ultimatevocalremovergui/models.py

245 lines
8.0 KiB
Python
Raw Normal View History

2022-05-11 02:13:15 +02:00
import torch
from torch._C import has_mkl
import torch.nn as nn
import numpy as np
import librosa
dim_c = 4
k = 3
model_path = 'model'
n_fft_scale = {'bass': 8, 'drums':2, 'other':4, 'vocals':3, '*':2}
class Conv_TDF(nn.Module):
def __init__(self, c, l, f, k, bn, bias=True):
super(Conv_TDF, self).__init__()
self.use_tdf = bn is not None
self.H = nn.ModuleList()
for i in range(l):
self.H.append(
nn.Sequential(
nn.Conv2d(in_channels=c, out_channels=c, kernel_size=k, stride=1, padding=k//2),
nn.BatchNorm2d(c),
nn.ReLU(),
)
)
if self.use_tdf:
if bn==0:
self.tdf = nn.Sequential(
nn.Linear(f,f, bias=bias),
nn.BatchNorm2d(c),
nn.ReLU()
)
else:
self.tdf = nn.Sequential(
nn.Linear(f,f//bn, bias=bias),
nn.BatchNorm2d(c),
nn.ReLU(),
nn.Linear(f//bn,f, bias=bias),
nn.BatchNorm2d(c),
nn.ReLU()
)
def forward(self, x):
for h in self.H:
x = h(x)
return x + self.tdf(x) if self.use_tdf else x
class Conv_TDF_net_trim(nn.Module):
def __init__(self, device, load, model_name, target_name, lr, epoch,
L, l, g, dim_f, dim_t, k=3, hop=1024, bn=None, bias=True):
super(Conv_TDF_net_trim, self).__init__()
self.dim_f, self.dim_t = 2**dim_f, 2**dim_t
self.n_fft = self.dim_f * n_fft_scale[target_name]
self.hop = hop
self.n_bins = self.n_fft//2+1
self.chunk_size = hop * (self.dim_t-1)
self.window = torch.hann_window(window_length=self.n_fft, periodic=True).to(device)
self.target_name = target_name
self.blender = 'blender' in model_name
out_c = dim_c*4 if target_name=='*' else dim_c
in_c = dim_c*2 if self.blender else dim_c
#out_c = dim_c*2 if self.blender else dim_c
self.freq_pad = torch.zeros([1, out_c, self.n_bins-self.dim_f, self.dim_t]).to(device)
self.n = L//2
if load:
self.first_conv = nn.Sequential(
nn.Conv2d(in_channels=in_c, out_channels=g, kernel_size=1, stride=1),
nn.BatchNorm2d(g),
nn.ReLU(),
)
f = self.dim_f
c = g
self.ds_dense = nn.ModuleList()
self.ds = nn.ModuleList()
for i in range(self.n):
self.ds_dense.append(Conv_TDF(c, l, f, k, bn, bias=bias))
scale = (2,2)
self.ds.append(
nn.Sequential(
nn.Conv2d(in_channels=c, out_channels=c+g, kernel_size=scale, stride=scale),
nn.BatchNorm2d(c+g),
nn.ReLU()
)
)
f = f//2
c += g
self.mid_dense = Conv_TDF(c, l, f, k, bn, bias=bias)
#if bn is None and mid_tdf:
# self.mid_dense = Conv_TDF(c, l, f, k, bn=0, bias=False)
self.us_dense = nn.ModuleList()
self.us = nn.ModuleList()
for i in range(self.n):
scale = (2,2)
self.us.append(
nn.Sequential(
nn.ConvTranspose2d(in_channels=c, out_channels=c-g, kernel_size=scale, stride=scale),
nn.BatchNorm2d(c-g),
nn.ReLU()
)
)
f = f*2
c -= g
self.us_dense.append(Conv_TDF(c, l, f, k, bn, bias=bias))
self.final_conv = nn.Sequential(
nn.Conv2d(in_channels=c, out_channels=out_c, kernel_size=1, stride=1),
)
model_cfg = f'L{L}l{l}g{g}'
model_cfg += ', ' if (bn is None or bn==0) else f'bn{bn}, '
stft_cfg = f'f{dim_f}t{dim_t}, '
model_name = model_name[:model_name.index('(')+1] + model_cfg + stft_cfg + model_name[model_name.index('(')+1:]
