Implement and use an Interval Tree for the MultiRangeList (#2641)

* Implement and use an Interval Tree for the MultiRangeList

* Feedback

* Address Feedback

* Missed this somehow
This commit is contained in:
riperiperi 2021-09-19 13:55:07 +01:00 committed by GitHub
parent f08a280ade
commit db97b1d7d2
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23
3 changed files with 921 additions and 130 deletions

View File

@ -0,0 +1,815 @@
using System;
using System.Collections;
using System.Collections.Generic;
using System.Diagnostics.CodeAnalysis;
using System.Linq;
namespace Ryujinx.Common.Collections
{
/// <summary>
/// An Augmented Interval Tree based off of the "TreeDictionary"'s Red-Black Tree. Allows fast overlap checking of ranges.
/// </summary>
/// <typeparam name="K">Key</typeparam>
/// <typeparam name="V">Value</typeparam>
public class IntervalTree<K, V> where K : IComparable<K>
{
private const int ArrayGrowthSize = 32;
private const bool Black = true;
private const bool Red = false;
private IntervalTreeNode<K, V> _root = null;
private int _count = 0;
public int Count => _count;
public IntervalTree() { }
#region Public Methods
/// <summary>
/// Gets the values of the interval whose key is <paramref name="key"/>.
/// </summary>
/// <param name="key">Key of the node value to get</param>
/// <param name="overlaps">Overlaps array to place results in</param>
/// <returns>Number of values found</returns>
/// <exception cref="ArgumentNullException"><paramref name="key"/> is null</exception>
public int Get(K key, ref V[] overlaps)
{
if (key == null)
{
throw new ArgumentNullException(nameof(key));
}
IntervalTreeNode<K, V> node = GetNode(key);
if (node == null)
{
return 0;
}
if (node.Values.Count > overlaps.Length)
{
Array.Resize(ref overlaps, node.Values.Count);
}
int overlapsCount = 0;
foreach (RangeNode<K, V> value in node.Values)
{
overlaps[overlapsCount++] = value.Value;
}
return overlapsCount;
}
/// <summary>
/// Returns the values of the intervals whose start and end keys overlap the given range.
/// </summary>
/// <param name="start">Start of the range</param>
/// <param name="end">End of the range</param>
/// <param name="overlaps">Overlaps array to place results in</param>
/// <param name="overlapCount">Index to start writing results into the array. Defaults to 0</param>
/// <returns>Number of values found</returns>
/// <exception cref="ArgumentNullException"><paramref name="start"/> or <paramref name="end"/> is null</exception>
public int Get(K start, K end, ref V[] overlaps, int overlapCount = 0)
{
if (start == null)
{
throw new ArgumentNullException(nameof(start));
}
if (end == null)
{
throw new ArgumentNullException(nameof(end));
}
GetValues(_root, start, end, ref overlaps, ref overlapCount);
return overlapCount;
}
/// <summary>
/// Adds a new interval into the tree whose start is <paramref name="start"/>, end is <paramref name="end"/> and value is <paramref name="value"/>.
/// </summary>
/// <param name="start">Start of the range to add</param>
/// <param name="end">End of the range to insert</param>
/// <param name="value">Value to add</param>
/// <exception cref="ArgumentNullException"><paramref name="start"/>, <paramref name="end"/> or <paramref name="value"/> are null</exception>
public void Add(K start, K end, V value)
{
if (start == null)
{
throw new ArgumentNullException(nameof(start));
}
if (end == null)
{
throw new ArgumentNullException(nameof(end));
}
if (value == null)
{
throw new ArgumentNullException(nameof(value));
}
Insert(start, end, value);
}
/// <summary>
/// Removes the given <paramref name="value"/> from the tree, searching for it with <paramref name="key"/>.
/// </summary>
/// <param name="key">Key of the node to remove</param>
/// <param name="value">Value to remove</param>
/// <exception cref="ArgumentNullException"><paramref name="key"/> is null</exception>
/// <returns>Number of deleted values</returns>
public int Remove(K key, V value)
{
if (key == null)
{
throw new ArgumentNullException(nameof(key));
}
int removed = Delete(key, value);
_count -= removed;
return removed;
}
/// <summary>
/// Adds all the nodes in the dictionary into <paramref name="list"/>.
