mirror of
https://github.com/Anjok07/ultimatevocalremovergui.git
synced 2024-12-01 10:37:21 +01:00
287 lines
12 KiB
Python
287 lines
12 KiB
Python
|
# Copyright (c) Facebook, Inc. and its affiliates.
|
||
|
# All rights reserved.
|
||
|
#
|
||
|
# This source code is licensed under the license found in the
|
||
|
# LICENSE file in the root directory of this source tree.
|
||
|
|
||
|
"""
|
||
|
Differentiable quantizer based on scaled noise injection.
|
||
|
"""
|
||
|
from dataclasses import dataclass
|
||
|
import math
|
||
|
import typing as tp
|
||
|
|
||
|
import torch
|
||
|
|
||
|
from .base import BaseQuantizer
|
||
|
from .uniform import uniform_quantize, uniform_unquantize
|
||
|
from .utils import simple_repr
|
||
|
|
||
|
|
||
|
class DiffQuantizer(BaseQuantizer):
|
||
|
@dataclass
|
||
|
class _QuantizedParam(BaseQuantizer._QuantizedParam):
|
||
|
logit: torch.nn.Parameter
|
||
|
|
||
|
def __init__(self, model: torch.nn.Module, min_size: float = 0.01, float16: bool = False,
|
||
|
group_size: int = 1, min_bits: float = 2, max_bits: float = 15,
|
||
|
param="bits", noise="gaussian",
|
||
|
init_bits: float = 8, extra_bits: float = 0, suffix: str = "_diffq",
|
||
|
exclude: tp.List[str] = [], detect_bound: bool = True):
|
||
|
"""
|
||
|
Differentiable quantizer based on scaled noise injection.
|
||
|
For every parameter `p` in the model, this introduces a number of bits parameter
|
||
|
`b` with the same dimensions (when group_size = 1).
|
||
|
Before each forward, `p` is replaced by `p + U`
|
||
|
with U uniform iid noise with range [-d/2, d/2], with `d` the uniform quantization
|
||
|
step for `b` bits.
|
||
|
This noise approximates the quantization noise in a differentiable manner, both
|
||
|
with respect to the unquantized parameter `p` and the number of bits `b`.
|
||
|
|
||
|
At eveluation (as detected with `model.eval()`), the model is replaced
|
||
|
by its true quantized version, and restored when going back to training.
|
||
|
|
||
|
When doing actual quantization (for serialization, or evaluation),
|
||
|
the number of bits is rounded to the nearest integer, and needs to be stored along.
|
||
|
This will cost a few bits per dimension. To reduce this cost, one can use `group_size`,
|
||
|
which will use a single noise level for multiple weight entries.
|
||
|
|
||
|
You can use the `DiffQuantizer.model_size` method to get a differentiable estimate of the
|
||
|
model size in MB. You can then use this estimate as a penalty in your training loss.
|
||
|
|
||
|
Args:
|
||
|
model (torch.nn.Module): model to quantize
|
||
|
min_size (float): minimum size in MB of a parameter to be quantized.
|
||
|
float16 (bool): if a layer is smaller than min_size, should we still do float16?
|
||
|
group_size (int): weight entries are groupped together to reduce the number
|
||
|
of noise scales to store. This should divide the size of all parameters
|
||
|
bigger than min_size.
|
||
|
min_bits (float): minimal number of bits.
|
||
|
max_bits (float): maximal number of bits.
|
||
|
init_bits (float): initial number of bits.
|
||
|
extra_bits (float): extra bits to add for actual quantization (before roundoff).
|
||
|
suffix (str): suffix used for the name of the extra noise scale parameters.
|
||
|
exclude (list[str]): list of patterns used to match parameters to exclude.
|
||
|
For instance `['bias']` to exclude all bias terms.
|
||
|
detect_bound (bool): if True, will detect bound parameters and reuse
|
||
|
the same quantized tensor for both, as well as the same number of bits.
|
||
|
|
||
|
..Warning::
|
||
|
You must call `model.training()` and `model.eval()` for `DiffQuantizer` work properly.
|
||
|
|
||
|
"""
|
||
|
self.group_size = group_size
|
||
|
self.min_bits = min_bits
|
||
|
self.max_bits = max_bits
|
||
|
self.init_bits = init_bits
|
||
|
self.extra_bits = extra_bits
|
||
|
self.suffix = suffix
|
||
|
self.param = param
|
||
|
self.noise = noise
|
||
|
assert noise in ["gaussian", "uniform"]
|
||
|
self._optimizer_setup = False
|
||
|
|
||
|
self._min_noise = 1 / (2 ** self.max_bits - 1)
|
||
|
self._max_noise = 1 / (2 ** self.min_bits - 1)
|
||
|
|
||
|
assert group_size >= 0
|
||
|
assert min_bits < init_bits < max_bits, \
|
||
|
"init_bits must be between min_bits and max_bits excluded3"
|
||
|
|
||
|
for name, _ in model.named_parameters():
|
||
|
if name.endswith(suffix):
|
||
|
raise RuntimeError("The model already has some noise scales parameters, "
|
||
|
"maybe you used twice a DiffQuantizer on the same model?.")
