes you are expecting:
// Read the next source byte into n.
// If n is between 0 and 127 inclusive, copy the next n+1 bytes literally.
// Else if n is between -127 and -1 inclusive, copy the next byte -n+1 times.
// Else if n is 128, noop.
// Endloop
// The RLE-compressed data is preceeded by a 2-byte data count for each row in the data,
// which we're going to just skip.
stbi__skip(s, h * channelCount * 2 );
// Read the RLE data by channel.
for (channel = 0; channel < 4; channel++) {
stbi_uc *p;
p = out+channel;
if (channel >= channelCount) {
// Fill this channel with default data.
for (i = 0; i < pixelCount; i++) *p = (channel == 3 ? 255 : 0), p += 4;
} else {
// Read the RLE data.
count = 0;
while (count < pixelCount) {
len = stbi__get8(s);
if (len == 128) {
// No-op.
} else if (len < 128) {
// Copy next len+1 bytes literally.
len++;
count += len;
while (len) {
*p = stbi__get8(s);
p += 4;
len--;
}
} else if (len > 128) {
stbi_uc val;
// Next -len+1 bytes in the dest are replicated from next source byte.
// (Interpret len as a negative 8-bit int.)
len ^= 0x0FF;
len += 2;
val = stbi__get8(s);
count += len;
while (len) {
*p = val;
p += 4;
len--;
}
}
}
}
}
} else {
// We're at the raw image data. It's each channel in order (Red, Green, Blue, Alpha, ...)
// where each channel consists of an 8-bit value for each pixel in the image.
// Read the data by channel.
for (channel = 0; channel < 4; channel++) {
stbi_uc *p;
p = out + channel;
if (channel > channelCount) {
// Fill this channel with default data.
for (i = 0; i < pixelCount; i++) *p = channel == 3 ? 255 : 0, p += 4;
} else {
// Read the data.
for (i = 0; i < pixelCount; i++)
*p = stbi__get8(s), p += 4;
}
}
}
if (req_comp && req_comp != 4) {
out = stbi__convert_format(out, 4, req_comp, w, h);
if (out == NULL) return out; // stbi__convert_format frees input on failure
}
if (comp) *comp = channelCount;
*y = h;
*x = w;
return out;
}
// *************************************************************************************************
// Softimage PIC loader
// by Tom Seddon
//
// See http://softimage.wiki.softimage.com/index.php/INFO:_PIC_file_format
// See http://ozviz.wasp.uwa.edu.au/~pbourke/dataformats/softimagepic/
static int stbi__pic_is4(stbi__context *s,const char *str)
{
int i;
for (i=0; i<4; ++i)
if (stbi__get8(s) != (stbi_uc)str[i])
return 0;
return 1;
}
static int stbi__pic_test_core(stbi__context *s)
{
int i;
if (!stbi__pic_is4(s,"\x53\x80\xF6\x34"))
return 0;
for(i=0;i<84;++i)
stbi__get8(s);
if (!stbi__pic_is4(s,"PICT"))
return 0;
return 1;
}
typedef struct
{
stbi_uc size,type,channel;
} stbi__pic_packet;
static stbi_uc *stbi__readval(stbi__context *s, int channel, stbi_uc *dest)
{
int mask=0x80, i;
for (i=0; i<4; ++i, mask>>=1) {
if (channel & mask) {
if (stbi__at_eof(s)) return stbi__errpuc("bad file","PIC file too short");
dest[i]=stbi__get8(s);
}
}
return dest;
}
static void stbi__copyval(int channel,stbi_uc *dest,const stbi_uc *src)
{
int mask=0x80,i;
for (i=0;i<4; ++i, mask>>=1)
if (channel&mask)
dest[i]=src[i];
}
static stbi_uc *stbi__pic_load_core(stbi__context *s,int width,int height,int *comp, stbi_uc *result)
{
int act_comp=0,num_packets=0,y,chained;
stbi__pic_packet packets[10];
// this will (should...) cater for even some bizarre stuff like having data
// for the same channel in multiple packets.
do {
stbi__pic_packet *packet;
if (num_packets==sizeof(packets)/sizeof(packets[0]))
return stbi__errpuc("bad format","too many packets");
packet = &packets[num_packets++];
chained = stbi__get8(s);
packet->size = stbi__get8(s);
packet->type = stbi__get8(s);
packet->channel = stbi__get8(s);
act_comp |= packet->channel;
if (stbi__at_eof(s)) return stbi__errpuc("bad file","file too short (reading packets)");
if (packet->size != 8) return stbi__errpuc("bad format","packet isn't 8bpp");
} while (chained);
*comp = (act_comp & 0x10 ? 4 : 3); // has alpha channel?