/// </summary>
/// <returns>A list of all RangeNodes sorted by Key Order</returns>
public List<RangeNode<K, V>> AsList()
{
List<RangeNode<K, V>> list = new List<RangeNode<K, V>>();
AddToList(_root, list);
return list;
}
#endregion
#region Private Methods (BST)
/// <summary>
/// Adds all RangeNodes that are children of or contained within <paramref name="node"/> into <paramref name="list"/>, in Key Order.
/// </summary>
/// <param name="node">The node to search for RangeNodes within</param>
/// <param name="list">The list to add RangeNodes to</param>
private void AddToList(IntervalTreeNode<K, V> node, List<RangeNode<K, V>> list)
{
if (node == null)
{
return;
}
AddToList(node.Left, list);
list.AddRange(node.Values);
AddToList(node.Right, list);
}
/// <summary>
/// Retrieve the node reference whose key is <paramref name="key"/>, or null if no such node exists.
/// </summary>
/// <param name="key">Key of the node to get</param>
/// <returns>Node reference in the tree</returns>
/// <exception cref="ArgumentNullException"><paramref name="key"/> is null</exception>
private IntervalTreeNode<K, V> GetNode(K key)
{
if (key == null)
{
throw new ArgumentNullException(nameof(key));
}
IntervalTreeNode<K, V> node = _root;
while (node != null)
{
int cmp = key.CompareTo(node.Start);
if (cmp < 0)
{
node = node.Left;
}
else if (cmp > 0)
{
node = node.Right;
}
else
{
return node;
}
}
return null;
}
/// <summary>
/// Retrieve all values that overlap the given start and end keys.
/// </summary>
/// <param name="start">Start of the range</param>
/// <param name="end">End of the range</param>
/// <param name="overlaps">Overlaps array to place results in</param>
/// <param name="overlapCount">Overlaps count to update</param>
private void GetValues(IntervalTreeNode<K, V> node, K start, K end, ref V[] overlaps, ref int overlapCount)
{
if (node == null || start.CompareTo(node.Max) >= 0)
{
return;
}
GetValues(node.Left, start, end, ref overlaps, ref overlapCount);
bool endsOnRight = end.CompareTo(node.Start) > 0;
if (endsOnRight)
{
if (start.CompareTo(node.End) < 0)
{
// Contains this node. Add overlaps to list.
foreach (RangeNode<K,V> overlap in node.Values)
{
if (start.CompareTo(overlap.End) < 0)
{
if (overlaps.Length >= overlapCount)
{
Array.Resize(ref overlaps, overlapCount + ArrayGrowthSize);
}
overlaps[overlapCount++] = overlap.Value;
}
}
}
GetValues(node.Right, start, end, ref overlaps, ref overlapCount);
}
}
/// <summary>
/// Inserts a new node into the tree with a given <paramref name="start"/>, <paramref name="end"/> and <paramref name="value"/>.
/// </summary>
/// <param name="start">Start of the range to insert</param>
/// <param name="end">End of the range to insert</param>
/// <param name="value">Value to insert</param>
private void Insert(K start, K end, V value)
{
IntervalTreeNode<K, V> newNode = BSTInsert(start, end, value);
RestoreBalanceAfterInsertion(newNode);
}
/// <summary>
/// Propagate an increase in max value starting at the given node, heading up the tree.
/// This should only be called if the max increases - not for rebalancing or removals.
/// </summary>
/// <param name="node">The node to start propagating from</param>
private void PropagateIncrease(IntervalTreeNode<K, V> node)
{
K max = node.Max;
IntervalTreeNode<K, V> ptr = node;
while ((ptr = ptr.Parent) != null)
{
if (max.CompareTo(ptr.Max) > 0)
{
ptr.Max = max;
}
else
{
break;
}
}
}
/// <summary>
/// Propagate recalculating max value starting at the given node, heading up the tree.
/// This fully recalculates the max value from all children when there is potential for it to decrease.