|
||
|
|
||
|
super().__init__(model, min_size, float16, exclude, detect_bound)
|
||
|
|
||
|
def _get_bits(self, logit: torch.Tensor):
|
||
|
if self.param == "noise":
|
||
|
return torch.log2(1 + 1 / self._get_noise_scale(logit))
|
||
|
else:
|
||
|
t = torch.sigmoid(logit)
|
||
|
return self.max_bits * t + (1 - t) * self.min_bits
|
||
|
|
||
|
def _get_noise_scale(self, logit: torch.Tensor):
|
||
|
if self.param == "noise":
|
||
|
t = torch.sigmoid(logit)
|
||
|
return torch.exp(t * math.log(self._min_noise) + (1 - t) * math.log(self._max_noise))
|
||
|
else:
|
||
|
return 1 / (2 ** self._get_bits(logit) - 1)
|
||
|
|
||
|
def _register_param(self, name, param, module, other):
|
||
|
if other is not None:
|
||
|
return self.__class__._QuantizedParam(
|
||
|
name=name, param=param, module=module, logit=other.logit, other=other)
|
||
|
assert self.group_size == 0 or param.numel() % self.group_size == 0
|
||
|
# we want the initial number of bits to be init_bits.
|
||
|
if self.param == "noise":
|
||
|
noise_scale = 1 / (2 ** self.init_bits - 1)
|
||
|
t = (math.log(noise_scale) - math.log(self._max_noise)) / (
|
||
|
math.log(self._min_noise) - math.log(self._max_noise))
|
||
|
else:
|
||
|
t = (self.init_bits - self.min_bits) / (self.max_bits - self.min_bits)
|
||
|
assert 0 < t < 1
|
||
|
logit = torch.logit(torch.tensor(float(t)))
|
||
|
assert abs(self._get_bits(logit) - self.init_bits) < 1e-5
|
||
|
if self.group_size > 0:
|
||
|
nparam = param.numel() // self.group_size
|
||
|
else:
|
||
|
nparam = 1
|
||
|
logit = torch.nn.Parameter(
|
||
|
torch.full(
|
||
|
(nparam,),
|
||
|
logit,
|
||
|
device=param.device))
|
||
|
module.register_parameter(name + self.suffix, logit)
|
||
|
return self.__class__._QuantizedParam(
|
||
|
name=name, param=param, module=module, logit=logit, other=None)
|
||
|
|
||
|
def clear_optimizer(self, optimizer: torch.optim.Optimizer):
|
||
|
params = [qp.logit for qp in self._qparams]
|
||
|
|
||
|
for group in optimizer.param_groups:
|
||
|
new_params = []
|
||
|
for q in list(group["params"]):
|
||
|
matched = False
|
||
|
for p in params:
|
||
|
if p is q:
|
||
|
matched = True
|
||
|
if not matched:
|
||
|
new_params.append(q)
|
||
|
group["params"][:] = new_params
|
||
|
|
||
|
def setup_optimizer(self, optimizer: torch.optim.Optimizer,
|
||
|
lr: float = 1e-3, **kwargs):
|
||
|
"""
|
||
|
Setup the optimizer to tune the number of bits. In particular, this will deactivate
|
||
|
weight decay for the bits parameters.
|
||
|
|
||
|
Args:
|
||
|
optimizer (torch.Optimizer): optimizer to use.
|
||
|
lr (float): specific learning rate for the bits parameters. 1e-3
|
||
|
is perfect for Adam.,w
|
||
|
kwargs (dict): overrides for other optimization parameters for the bits.
|
||
|
"""
|
||
|
assert not self._optimizer_setup
|
||
|
self._optimizer_setup = True
|
||
|
|
||
|
params = [qp.logit for qp in self._qparams]
|
||
|
|
||
|
for group in optimizer.param_groups:
|
||
|
for q in list(group["params"]):
|
||
|
for p in params:
|
||
|
if p is q:
|
||
|
raise RuntimeError("You should create the optimizer "
|
||
|
"before the quantizer!")