for(y=0; y<height; ++y) {
int packet_idx;
for(packet_idx=0; packet_idx < num_packets; ++packet_idx) {
stbi__pic_packet *packet = &packets[packet_idx];
stbi_uc *dest = result+y*width*4;
switch (packet->type) {
default:
return stbi__errpuc("bad format","packet has bad compression type");
case 0: {//uncompressed
int x;
for(x=0;x<width;++x, dest+=4)
if (!stbi__readval(s,packet->channel,dest))
return 0;
break;
}
case 1://Pure RLE
{
int left=width, i;
while (left>0) {
stbi_uc count,value[4];
count=stbi__get8(s);
if (stbi__at_eof(s)) return stbi__errpuc("bad file","file too short (pure read count)");
if (count > left)
count = (stbi_uc) left;
if (!stbi__readval(s,packet->channel,value)) return 0;
for(i=0; i<count; ++i,dest+=4)
stbi__copyval(packet->channel,dest,value);
left -= count;
}
}
break;
case 2: {//Mixed RLE
int left=width;
while (left>0) {
int count = stbi__get8(s), i;
if (stbi__at_eof(s)) return stbi__errpuc("bad file","file too short (mixed read count)");
if (count >= 128) { // Repeated
stbi_uc value[4];
int i;
if (count==128)
count = stbi__get16be(s);
else
count -= 127;
if (count > left)
return stbi__errpuc("bad file","scanline overrun");
if (!stbi__readval(s,packet->channel,value))
return 0;
for(i=0;i<count;++i, dest += 4)
stbi__copyval(packet->channel,dest,value);
} else { // Raw
++count;
if (count>left) return stbi__errpuc("bad file","scanline overrun");
for(i=0;i<count;++i, dest+=4)
if (!stbi__readval(s,packet->channel,dest))
return 0;
}
left-=count;
}
break;
}
}
}
}
return result;
}
static stbi_uc *stbi__pic_load(stbi__context *s,int *px,int *py,int *comp,int req_comp)
{
stbi_uc *result;
int i, x,y;
for (i=0; i<92; ++i)
stbi__get8(s);
x = stbi__get16be(s);
y = stbi__get16be(s);
if (stbi__at_eof(s)) return stbi__errpuc("bad file","file too short (pic header)");
if ((1 << 28) / x < y) return stbi__errpuc("too large", "Image too large to decode");
stbi__get32be(s); //skip `ratio'
stbi__get16be(s); //skip `fields'
stbi__get16be(s); //skip `pad'
// intermediate buffer is RGBA
result = (stbi_uc *) stbi__malloc(x*y*4);
memset(result, 0xff, x*y*4);
if (!stbi__pic_load_core(s,x,y,comp, result)) {
free(result);
result=0;
}
*px = x;
*py = y;
if (req_comp == 0) req_comp = *comp;
result=stbi__convert_format(result,4,req_comp,x,y);
return result;
}
static int stbi__pic_test(stbi__context *s)
{
int r = stbi__pic_test_core(s);
stbi__rewind(s);
return r;
}
// *************************************************************************************************
// GIF loader -- public domain by Jean-Marc Lienher -- simplified/shrunk by stb
typedef struct
{
stbi__int16 prefix;
stbi_uc first;
stbi_uc suffix;
} stbi__gif_lzw;
typedef struct
{
int w,h;
stbi_uc *out; // output buffer (always 4 components)
int flags, bgindex, ratio, transparent, eflags;
stbi_uc pal[256][4];
stbi_uc lpal[256][4];
stbi__gif_lzw codes[4096];
stbi_uc *color_table;
int parse, step;
int lflags;
int start_x, start_y;
int max_x, max_y;
int cur_x, cur_y;
int line_size;
} stbi__gif;
static int stbi__gif_test_raw(stbi__context *s)
{
int sz;
if (stbi__get8(s) != 'G' || stbi__get8(s) != 'I' || stbi__get8(s) != 'F' || stbi__get8(s) != '8') return 0;