/// </summary>
/// <param name="node">The node to start propagating from</param>
private void PropagateFull(IntervalTreeNode<K, V> node)
{
IntervalTreeNode<K, V> ptr = node;
do
{
K max = ptr.End;
if (ptr.Left != null && ptr.Left.Max.CompareTo(max) > 0)
{
max = ptr.Left.Max;
}
if (ptr.Right != null && ptr.Right.Max.CompareTo(max) > 0)
{
max = ptr.Right.Max;
}
ptr.Max = max;
} while ((ptr = ptr.Parent) != null);
}
/// <summary>
/// Insertion Mechanism for the interval tree. Similar to a BST insert, with the start of the range as the key.
/// Iterates the tree starting from the root and inserts a new node where all children in the left subtree are less than <paramref name="start"/>, and all children in the right subtree are greater than <paramref name="start"/>.
/// Each node can contain multiple values, and has an end address which is the maximum of all those values.
/// Post insertion, the "max" value of the node and all parents are updated.
/// </summary>
/// <param name="start">Start of the range to insert</param>
/// <param name="end">End of the range to insert</param>
/// <param name="value">Value to insert</param>
/// <returns>The inserted Node</returns>
private IntervalTreeNode<K, V> BSTInsert(K start, K end, V value)
{
IntervalTreeNode<K, V> parent = null;
IntervalTreeNode<K, V> node = _root;
while (node != null)
{
parent = node;
int cmp = start.CompareTo(node.Start);
if (cmp < 0)
{
node = node.Left;
}
else if (cmp > 0)
{
node = node.Right;
}
else
{
node.Values.Add(new RangeNode<K, V>(start, end, value));
if (end.CompareTo(node.End) > 0)
{
node.End = end;
if (end.CompareTo(node.Max) > 0)
{
node.Max = end;
PropagateIncrease(node);
}
}
_count++;
return node;
}
}
IntervalTreeNode<K, V> newNode = new IntervalTreeNode<K, V>(start, end, value, parent);
if (newNode.Parent == null)
{
_root = newNode;
}
else if (start.CompareTo(parent.Start) < 0)
{
parent.Left = newNode;
}
else
{
parent.Right = newNode;
}
PropagateIncrease(newNode);
_count++;
return newNode;
}
/// <summary>
/// Removes instances of <paramref name="value"> from the dictionary after searching for it with <paramref name="key">.
/// </summary>
/// <param name="key">Key to search for</param>
/// <param name="value">Value to delete</param>
/// <returns>Number of deleted values</returns>
private int Delete(K key, V value)
{
IntervalTreeNode<K, V> nodeToDelete = GetNode(key);
if (nodeToDelete == null)
{
return 0;
}
int removed = nodeToDelete.Values.RemoveAll(node => node.Value.Equals(value));
if (nodeToDelete.Values.Count > 0)
{
if (removed > 0)
{
nodeToDelete.End = nodeToDelete.Values.Max(node => node.End);
// Recalculate max from children and new end.
PropagateFull(nodeToDelete);
}
return removed;
}
IntervalTreeNode<K, V> replacementNode;
if (LeftOf(nodeToDelete) == null || RightOf(nodeToDelete) == null)
{
replacementNode = nodeToDelete;
}
else
{
replacementNode = PredecessorOf(nodeToDelete);
}
IntervalTreeNode<K, V> tmp = LeftOf(replacementNode) ?? RightOf(replacementNode);
if (tmp != null)
{
tmp.Parent = ParentOf(replacementNode);
}
if (ParentOf(replacementNode) == null)
{
_root = tmp;
}
else if (replacementNode == LeftOf(ParentOf(replacementNode)))
{
ParentOf(replacementNode).Left = tmp;
}
else
{
ParentOf(replacementNode).Right = tmp;
}
if (replacementNode != nodeToDelete)
{
nodeToDelete.Start = replacementNode.Start;
nodeToDelete.Values = replacementNode.Values;
nodeToDelete.End = replacementNode.End;
nodeToDelete.Max = replacementNode.Max;
}
PropagateFull(replacementNode);
if (tmp != null && ColorOf(replacementNode) == Black)
{
RestoreBalanceAfterRemoval(tmp);
}
return removed;
}
/// <summary>
/// Returns the node with the largest key where <paramref name="node"/> is considered the root node.
/// </summary>
/// <param name="node">Root Node</param>
/// <returns>Node with the maximum key in the tree of <paramref name="node"/></returns>
private static IntervalTreeNode<K, V> Maximum(IntervalTreeNode<K, V> node)
{
IntervalTreeNode<K, V> tmp = node;
while (tmp.Right != null)
{
tmp = tmp.Right;
}
return tmp;
}
/// <summary>
/// Finds the node whose key is immediately less than <paramref name="node"/>.