try:
self.load_state_dict(
torch.load('{0}/{1}/{2}_lr{3}_e{4:05}.ckpt'.format(model_path, model_name, target_name, lr, epoch), map_location=device)
)
print(f'Loading model ({target_name})')
except FileNotFoundError:
print(f'Random init ({target_name})')
def stft(self, x):
x = x.reshape([-1, self.chunk_size])
x = torch.stft(x, n_fft=self.n_fft, hop_length=self.hop, window=self.window, center=True)
x = x.permute([0,3,1,2])
x = x.reshape([-1,2,2,self.n_bins,self.dim_t]).reshape([-1,dim_c,self.n_bins,self.dim_t])
return x[:,:,:self.dim_f]
def istft(self, x, freq_pad=None):
freq_pad = self.freq_pad.repeat([x.shape[0],1,1,1]) if freq_pad is None else freq_pad
x = torch.cat([x, freq_pad], -2)
c = 4*2 if self.target_name=='*' else 2
x = x.reshape([-1,c,2,self.n_bins,self.dim_t]).reshape([-1,2,self.n_bins,self.dim_t])
x = x.permute([0,2,3,1])
x = torch.istft(x, n_fft=self.n_fft, hop_length=self.hop, window=self.window, center=True)
return x.reshape([-1,c,self.chunk_size])
def forward(self, x):
x = self.first_conv(x)
x = x.transpose(-1,-2)
ds_outputs = []
for i in range(self.n):
x = self.ds_dense[i](x)
ds_outputs.append(x)
x = self.ds[i](x)
x = self.mid_dense(x)
for i in range(self.n):
x = self.us[i](x)
x *= ds_outputs[-i-1]
x = self.us_dense[i](x)
x = x.transpose(-1,-2)
x = self.final_conv(x)
return x
def stft(wave, nfft, hl):
wave_left = np.asfortranarray(wave[0])
wave_right = np.asfortranarray(wave[1])
spec_left = librosa.stft(wave_left, nfft, hop_length=hl)
spec_right = librosa.stft(wave_right, nfft, hop_length=hl)
spec = np.asfortranarray([spec_left, spec_right])
return spec
def istft(spec, hl):
spec_left = np.asfortranarray(spec[0])
spec_right = np.asfortranarray(spec[1])
wave_left = librosa.istft(spec_left, hop_length=hl)
wave_right = librosa.istft(spec_right, hop_length=hl)
wave = np.asfortranarray([wave_left, wave_right])
return wave
def spec_effects(wave, algorithm='default', value=None):
spec = [stft(wave[0],2048,1024),stft(wave[1],2048,1024)]
if algorithm == 'min_mag':
v_spec_m = np.where(np.abs(spec[1]) <= np.abs(spec[0]), spec[1], spec[0])
wave = istft(v_spec_m,1024)
elif algorithm == 'max_mag':
v_spec_m = np.where(np.abs(spec[1]) >= np.abs(spec[0]), spec[1], spec[0])
wave = istft(v_spec_m,1024)
elif algorithm == 'default':
#wave = [istft(spec[0],1024),istft(spec[1],1024)]
wave = (wave[1] * value) + (wave[0] * (1-value))
elif algorithm == 'invert_p':
X_mag = np.abs(spec[0])
y_mag = np.abs(spec[1])
max_mag = np.where(X_mag >= y_mag, X_mag, y_mag)
v_spec = spec[1] - max_mag * np.exp(1.j * np.angle(spec[0]))
wave = istft(v_spec,1024)
return wave
def get_models(name, device, load=True, stems='vocals'):
if name=='tdf_extra':
models = []
if 'vocals' in stems:
models.append(
Conv_TDF_net_trim(
device=device, load=load,
model_name='Conv-TDF', target_name='vocals',
lr=0.0001, epoch=0,
L=11, l=3, g=32, bn=8, bias=False,
dim_f=11, dim_t=8
)
)
return models
else:
print('Model undefined')
return None