sz = stbi__get8(s);
if (sz != '9' && sz != '7') return 0;
if (stbi__get8(s) != 'a') return 0;
return 1;
}
static int stbi__gif_test(stbi__context *s)
{
int r = stbi__gif_test_raw(s);
stbi__rewind(s);
return r;
}
static void stbi__gif_parse_colortable(stbi__context *s, stbi_uc pal[256][4], int num_entries, int transp)
{
int i;
for (i=0; i < num_entries; ++i) {
pal[i][2] = stbi__get8(s);
pal[i][1] = stbi__get8(s);
pal[i][0] = stbi__get8(s);
pal[i][3] = transp ? 0 : 255;
}
}
static int stbi__gif_header(stbi__context *s, stbi__gif *g, int *comp, int is_info)
{
stbi_uc version;
if (stbi__get8(s) != 'G' || stbi__get8(s) != 'I' || stbi__get8(s) != 'F' || stbi__get8(s) != '8')
return stbi__err("not GIF", "Corrupt GIF");
version = stbi__get8(s);
if (version != '7' && version != '9') return stbi__err("not GIF", "Corrupt GIF");
if (stbi__get8(s) != 'a') return stbi__err("not GIF", "Corrupt GIF");
stbi__g_failure_reason = "";
g->w = stbi__get16le(s);
g->h = stbi__get16le(s);
g->flags = stbi__get8(s);
g->bgindex = stbi__get8(s);
g->ratio = stbi__get8(s);
g->transparent = -1;
if (comp != 0) *comp = 4; // can't actually tell whether it's 3 or 4 until we parse the comments
if (is_info) return 1;
if (g->flags & 0x80)
stbi__gif_parse_colortable(s,g->pal, 2 << (g->flags & 7), -1);
return 1;
}
static int stbi__gif_info_raw(stbi__context *s, int *x, int *y, int *comp)
{
stbi__gif g;
if (!stbi__gif_header(s, &g, comp, 1)) {
stbi__rewind( s );
return 0;
}
if (x) *x = g.w;
if (y) *y = g.h;
return 1;
}
static void stbi__out_gif_code(stbi__gif *g, stbi__uint16 code)
{
stbi_uc *p, *c;
// recurse to decode the prefixes, since the linked-list is backwards,
// and working backwards through an interleaved image would be nasty
if (g->codes[code].prefix >= 0)
stbi__out_gif_code(g, g->codes[code].prefix);
if (g->cur_y >= g->max_y) return;
p = &g->out[g->cur_x + g->cur_y];
c = &g->color_table[g->codes[code].suffix * 4];
if (c[3] >= 128) {
p[0] = c[2];
p[1] = c[1];
p[2] = c[0];
p[3] = c[3];
}
g->cur_x += 4;
if (g->cur_x >= g->max_x) {
g->cur_x = g->start_x;
g->cur_y += g->step;
while (g->cur_y >= g->max_y && g->parse > 0) {
g->step = (1 << g->parse) * g->line_size;
g->cur_y = g->start_y + (g->step >> 1);
--g->parse;
}
}
}
static stbi_uc *stbi__process_gif_raster(stbi__context *s, stbi__gif *g)
{
stbi_uc lzw_cs;
stbi__int32 len, code;
stbi__uint32 first;
stbi__int32 codesize, codemask, avail, oldcode, bits, valid_bits, clear;
stbi__gif_lzw *p;
lzw_cs = stbi__get8(s);
clear = 1 << lzw_cs;
first = 1;
codesize = lzw_cs + 1;
codemask = (1 << codesize) - 1;
bits = 0;
valid_bits = 0;
for (code = 0; code < clear; code++) {
g->codes[code].prefix = -1;
g->codes[code].first = (stbi_uc) code;
g->codes[code].suffix = (stbi_uc) code;
}
// support no starting clear code
avail = clear+2;
oldcode = -1;
len = 0;
for(;;) {
if (valid_bits < codesize) {
if (len == 0) {
len = stbi__get8(s); // start new block
if (len == 0)
return g->out;
}
--len;
bits |= (stbi__int32) stbi__get8(s) << valid_bits;
valid_bits += 8;
} else {
stbi__int32 code = bits & codemask;
bits >>= codesize;
valid_bits -= codesize;
// @OPTIMIZE: is there some way we can accelerate the non-clear path?