/// </summary>
/// <param name="node">Node to find the predecessor of</param>
/// <returns>Predecessor of <paramref name="node"/></returns>
private static IntervalTreeNode<K, V> PredecessorOf(IntervalTreeNode<K, V> node)
{
if (node.Left != null)
{
return Maximum(node.Left);
}
IntervalTreeNode<K, V> parent = node.Parent;
while (parent != null && node == parent.Left)
{
node = parent;
parent = parent.Parent;
}
return parent;
}
#endregion
#region Private Methods (RBL)
private void RestoreBalanceAfterRemoval(IntervalTreeNode<K, V> balanceNode)
{
IntervalTreeNode<K, V> ptr = balanceNode;
while (ptr != _root && ColorOf(ptr) == Black)
{
if (ptr == LeftOf(ParentOf(ptr)))
{
IntervalTreeNode<K, V> sibling = RightOf(ParentOf(ptr));
if (ColorOf(sibling) == Red)
{
SetColor(sibling, Black);
SetColor(ParentOf(ptr), Red);
RotateLeft(ParentOf(ptr));
sibling = RightOf(ParentOf(ptr));
}
if (ColorOf(LeftOf(sibling)) == Black && ColorOf(RightOf(sibling)) == Black)
{
SetColor(sibling, Red);
ptr = ParentOf(ptr);
}
else
{
if (ColorOf(RightOf(sibling)) == Black)
{
SetColor(LeftOf(sibling), Black);
SetColor(sibling, Red);
RotateRight(sibling);
sibling = RightOf(ParentOf(ptr));
}
SetColor(sibling, ColorOf(ParentOf(ptr)));
SetColor(ParentOf(ptr), Black);
SetColor(RightOf(sibling), Black);
RotateLeft(ParentOf(ptr));
ptr = _root;
}
}
else
{
IntervalTreeNode<K, V> sibling = LeftOf(ParentOf(ptr));
if (ColorOf(sibling) == Red)
{
SetColor(sibling, Black);
SetColor(ParentOf(ptr), Red);
RotateRight(ParentOf(ptr));
sibling = LeftOf(ParentOf(ptr));
}
if (ColorOf(RightOf(sibling)) == Black && ColorOf(LeftOf(sibling)) == Black)
{
SetColor(sibling, Red);
ptr = ParentOf(ptr);
}
else
{
if (ColorOf(LeftOf(sibling)) == Black)
{
SetColor(RightOf(sibling), Black);
SetColor(sibling, Red);
RotateLeft(sibling);
sibling = LeftOf(ParentOf(ptr));
}
SetColor(sibling, ColorOf(ParentOf(ptr)));
SetColor(ParentOf(ptr), Black);
SetColor(LeftOf(sibling), Black);
RotateRight(ParentOf(ptr));
ptr = _root;
}
}
}
SetColor(ptr, Black);
}
private void RestoreBalanceAfterInsertion(IntervalTreeNode<K, V> balanceNode)
{
SetColor(balanceNode, Red);
while (balanceNode != null && balanceNode != _root && ColorOf(ParentOf(balanceNode)) == Red)
{
if (ParentOf(balanceNode) == LeftOf(ParentOf(ParentOf(balanceNode))))
{
IntervalTreeNode<K, V> sibling = RightOf(ParentOf(ParentOf(balanceNode)));
if (ColorOf(sibling) == Red)
{
SetColor(ParentOf(balanceNode), Black);
SetColor(sibling, Black);
SetColor(ParentOf(ParentOf(balanceNode)), Red);
balanceNode = ParentOf(ParentOf(balanceNode));
}
else
{
if (balanceNode == RightOf(ParentOf(balanceNode)))
{
balanceNode = ParentOf(balanceNode);
RotateLeft(balanceNode);
}
SetColor(ParentOf(balanceNode), Black);
SetColor(ParentOf(ParentOf(balanceNode)), Red);
RotateRight(ParentOf(ParentOf(balanceNode)));
}
}
else
{
IntervalTreeNode<K, V> sibling = LeftOf(ParentOf(ParentOf(balanceNode)));
if (ColorOf(sibling) == Red)
{
SetColor(ParentOf(balanceNode), Black);
SetColor(sibling, Black);
SetColor(ParentOf(ParentOf(balanceNode)), Red);
balanceNode = ParentOf(ParentOf(balanceNode));
}
else
{
if (balanceNode == LeftOf(ParentOf(balanceNode)))
{
balanceNode = ParentOf(balanceNode);
RotateRight(balanceNode);
}
SetColor(ParentOf(balanceNode), Black);
SetColor(ParentOf(ParentOf(balanceNode)), Red);
