2020-07-24 16:11:42 +02:00
|
|
|
---
|
|
|
|
template: overrides/main.html
|
|
|
|
---
|
|
|
|
|
|
|
|
# MathJax
|
|
|
|
|
|
|
|
[MathJax][1] is a beautiful and accessible way to display _mathematical content_
|
|
|
|
in the browser, allows for writing formulas in different notations, including
|
|
|
|
[LaTeX][2], [MathML][3] and [AsciiMath][4], and can be easily integrated with
|
|
|
|
Material for MkDocs.
|
|
|
|
|
|
|
|
[1]: https://www.mathjax.org/
|
|
|
|
[2]: https://en.wikibooks.org/wiki/LaTeX/Mathematics
|
|
|
|
[3]: https://en.wikipedia.org/wiki/MathML
|
|
|
|
[4]: http://asciimath.org/
|
|
|
|
|
|
|
|
## Configuration
|
|
|
|
|
|
|
|
### Arithmatex
|
|
|
|
|
|
|
|
[:octicons-file-code-24: Source][5] · [:octicons-workflow-24: Extension][6]
|
|
|
|
|
|
|
|
The [Arithmatex][6] extension, which is part of of [Python Markdown
|
2020-07-24 18:29:34 +02:00
|
|
|
Extensions][7], allows the rendering of block and inline block equations, and
|
|
|
|
can be enabled via `mkdocs.yml`:
|
2020-07-24 16:11:42 +02:00
|
|
|
|
|
|
|
``` yaml
|
|
|
|
markdown_extensions:
|
|
|
|
- pymdownx.arithmatex:
|
|
|
|
generic: true
|
|
|
|
```
|
|
|
|
|
|
|
|
Besides enabling the extension in `mkdocs.yml`, a MathJax configuration and
|
|
|
|
the JavaScript runtime need to be included, which can be done with [additional
|
|
|
|
JavaScript][8]:
|
|
|
|
|
|
|
|
=== "docs/javascript/config.js"
|
|
|
|
|
|
|
|
``` js
|
|
|
|
window.MathJax = {
|
|
|
|
tex: {
|
|
|
|
inlineMath: [["\\(", "\\)"]],
|
|
|
|
displayMath: [["\\[", "\\]"]],
|
|
|
|
processEscapes: true,
|
|
|
|
processEnvironments: true
|
|
|
|
},
|
|
|
|
options: {
|
|
|
|
ignoreHtmlClass: ".*|",
|
|
|
|
processHtmlClass: "arithmatex"
|
|
|
|
}
|
|
|
|
};
|
|
|
|
```
|
|
|
|
|
|
|
|
=== "mkdocs.yml"
|
|
|
|
|
|
|
|
``` yaml
|
|
|
|
extra_javascript:
|
|
|
|
- javascripts/config.js
|
|
|
|
- https://polyfill.io/v3/polyfill.min.js?features=es6
|
|
|
|
- https://cdn.jsdelivr.net/npm/mathjax@3/es5/tex-mml-chtml.js
|
|
|
|
```
|
|
|
|
|
|
|
|
_MathJax can be configured in many different ways, for which Material for MkDocs
|
|
|
|
might not provide native support. See the [official documentation][6] for more
|
|
|
|
information._
|
|
|
|
|
|
|
|
<script src="https://polyfill.io/v3/polyfill.min.js?features=es6"></script>
|
|
|
|
<script id="MathJax-script" async src="https://cdn.jsdelivr.net/npm/mathjax@3/es5/tex-mml-chtml.js"></script>
|
|
|
|
<script>
|
|
|
|
window.MathJax = {
|
|
|
|
tex: {
|
|
|
|
inlineMath: [["\\(", "\\)"]],
|
|
|
|
displayMath: [["\\[", "\\]"]],
|
|
|
|
processEscapes: true,
|
|
|
|
processEnvironments: true
|
|
|
|
},
|
|
|
|
options: {
|
|
|
|
ignoreHtmlClass: ".*|",
|
|
|
|
processHtmlClass: "arithmatex"
|
|
|
|
}
|
|
|
|
};
|
|
|
|
</script>
|
|
|
|
|
|
|
|
[5]: https://github.com/squidfunk/mkdocs-material/blob/master/src/assets/stylesheets/main/extensions/pymdownx/_arithmatex.scss
|
|
|
|
[6]: https://facelessuser.github.io/pymdown-extensions/extensions/arithmatex/
|
|
|
|
[7]: https://facelessuser.github.io/pymdown-extensions/extensions/
|
|
|
|
[8]: ../customization.md#additional-javascript
|
|
|
|
|
|
|
|
## Usage
|
|
|
|
|
|
|
|
### Using block syntax
|
|
|
|
|
2020-07-24 18:29:34 +02:00
|
|
|
Blocks must be enclosed in `#!latex $$...$$` or `#!latex \[...\]`on separate lines:
|
2020-07-24 16:11:42 +02:00
|
|
|
|
|
|
|
_Example_:
|
|
|
|
|
|
|
|
``` latex
|
|
|
|
$$
|
|
|
|
\operatorname{ker} f=\{g\in G:f(g)=e_{H}\}{\mbox{.}}
|
|
|
|
$$
|
|
|
|
```
|
|
|
|
|
|
|
|
_Result_:
|
|
|
|
|
|
|
|
$$
|
|
|
|
\operatorname{ker} f=\{g\in G:f(g)=e_{H}\}{\mbox{.}}
|
|
|
|
$$
|
|
|
|
|
2020-07-24 18:29:34 +02:00
|
|
|
### Using inline block syntax
|
2020-07-24 16:11:42 +02:00
|
|
|
|
2020-07-24 18:29:34 +02:00
|
|
|
Inline blocks must be enclosed in `#!latex $...$` or `#!latex \(...\)`:
|
2020-07-24 16:11:42 +02:00
|
|
|
|
|
|
|
_Example_:
|
|
|
|
|
|
|
|
``` latex
|
|
|
|
The homomorphism $f$ is injective if and only if its kernel is only the
|
|
|
|
singleton set $e_G$, because otherwise $\exists a,b\in G$ with $a\neq b$ such
|
|
|
|
that $f(a)=f(b)$.
|
|
|
|
```
|
|
|
|
|
|
|
|
_Result_:
|
|
|
|
|
|
|
|
The homomorphism $f$ is injective if and only if its kernel is only the
|
|
|
|
singleton set $e_G$, because otherwise $\exists a,b\in G$ with $a\neq b$ such
|
|
|
|
that $f(a)=f(b)$.
|