if (code == clear) { // clear code
codesize = lzw_cs + 1;
codemask = (1 << codesize) - 1;
avail = clear + 2;
oldcode = -1;
first = 0;
} else if (code == clear + 1) { // end of stream code
stbi__skip(s, len);
while ((len = stbi__get8(s)) > 0)
stbi__skip(s,len);
return g->out;
} else if (code <= avail) {
if (first) return stbi__errpuc("no clear code", "Corrupt GIF");
if (oldcode >= 0) {
p = &g->codes[avail++];
if (avail > 4096) return stbi__errpuc("too many codes", "Corrupt GIF");
p->prefix = (stbi__int16) oldcode;
p->first = g->codes[oldcode].first;
p->suffix = (code == avail) ? p->first : g->codes[code].first;
} else if (code == avail)
return stbi__errpuc("illegal code in raster", "Corrupt GIF");
stbi__out_gif_code(g, (stbi__uint16) code);
if ((avail & codemask) == 0 && avail <= 0x0FFF) {
codesize++;
codemask = (1 << codesize) - 1;
}
oldcode = code;
} else {
return stbi__errpuc("illegal code in raster", "Corrupt GIF");
}
}
}
}
static void stbi__fill_gif_background(stbi__gif *g)
{
int i;
stbi_uc *c = g->pal[g->bgindex];
// @OPTIMIZE: write a dword at a time
for (i = 0; i < g->w * g->h * 4; i += 4) {
stbi_uc *p = &g->out[i];
p[0] = c[2];
p[1] = c[1];
p[2] = c[0];
p[3] = c[3];
}
}
// this function is designed to support animated gifs, although stb_image doesn't support it
static stbi_uc *stbi__gif_load_next(stbi__context *s, stbi__gif *g, int *comp, int req_comp)
{
int i;
stbi_uc *old_out = 0;
if (g->out == 0) {
if (!stbi__gif_header(s, g, comp,0)) return 0; // stbi__g_failure_reason set by stbi__gif_header
g->out = (stbi_uc *) stbi__malloc(4 * g->w * g->h);
if (g->out == 0) return stbi__errpuc("outofmem", "Out of memory");
stbi__fill_gif_background(g);
} else {
// animated-gif-only path
if (((g->eflags & 0x1C) >> 2) == 3) {
old_out = g->out;
g->out = (stbi_uc *) stbi__malloc(4 * g->w * g->h);
if (g->out == 0) return stbi__errpuc("outofmem", "Out of memory");
memcpy(g->out, old_out, g->w*g->h*4);
}
}
for (;;) {
switch (stbi__get8(s)) {
case 0x2C: /* Image Descriptor */
{
stbi__int32 x, y, w, h;
stbi_uc *o;
x = stbi__get16le(s);
y = stbi__get16le(s);
w = stbi__get16le(s);
h = stbi__get16le(s);
if (((x + w) > (g->w)) || ((y + h) > (g->h)))
return stbi__errpuc("bad Image Descriptor", "Corrupt GIF");
g->line_size = g->w * 4;
g->start_x = x * 4;
g->start_y = y * g->line_size;
g->max_x = g->start_x + w * 4;
g->max_y = g->start_y + h * g->line_size;
g->cur_x = g->start_x;
g->cur_y = g->start_y;
g->lflags = stbi__get8(s);
if (g->lflags & 0x40) {
g->step = 8 * g->line_size; // first interlaced spacing
g->parse = 3;
} else {
g->step = g->line_size;
g->parse = 0;
}
if (g->lflags & 0x80) {
stbi__gif_parse_colortable(s,g->lpal, 2 << (g->lflags & 7), g->eflags & 0x01 ? g->transparent : -1);
g->color_table = (stbi_uc *) g->lpal;
} else if (g->flags & 0x80) {
for (i=0; i < 256; ++i) // @OPTIMIZE: stbi__jpeg_reset only the previous transparent
g->pal[i][3] = 255;
if (g->transparent >= 0 && (g->eflags & 0x01))
g->pal[g->transparent][3] = 0;
g->color_table = (stbi_uc *) g->pal;
} else
return stbi__errpuc("missing color table", "Corrupt GIF");
o = stbi__process_gif_raster(s, g);
if (o == NULL) return NULL;
if (req_comp && req_comp != 4)
o = stbi__convert_format(o, 4, req_comp, g->w, g->h);
return o;
}
case 0x21: // Comment Extension.
{
int len;
if (stbi__get8(s) == 0xF9) { // Graphic Control Extension.