RotateLeft(ParentOf(ParentOf(balanceNode)));
}
}
}
SetColor(_root, Black);
}
private void RotateLeft(IntervalTreeNode<K, V> node)
{
if (node != null)
{
IntervalTreeNode<K, V> right = RightOf(node);
node.Right = LeftOf(right);
if (node.Right != null)
{
node.Right.Parent = node;
}
IntervalTreeNode<K, V> nodeParent = ParentOf(node);
right.Parent = nodeParent;
if (nodeParent == null)
{
_root = right;
}
else if (node == LeftOf(nodeParent))
{
nodeParent.Left = right;
}
else
{
nodeParent.Right = right;
}
right.Left = node;
node.Parent = right;
PropagateFull(node);
}
}
private void RotateRight(IntervalTreeNode<K, V> node)
{
if (node != null)
{
IntervalTreeNode<K, V> left = LeftOf(node);
node.Left = RightOf(left);
if (node.Left != null)
{
node.Left.Parent = node;
}
IntervalTreeNode<K, V> nodeParent = ParentOf(node);
left.Parent = nodeParent;
if (nodeParent == null)
{
_root = left;
}
else if (node == RightOf(nodeParent))
{
nodeParent.Right = left;
}
else
{
nodeParent.Left = left;
}
left.Right = node;
node.Parent = left;
PropagateFull(node);
}
}
#endregion
#region Safety-Methods
// These methods save memory by allowing us to forego sentinel nil nodes, as well as serve as protection against NullReferenceExceptions.
/// <summary>
/// Returns the color of <paramref name="node"/>, or Black if it is null.
/// </summary>
/// <param name="node">Node</param>
/// <returns>The boolean color of <paramref name="node"/>, or black if null</returns>
private static bool ColorOf(IntervalTreeNode<K, V> node)
{
return node == null || node.Color;
}
/// <summary>
/// Sets the color of <paramref name="node"/> node to <paramref name="color"/>.
/// <br></br>
/// This method does nothing if <paramref name="node"/> is null.
/// </summary>
/// <param name="node">Node to set the color of</param>
/// <param name="color">Color (Boolean)</param>
private static void SetColor(IntervalTreeNode<K, V> node, bool color)
{
if (node != null)
{
node.Color = color;
}
}
/// <summary>
/// This method returns the left node of <paramref name="node"/>, or null if <paramref name="node"/> is null.
/// </summary>
/// <param name="node">Node to retrieve the left child from</param>
/// <returns>Left child of <paramref name="node"/></returns>
private static IntervalTreeNode<K, V> LeftOf(IntervalTreeNode<K, V> node)
{
return node?.Left;
}
/// <summary>
/// This method returns the right node of <paramref name="node"/>, or null if <paramref name="node"/> is null.
/// </summary>
/// <param name="node">Node to retrieve the right child from</param>
/// <returns>Right child of <paramref name="node"/></returns>
private static IntervalTreeNode<K, V> RightOf(IntervalTreeNode<K, V> node)
{
return node?.Right;
}
/// <summary>
/// Returns the parent node of <paramref name="node"/>, or null if <paramref name="node"/> is null.
/// </summary>
/// <param name="node">Node to retrieve the parent from</param>
/// <returns>Parent of <paramref name="node"/></returns>
private static IntervalTreeNode<K, V> ParentOf(IntervalTreeNode<K, V> node)
{
return node?.Parent;
}
#endregion
public bool ContainsKey(K key)
{
if (key == null)
{
throw new ArgumentNullException(nameof(key));
}
return GetNode(key) != null;
}
public void Clear()
{
_root = null;
_count = 0;
}
}
/// <summary>
/// Represents a value and its start and end keys.
