--- template: overrides/main.html icon: material/math-integral --- # MathJax [MathJax] is a beautiful and accessible way to display mathematical content in the browser, adds support for mathematical typesetting in different notations (e.g. [LaTeX], [MathML], [AsciiMath]), and can be easily integrated with Material for MkDocs. [MathJax]: https://www.mathjax.org/ [LaTeX]: https://en.wikibooks.org/wiki/LaTeX/Mathematics [MathML]: https://en.wikipedia.org/wiki/MathML [AsciiMath]: http://asciimath.org/ ## Configuration This configuration enables support for rendering block and inline block equations through [MathJax]. Create a configuration file and add the following lines to `mkdocs.yml`: === ":octicons-file-code-16: docs/javascripts/mathjax.js" ``` js window.MathJax = { tex: { inlineMath: [["\\(", "\\)"]], displayMath: [["\\[", "\\]"]], processEscapes: true, processEnvironments: true }, options: { ignoreHtmlClass: ".*|", processHtmlClass: "arithmatex" } }; document$.subscribe(() => { // (1)! MathJax.typesetPromise() }) ``` 1. This integrates MathJax with [instant loading]. === ":octicons-file-code-16: mkdocs.yml" ``` yaml markdown_extensions: - pymdownx.arithmatex: generic: true extra_javascript: - javascripts/mathjax.js - https://polyfill.io/v3/polyfill.min.js?features=es6 - https://cdn.jsdelivr.net/npm/mathjax@3/es5/tex-mml-chtml.js ``` See additional configuration options: - [Arithmatex] [Arithmatex]: ../setup/extensions/python-markdown-extensions.md#arithmatex [instant loading]: ../setup/setting-up-navigation.md#instant-loading ## Usage ### Using block syntax Blocks must be enclosed in `#!latex $$...$$` or `#!latex \[...\]` on separate lines: ``` latex title="MathJax, block syntax" $$ \operatorname{ker} f=\{g\in G:f(g)=e_{H}\}{\mbox{.}} $$ ```
$$ \operatorname{ker} f=\{g\in G:f(g)=e_{H}\}{\mbox{.}} $$
### Using inline block syntax Inline blocks must be enclosed in `#!latex $...$` or `#!latex \(...\)`: ``` latex title="MathJax, inline syntax" The homomorphism $f$ is injective if and only if its kernel is only the singleton set $e_G$, because otherwise $\exists a,b\in G$ with $a\neq b$ such that $f(a)=f(b)$. ```
The homomorphism $f$ is injective if and only if its kernel is only the singleton set $e_G$, because otherwise $\exists a,b\in G$ with $a\neq b$ such that $f(a)=f(b)$.