len = stbi__get8(s);
if (len == 4) {
g->eflags = stbi__get8(s);
stbi__get16le(s); // delay
g->transparent = stbi__get8(s);
} else {
stbi__skip(s, len);
break;
}
}
while ((len = stbi__get8(s)) != 0)
stbi__skip(s, len);
break;
}
case 0x3B: // gif stream termination code
return (stbi_uc *) s; // using '1' causes warning on some compilers
default:
return stbi__errpuc("unknown code", "Corrupt GIF");
}
}
}
static stbi_uc *stbi__gif_load(stbi__context *s, int *x, int *y, int *comp, int req_comp)
{
stbi_uc *u = 0;
stbi__gif g;
memset(&g, 0, sizeof(g));
u = stbi__gif_load_next(s, &g, comp, req_comp);
if (u == (stbi_uc *) s) u = 0; // end of animated gif marker
if (u) {
*x = g.w;
*y = g.h;
}
return u;
}
static int stbi__gif_info(stbi__context *s, int *x, int *y, int *comp)
{
return stbi__gif_info_raw(s,x,y,comp);
}
// *************************************************************************************************
// Radiance RGBE HDR loader
// originally by Nicolas Schulz
#ifndef STBI_NO_HDR
static int stbi__hdr_test_core(stbi__context *s)
{
const char *signature = "#?RADIANCE\n";
int i;
for (i=0; signature[i]; ++i)
if (stbi__get8(s) != signature[i])
return 0;
return 1;
}
static int stbi__hdr_test(stbi__context* s)
{
int r = stbi__hdr_test_core(s);
stbi__rewind(s);
return r;
}
#define STBI__HDR_BUFLEN 1024
static char *stbi__hdr_gettoken(stbi__context *z, char *buffer)
{
int len=0;
char c = '\0';
c = (char) stbi__get8(z);
while (!stbi__at_eof(z) && c != '\n') {
buffer[len++] = c;
if (len == STBI__HDR_BUFLEN-1) {
// flush to end of line
while (!stbi__at_eof(z) && stbi__get8(z) != '\n')
;
break;
}
c = (char) stbi__get8(z);
}
buffer[len] = 0;
return buffer;
}
static void stbi__hdr_convert(float *output, stbi_uc *input, int req_comp)
{
if ( input[3] != 0 ) {
float f1;
// Exponent
f1 = (float) ldexp(1.0f, input[3] - (int)(128 + 8));
if (req_comp <= 2)
output[0] = (input[0] + input[1] + input[2]) * f1 / 3;
else {
output[0] = input[0] * f1;
output[1] = input[1] * f1;
output[2] = input[2] * f1;
}
if (req_comp == 2) output[1] = 1;
if (req_comp == 4) output[3] = 1;
} else {
switch (req_comp) {
case 4: output[3] = 1; /* fallthrough */
case 3: output[0] = output[1] = output[2] = 0;
break;
case 2: output[1] = 1; /* fallthrough */
case 1: output[0] = 0;
break;
}
}
}
static float *stbi__hdr_load(stbi__context *s, int *x, int *y, int *comp, int req_comp)
{
char buffer[STBI__HDR_BUFLEN];
char *token;
int valid = 0;
int width, height;
stbi_uc *scanline;
float *hdr_data;
int len;
unsigned char count, value;
int i, j, k, c1,c2, z;
// Check identifier
if (strcmp(stbi__hdr_gettoken(s,buffer), "#?RADIANCE") != 0)
return stbi__errpf("not HDR", "Corrupt HDR image");
// Parse header
for(;;) {
token = stbi__hdr_gettoken(s,buffer);
if (token[0] == 0) break;
if (strcmp(token, "FORMAT=32-bit_rle_rgbe") == 0) valid = 1;
}
if (!valid) return stbi__errpf("unsupported format", "Unsupported HDR format");
// Parse width and height
// can't use sscanf() if we're not using stdio!