/// </summary>
/// <typeparam name="K"></typeparam>
/// <typeparam name="V"></typeparam>
public readonly struct RangeNode<K, V>
{
public readonly K Start;
public readonly K End;
public readonly V Value;
public RangeNode(K start, K end, V value)
{
Start = start;
End = end;
Value = value;
}
}
/// <summary>
/// Represents a node in the IntervalTree which contains start and end keys of type K, and a value of generic type V.
/// </summary>
/// <typeparam name="K">Key type of the node</typeparam>
/// <typeparam name="V">Value type of the node</typeparam>
internal class IntervalTreeNode<K, V>
{
internal bool Color = true;
internal IntervalTreeNode<K, V> Left = null;
internal IntervalTreeNode<K, V> Right = null;
internal IntervalTreeNode<K, V> Parent = null;
/// <summary>
/// The start of the range.
/// </summary>
internal K Start;
/// <summary>
/// The end of the range - maximum of all in the Values list.
/// </summary>
internal K End;
/// <summary>
/// The maximum end value of this node and all its children.
/// </summary>
internal K Max;
internal List<RangeNode<K, V>> Values;
public IntervalTreeNode(K start, K end, V value, IntervalTreeNode<K, V> parent)
{
this.Start = start;
this.End = end;
this.Max = end;
this.Values = new List<RangeNode<K, V>> { new RangeNode<K, V>(start, end, value) };
this.Parent = parent;
}
}
}

View File

@ -182,38 +182,40 @@ namespace Ryujinx.Common.Collections
/// <summary> /// <summary>
/// Adds all the nodes in the dictionary into <paramref name="list"/>. /// Adds all the nodes in the dictionary into <paramref name="list"/>.
/// <br></br>
/// The nodes will be added in Sorted by Key Order.
/// </summary> /// </summary>
/// <returns>A list of all KeyValuePairs sorted by Key Order</returns>
public List<KeyValuePair<K, V>> AsList() public List<KeyValuePair<K, V>> AsList()
{ {
List<KeyValuePair<K, V>> list = new List<KeyValuePair<K, V>>(); List<KeyValuePair<K, V>> list = new List<KeyValuePair<K, V>>();
Queue<Node<K, V>> nodes = new Queue<Node<K, V>>(); AddToList(_root, list);
if (this._root != null)
{
nodes.Enqueue(this._root);
}
while (nodes.Count > 0)
{
Node<K, V> node = nodes.Dequeue();
list.Add(new KeyValuePair<K, V>(node.Key, node.Value));
if (node.Left != null)
{
nodes.Enqueue(node.Left);
}
if (node.Right != null)
{
nodes.Enqueue(node.Right);
}
}
return list; return list;
} }
#endregion #endregion
#region Private Methods (BST) #region Private Methods (BST)
/// <summary>
/// Adds all nodes that are children of or contained within <paramref name="node"/> into <paramref name="list"/>, in Key Order.
/// </summary>
/// <param name="node">The node to search for nodes within</param>
/// <param name="list">The list to add node to</param>
private void AddToList(Node<K, V> node, List<KeyValuePair<K, V>> list)
{
if (node == null)
{
return;
}
AddToList(node.Left, list);
list.Add(new KeyValuePair<K, V>(node.Key, node.Value));
AddToList(node.Right, list);
}
/// <summary> /// <summary>
/// Retrieve the node reference whose key is <paramref name="key"/>, or null if no such node exists. /// Retrieve the node reference whose key is <paramref name="key"/>, or null if no such node exists.
/// </summary> /// </summary>
@ -373,13 +375,8 @@ namespace Ryujinx.Common.Collections
/// </summary> /// </summary>
/// <param name="node">Root Node</param> /// <param name="node">Root Node</param>
/// <returns>Node with the maximum key in the tree of <paramref name="node"/></returns> /// <returns>Node with the maximum key in the tree of <paramref name="node"/></returns>
/// <exception cref="ArgumentNullException"><paramref name="node"/> is null</exception>
private static Node<K, V> Maximum(Node<K, V> node) private static Node<K, V> Maximum(Node<K, V> node)
{ {
if (node == null)
{
throw new ArgumentNullException(nameof(node));
}
Node<K, V> tmp = node; Node<K, V> tmp = node;
while (tmp.Right != null) while (tmp.Right != null)
{ {
@ -519,7 +516,7 @@ namespace Ryujinx.Common.Collections
} }
/// <summary> /// <summary>
/// Finds the node with the key immediately greater than <paramref name="node"/>.Key. /// Finds the node with the key is immediately greater than <paramref name="node"/>.
/// </summary> /// </summary>
/// <param name="node">Node to find the successor of</param> /// <param name="node">Node to find the successor of</param>
/// <returns>Successor of <paramref name="node"/></returns> /// <returns>Successor of <paramref name="node"/></returns>
@ -539,7 +536,7 @@ namespace Ryujinx.Common.Collections
} }
/// <summary> /// <summary>
/// Finds the node whose key immediately less than <paramref name="node"/>.Key. /// Finds the node whose key is immediately less than <paramref name="node"/>.
/// </summary> /// </summary>
/// <param name="node">Node to find the predecessor of</param> /// <param name="node">Node to find the predecessor of</param>
/// <returns>Predecessor of <paramref name="node"/></returns> /// <returns>Predecessor of <paramref name="node"/></returns>
@ -557,7 +554,9 @@ namespace Ryujinx.Common.Collections
} }
return parent; return parent;
} }
#endregion #endregion
#region Private Methods (RBL) #region Private Methods (RBL)
private void RestoreBalanceAfterRemoval(Node<K, V> balanceNode) private void RestoreBalanceAfterRemoval(Node<K, V> balanceNode)
@ -748,7 +747,7 @@ namespace Ryujinx.Common.Collections
#region Safety-Methods #region Safety-Methods
// These methods save memory by allowing us to forego sentinel nil nodes, as well as serve as protection against nullpointerexceptions. // These methods save memory by allowing us to forego sentinel nil nodes, as well as serve as protection against NullReferenceExceptions.
/// <summary> /// <summary>
/// Returns the color of <paramref name="node"/>, or Black if it is null. /// Returns the color of <paramref name="node"/>, or Black if it is null.

View File

@ -1,27 +1,21 @@
using System; using Ryujinx.Common.Collections;
using System.Collections; using System.Collections;
using System.Collections.Generic; using System.Collections.Generic;
namespace Ryujinx.Memory.Range namespace Ryujinx.Memory.Range
{ {
/// <summary>
/// Sorted list of ranges that supports binary search.
/// </summary>
/// <typeparam name="T">Type of the range.</typeparam>
public class MultiRangeList<T> : IEnumerable<T> where T : IMultiRangeItem public class MultiRangeList<T> : IEnumerable<T> where T : IMultiRangeItem
{ {
private const int ArrayGrowthSize = 32; private readonly IntervalTree<ulong, T> _items;
private readonly List<T> _items; public int Count { get; private set; }
public int Count => _items.Count;
/// <summary> /// <summary>
/// Creates a new range list. /// Creates a new range list.
/// </summary> /// </summary>
public MultiRangeList() public MultiRangeList()
{ {
_items = new List<T>(); _items = new IntervalTree<ulong, T>();
} }
/// <summary> /// <summary>
@ -30,14 +24,15 @@ namespace Ryujinx.Memory.Range
/// <param name="item">The item to be added</param> /// <param name="item">The item to be added</param>
public void Add(T item) public void Add(T item)
{ {
int index = BinarySearch(item.BaseAddress); MultiRange range = item.Range;
if (index < 0) for (int i = 0; i < range.Count; i++)
{ {
index = ~index; var subrange = range.GetSubRange(i);
_items.Add(subrange.Address, subrange.EndAddress, item);
} }
_items.Insert(index, item); Count++;
} }
/// <summary> /// <summary>
@ -47,34 +42,23 @@ namespace Ryujinx.Memory.Range
/// <returns>True if the item was removed, or false if it was not found</returns> /// <returns>True if the item was removed, or false if it was not found</returns>
public bool Remove(T item) public bool Remove(T item)
{ {
int index = BinarySearch(item.BaseAddress); MultiRange range = item.Range;
if (index >= 0) int removed = 0;
for (int i = 0; i < range.Count; i++)
{ {
while (index > 0 && _items[index - 1].BaseAddress == item.BaseAddress) var subrange = range.GetSubRange(i);
{ removed += _items.Remove(subrange.Address, item);
index--;
} }
while (index < _items.Count) if (removed > 0)
{ {
if (_items[index].Equals(item)) // All deleted intervals are for the same item - the one we removed.