token = stbi__hdr_gettoken(s,buffer);
if (strncmp(token, "-Y ", 3)) return stbi__errpf("unsupported data layout", "Unsupported HDR format");
token += 3;
height = (int) strtol(token, &token, 10);
while (*token == ' ') ++token;
if (strncmp(token, "+X ", 3)) return stbi__errpf("unsupported data layout", "Unsupported HDR format");
token += 3;
width = (int) strtol(token, NULL, 10);
*x = width;
*y = height;
if (comp) *comp = 3;
if (req_comp == 0) req_comp = 3;
// Read data
hdr_data = (float *) stbi__malloc(height * width * req_comp * sizeof(float));
// Load image data
// image data is stored as some number of sca
if ( width < 8 || width >= 32768) {
// Read flat data
for (j=0; j < height; ++j) {
for (i=0; i < width; ++i) {
stbi_uc rgbe[4];
main_decode_loop:
stbi__getn(s, rgbe, 4);
stbi__hdr_convert(hdr_data + j * width * req_comp + i * req_comp, rgbe, req_comp);
}
}
} else {
// Read RLE-encoded data
scanline = NULL;
for (j = 0; j < height; ++j) {
c1 = stbi__get8(s);
c2 = stbi__get8(s);
len = stbi__get8(s);
if (c1 != 2 || c2 != 2 || (len & 0x80)) {
// not run-length encoded, so we have to actually use THIS data as a decoded
// pixel (note this can't be a valid pixel--one of RGB must be >= 128)
stbi_uc rgbe[4];
rgbe[0] = (stbi_uc) c1;
rgbe[1] = (stbi_uc) c2;
rgbe[2] = (stbi_uc) len;
rgbe[3] = (stbi_uc) stbi__get8(s);
stbi__hdr_convert(hdr_data, rgbe, req_comp);
i = 1;
j = 0;
free(scanline);
goto main_decode_loop; // yes, this makes no sense
}
len <<= 8;
len |= stbi__get8(s);
if (len != width) { free(hdr_data); free(scanline); return stbi__errpf("invalid decoded scanline length", "corrupt HDR"); }
if (scanline == NULL) scanline = (stbi_uc *) stbi__malloc(width * 4);
for (k = 0; k < 4; ++k) {
i = 0;
while (i < width) {
count = stbi__get8(s);
if (count > 128) {
// Run
value = stbi__get8(s);
count -= 128;
for (z = 0; z < count; ++z)
scanline[i++ * 4 + k] = value;
} else {
// Dump
for (z = 0; z < count; ++z)
scanline[i++ * 4 + k] = stbi__get8(s);
}
}
}
for (i=0; i < width; ++i)
stbi__hdr_convert(hdr_data+(j*width + i)*req_comp, scanline + i*4, req_comp);
}
free(scanline);
}
return hdr_data;
}
static int stbi__hdr_info(stbi__context *s, int *x, int *y, int *comp)
{
char buffer[STBI__HDR_BUFLEN];
char *token;
int valid = 0;
if (strcmp(stbi__hdr_gettoken(s,buffer), "#?RADIANCE") != 0) {
stbi__rewind( s );
return 0;
}
for(;;) {
token = stbi__hdr_gettoken(s,buffer);
if (token[0] == 0) break;
if (strcmp(token, "FORMAT=32-bit_rle_rgbe") == 0) valid = 1;
}
if (!valid) {
stbi__rewind( s );
return 0;
}
token = stbi__hdr_gettoken(s,buffer);
if (strncmp(token, "-Y ", 3)) {
stbi__rewind( s );
return 0;
}
token += 3;
*y = (int) strtol(token, &token, 10);
while (*token == ' ') ++token;
if (strncmp(token, "+X ", 3)) {
stbi__rewind( s );
return 0;
}
token += 3;
*x = (int) strtol(token, NULL, 10);
*comp = 3;
return 1;
}
#endif // STBI_NO_HDR
static int stbi__bmp_info(stbi__context *s, int *x, int *y, int *comp)
{
int hsz;
if (stbi__get8(s) != 'B' || stbi__get8(s) != 'M') {
stbi__rewind( s );
return 0;
}
stbi__skip(s,12);
hsz = stbi__get32le(s);
if (hsz != 12 && hsz != 40 && hsz != 56 && hsz != 108 && hsz != 124) {
stbi__rewind( s );
return 0;
}
if (hsz == 12) {
*x = stbi__get16le(s);
*y = stbi__get16le(s);
} else {
*x = stbi__get32le(s);
*y = stbi__get32le(s);
}
if (stbi__get16le(s) != 1) {
stbi__rewind( s );
return 0;
}
*comp = stbi__get16le(s) / 8;
return 1;
}
static int stbi__psd_info(stbi__context *s, int *x, int *y, int *comp)
{
int channelCount;
if (stbi__get32be(s) != 0x38425053) {
stbi__rewind( s );
return 0;
}
if (stbi__get16be(s) != 1) {
stbi__rewind( s );
return 0;
}
stbi__skip(s, 6);
channelCount = stbi__get16be(s);
if (channelCount < 0 || channelCount > 16) {
stbi__rewind( s );
return 0;
}
*y = stbi__get32be(s);
*x = stbi__get32be(s);
if (stbi__get16be(s) != 8) {
stbi__rewind( s );
return 0;
}
if (stbi__get16be(s) != 3) {
stbi__rewind( s );
return 0;
}
*comp = 4;
return 1;
}
static int stbi__pic_info(stbi__context *s, int *x, int *y, int *comp)
{
int act_comp=0,num_packets=0,chained;
stbi__pic_packet packets[10];
stbi__skip(s, 92);
*x = stbi__get16be(s);
*y = stbi__get16be(s);
if (stbi__at_eof(s)) return 0;
if ( (*x) != 0 && (1 << 28) / (*x) < (*y)) {
stbi__rewind( s );
return 0;
}
stbi__skip(s, 8);
do {
stbi__pic_packet *packet;
if (num_packets==sizeof(packets)/sizeof(packets[0]))
return 0;
packet = &packets[num_packets++];
chained = stbi__get8(s);
packet->size = stbi__get8(s);
packet->type = stbi__get8(s);
packet->channel = stbi__get8(s);
act_comp |= packet->channel;
if (stbi__at_eof(s)) {
stbi__rewind( s );
return 0;
}
if (packet->size != 8) {
stbi__rewind( s );
return 0;
}
} while (chained);
*comp = (act_comp & 0x10 ? 4 : 3);
return 1;
}
static int stbi__info_main(stbi__context *s, int *x, int *y, int *comp)
{
if (stbi__jpeg_info(s, x, y, comp))
return 1;
if (stbi__png_info(s, x, y, comp))
return 1;
if (stbi__gif_info(s, x, y, comp))
return 1;
if (stbi__bmp_info(s, x, y, comp))
return 1;
if (stbi__psd_info(s, x, y, comp))
return 1;
if (stbi__pic_info(s, x, y, comp))
return 1;
#ifndef STBI_NO_HDR
if (stbi__hdr_info(s, x, y, comp))
return 1;
#endif
// test tga last because it's a crappy test!