{ Count--;
_items.RemoveAt(index);
return true;
} }
if (_items[index].BaseAddress > item.BaseAddress) return removed > 0;
{
break;
}
index++;
}
}
return false;
} }
/// <summary> /// <summary>
@ -97,22 +81,47 @@ namespace Ryujinx.Memory.Range
/// <returns>The number of overlapping items found</returns> /// <returns>The number of overlapping items found</returns>
public int FindOverlaps(MultiRange range, ref T[] output) public int FindOverlaps(MultiRange range, ref T[] output)
{ {
int outputIndex = 0; int overlapCount = 0;
foreach (T item in _items) for (int i = 0; i < range.Count; i++)
{ {
if (item.Range.OverlapsWith(range)) var subrange = range.GetSubRange(i);
{ overlapCount = _items.Get(subrange.Address, subrange.EndAddress, ref output, overlapCount);
if (outputIndex == output.Length)
{
Array.Resize(ref output, outputIndex + ArrayGrowthSize);
} }
output[outputIndex++] = item; // Remove any duplicates, caused by items having multiple sub range nodes in the tree.
if (overlapCount > 1)
{
int insertPtr = 0;
for (int i = 0; i < overlapCount; i++)
{
T item = output[i];
bool duplicate = false;
for (int j = insertPtr - 1; j >= 0; j--)
{
if (item.Equals(output[j]))
{
duplicate = true;
break;
} }
} }
return outputIndex; if (!duplicate)
{
if (insertPtr != i)
{
output[insertPtr] = item;
}
insertPtr++;
}
}
overlapCount = insertPtr;
}
return overlapCount;
} }
/// <summary> /// <summary>
@ -123,82 +132,50 @@ namespace Ryujinx.Memory.Range
/// <returns>The number of matches found</returns> /// <returns>The number of matches found</returns>
public int FindOverlaps(ulong baseAddress, ref T[] output) public int FindOverlaps(ulong baseAddress, ref T[] output)
{ {
int index = BinarySearch(baseAddress); int count = _items.Get(baseAddress, ref output);
int outputIndex = 0; // Only output items with matching base address
int insertPtr = 0;
if (index >= 0) for (int i = 0; i < count; i++)
{ {
while (index > 0 && _items[index - 1].BaseAddress == baseAddress) if (output[i].BaseAddress == baseAddress)
{ {
index--; if (i != insertPtr)
{
output[insertPtr] = output[i];
} }
while (index < _items.Count) insertPtr++;
{
T overlap = _items[index++];
if (overlap.BaseAddress != baseAddress)
{
break;
}
if (outputIndex == output.Length)
{
Array.Resize(ref output, outputIndex + ArrayGrowthSize);
}
output[outputIndex++] = overlap;
} }
} }
return outputIndex; return insertPtr;
} }
/// <summary> private List<T> GetList()
/// Performs binary search on the internal list of items.
/// </summary>
/// <param name="address">Address to find</param>
/// <returns>List index of the item, or complement index of nearest item with lower value on the list</returns>
private int BinarySearch(ulong address)
{ {
int left = 0; var items = _items.AsList();
int right = _items.Count - 1; var result = new List<T>();
while (left <= right) foreach (RangeNode<ulong, T> item in items)
{ {
int range = right - left; if (item.Start == item.Value.BaseAddress)
int middle = left + (range >> 1);
T item = _items[middle];
if (item.BaseAddress == address)
{ {
return middle; result.Add(item.Value);
}
if (address < item.BaseAddress)
{
right = middle - 1;
}
else
{
left = middle + 1;
} }
} }
return ~left; return result;
} }
public IEnumerator<T> GetEnumerator() public IEnumerator<T> GetEnumerator()
{ {
return _items.GetEnumerator(); return GetList().GetEnumerator();
} }
IEnumerator IEnumerable.GetEnumerator() IEnumerator IEnumerable.GetEnumerator()
{ {
return _items.GetEnumerator(); return GetList().GetEnumerator();
} }
} }
} }