if (stbi__tga_info(s, x, y, comp))
return 1;
return stbi__err("unknown image type", "Image not of any known type, or corrupt");
}
#ifndef STBI_NO_STDIO
STBIDEF int stbi_info(char const *filename, int *x, int *y, int *comp)
{
FILE *f = stbi__fopen(filename, "rb");
int result;
if (!f) return stbi__err("can't fopen", "Unable to open file");
result = stbi_info_from_file(f, x, y, comp);
fclose(f);
return result;
}
STBIDEF int stbi_info_from_file(FILE *f, int *x, int *y, int *comp)
{
int r;
stbi__context s;
long pos = ftell(f);
stbi__start_file(&s, f);
r = stbi__info_main(&s,x,y,comp);
fseek(f,pos,SEEK_SET);
return r;
}
#endif // !STBI_NO_STDIO
STBIDEF int stbi_info_from_memory(stbi_uc const *buffer, int len, int *x, int *y, int *comp)
{
stbi__context s;
stbi__start_mem(&s,buffer,len);
return stbi__info_main(&s,x,y,comp);
}
STBIDEF int stbi_info_from_callbacks(stbi_io_callbacks const *c, void *user, int *x, int *y, int *comp)
{
stbi__context s;
stbi__start_callbacks(&s, (stbi_io_callbacks *) c, user);
return stbi__info_main(&s,x,y,comp);
}
#endif // STB_IMAGE_IMPLEMENTATION
/*
revision history:
1.46 (2014-08-26)
fix broken tRNS chunk (colorkey-style transparency) in non-paletted PNG
1.45 (2014-08-16)
fix MSVC-ARM internal compiler error by wrapping malloc
1.44 (2014-08-07)
various warning fixes from Ronny Chevalier
1.43 (2014-07-15)
fix MSVC-only compiler problem in code changed in 1.42
1.42 (2014-07-09)
don't define _CRT_SECURE_NO_WARNINGS (affects user code)
fixes to stbi__cleanup_jpeg path
added STBI_ASSERT to avoid requiring assert.h
1.41 (2014-06-25)
fix search&replace from 1.36 that messed up comments/error messages
1.40 (2014-06-22)
fix gcc struct-initialization warning
1.39 (2014-06-15)
fix to TGA optimization when req_comp != number of components in TGA;
fix to GIF loading because BMP wasn't rewinding (whoops, no GIFs in my test suite)
add support for BMP version 5 (more ignored fields)
1.38 (2014-06-06)
suppress MSVC warnings on integer casts truncating values
fix accidental rename of 'skip' field of I/O
1.37 (2014-06-04)
remove duplicate typedef
1.36 (2014-06-03)
convert to header file single-file library
if de-iphone isn't set, load iphone images color-swapped instead of returning NULL
1.35 (2014-05-27)
various warnings
fix broken STBI_SIMD path
fix bug where stbi_load_from_file no longer left file pointer in correct place
fix broken non-easy path for 32-bit BMP (possibly never used)
TGA optimization by Arseny Kapoulkine
1.34 (unknown)
use STBI_NOTUSED in stbi__resample_row_generic(), fix one more leak in tga failure case
1.33 (2011-07-14)
make stbi_is_hdr work in STBI_NO_HDR (as specified), minor compiler-friendly improvements
1.32 (2011-07-13)
support for "info" function for all supported filetypes (SpartanJ)
1.31 (2011-06-20)
a few more leak fixes, bug in PNG handling (SpartanJ)
1.30 (2011-06-11)
added ability to load files via callbacks to accomidate custom input streams (Ben Wenger)
removed deprecated format-specific test/load functions
removed support for installable file formats (stbi_loader) -- would have been broken for IO callbacks anyway
error cases in bmp and tga give messages and don't leak (Raymond Barbiero, grisha)
fix inefficiency in decoding 32-bit BMP (David Woo)
1.29 (2010-08-16)
various warning fixes from Aurelien Pocheville
1.28 (2010-08-01)
fix bug in GIF palette transparency (SpartanJ)
1.27 (2010-08-01)
cast-to-stbi_uc to fix warnings
1.26 (2010-07-24)
fix bug in file buffering for PNG reported by SpartanJ
1.25 (2010-07-17)
refix trans_data warning (Won Chun)
1.24 (2010-07-12)
perf improvements reading from files on platforms with lock-heavy fgetc()
minor perf improvements for jpeg
deprecated type-specific functions so we'll get feedback if they're needed
attempt to fix trans_data warning (Won Chun)
1.23 fixed bug in iPhone support
1.22 (2010-07-10)
removed image *writing* support
stbi_info support from Jetro Lauha
GIF support from Jean-Marc Lienher
iPhone PNG-extensions from James Brown
warning-fixes from Nicolas Schulz and Janez Zemva (i.stbi__err. Janez (U+017D)emva)
1.21 fix use of 'stbi_uc' in header (reported by jon blow)
1.20 added support for Softimage PIC, by Tom Seddon
1.19 bug in interlaced PNG corruption check (found by ryg)
1.18 2008-08-02
fix a threading bug (local mutable static)
1.17 support interlaced PNG
1.16 major bugfix - stbi__convert_format converted one too many pixels
1.15 initialize some fields for thread safety
1.14 fix threadsafe conversion bug
header-file-only version (#define STBI_HEADER_FILE_ONLY before including)
1.13 threadsafe
1.12 const qualifiers in the API
1.11 Support installable IDCT, colorspace conversion routines
1.10 Fixes for 64-bit (don't use "unsigned long")
optimized upsampling by Fabian "ryg" Giesen
1.09 Fix format-conversion for PSD code (bad global variables!)
1.08 Thatcher Ulrich's PSD code integrated by Nicolas Schulz
1.07 attempt to fix C++ warning/errors again
1.06 attempt to fix C++ warning/errors again
1.05 fix TGA loading to return correct *comp and use good luminance calc
1.04 default float alpha is 1, not 255; use 'void *' for stbi_image_free
1.03 bugfixes to STBI_NO_STDIO, STBI_NO_HDR
1.02 support for (subset of) HDR files, float interface for preferred access to them
1.01 fix bug: possible bug in handling right-side up bmps... not sure
fix bug: the stbi__bmp_load() and stbi__tga_load() functions didn't work at all
1.00 interface to zlib that skips zlib header
0.99 correct handling of alpha in palette
0.98 TGA loader by lonesock; dynamically add loaders (untested)
0.97 jpeg errors on too large a file; also catch another malloc failure
0.96 fix detection of invalid v value - particleman@mollyrocket forum
0.95 during header scan, seek to markers in case of padding
0.94 STBI_NO_STDIO to disable stdio usage; rename all #defines the same
0.93 handle jpegtran output; verbose errors
0.92 read 4,8,16,24,32-bit BMP files of several formats
0.91 output 24-bit Windows 3.0 BMP files
0.90 fix a few more warnings; bump version number to approach 1.0
0.61 bugfixes due to Marc LeBlanc, Christopher Lloyd
0.60 fix compiling as c++
0.59 fix warnings: merge Dave Moore's -Wall fixes
0.58 fix bug: zlib uncompressed mode len/nlen was wrong endian
0.57 fix bug: jpg last huffman symbol before marker was >9 bits but less than 16 available
0.56 fix bug: zlib uncompressed mode len vs. nlen
0.55 fix bug: restart_interval not initialized to 0
0.54 allow NULL for 'int *comp'
0.53 fix bug in png 3->4; speedup png decoding
0.52 png handles req_comp=3,4 directly; minor cleanup; jpeg comments
0.51 obey req_comp requests, 1-component jpegs return as 1-component,
on 'test' only check type, not whether we support this variant
0.50 first released version
*/