|
||
|
|
||
|
group = {"params": params, "lr": lr, "weight_decay": 0}
|
||
|
group.update(kwargs)
|
||
|
optimizer.add_param_group(group)
|
||
|
|
||
|
def no_optimizer(self):
|
||
|
"""
|
||
|
Call this if you do not want to use an optimizer.
|
||
|
"""
|
||
|
self._optimizer_setup = True
|
||
|
|
||
|
def check_unused(self):
|
||
|
for qparam in self._qparams:
|
||
|
if qparam.other is not None:
|
||
|
continue
|
||
|
grad = qparam.param.grad
|
||
|
if grad is None or (grad == 0).all():
|
||
|
if qparam.logit.grad is not None:
|
||
|
qparam.logit.grad.data.zero_()
|
||
|
|
||
|
def model_size(self, exact=False):
|
||
|
"""
|
||
|
Differentiable estimate of the model size.
|
||
|
The size is returned in MB.
|
||
|
|
||
|
If `exact` is True, then the output is no longer differentiable but
|
||
|
reflect exactly an achievable size, even without compression,
|
||
|
i.e.same as returned by `naive_model_size()`.
|
||
|
"""
|
||
|
total = super().model_size()
|
||
|
subtotal = 0
|
||
|
for qparam in self._qparams:
|
||
|
# only count the first appearance of a Parameter
|
||
|
if qparam.other is not None:
|
||
|
continue
|
||
|
bits = self.extra_bits + self._get_bits(qparam.logit)
|
||
|
if exact:
|
||
|
bits = bits.round().clamp(1, 15)
|
||
|
if self.group_size == 0:
|
||
|
group_size = qparam.param.numel()
|
||
|
else:
|
||
|
group_size = self.group_size
|
||
|
subtotal += group_size * bits.sum()
|
||
|
subtotal += 2 * 32 # param scale
|
||
|
|
||
|
# Number of bits to represent each number of bits
|
||
|
bits_bits = math.ceil(math.log2(1 + (bits.max().round().item() - self.min_bits)))
|
||
|
subtotal += 8 # 8 bits for bits_bits
|
||
|
subtotal += bits_bits * bits.numel()
|
||
|
|
||
|
subtotal /= 2 ** 20 * 8 # bits -> MegaBytes
|
||
|
return total + subtotal
|
||
|
|
||
|
def true_model_size(self):
|
||
|
"""
|
||
|
Naive model size without zlib compression.
|
||
|
"""
|
||
|
return self.model_size(exact=True).item()
|
||
|
|
||
|
def _pre_forward_train(self):
|
||
|
if not self._optimizer_setup:
|
||
|
raise RuntimeError("You must call `setup_optimizer()` on your optimizer "
|
||
|
"before starting training.")
|
||
|
for qparam in self._qparams:
|
||
|
if qparam.other is not None:
|
||
|
noisy = qparam.other.module._parameters[qparam.other.name]
|
||
|
else:
|
||
|
bits = self._get_bits(qparam.logit)[:, None]
|
||
|
if self.group_size == 0:
|
||
|
p_flat = qparam.param.view(-1)
|
||
|
else:
|
||
|
p_flat = qparam.param.view(-1, self.group_size)
|
||
|
scale = p_flat.max() - p_flat.min()
|
||
|
unit = 1 / (2**bits - 1)
|
||
|
if self.noise == "uniform":
|
||
|
noise_source = (torch.rand_like(p_flat) - 0.5)
|
||
|
elif self.noise == "gaussian":
|
||
|
noise_source = torch.randn_like(p_flat) / 2
|
||
|
noise = scale * unit * noise_source
|
||
|
noisy = p_flat + noise
|
||
|
# We bypass the checks by PyTorch on parameters being leafs
|
||
|
qparam.module._parameters[qparam.name] = noisy.view_as(qparam.param)
|
||
|
return True
|
||
|
|
||
|
def _post_forward_train(self):
|
||
|
for qparam in self._qparams:
|
||
|
qparam.module._parameters[qparam.name] = qparam.param
|
||
|
return True
|
||
|
|
||
|
def _quantize_param(self, qparam: _QuantizedParam) -> tp.Any:
|
||
|
bits = self.extra_bits + self._get_bits(qparam.logit)
|
||
|
bits = bits.round().clamp(1, 15)[:, None].byte()
|
||
|
if self.group_size == 0:
|
||
|
p = qparam.param.data.view(-1)
|
||
|
else:
|
||
|
p = qparam.param.data.view(-1, self.group_size)
|
||
|
levels, scales = uniform_quantize(p, bits)
|
||
|
return levels, scales, bits
|
||
|
|
||
|
def _unquantize_param(self, qparam: _QuantizedParam, quantized: tp.Any) -> torch.Tensor:
|
||
|
levels, param_scale, bits = quantized
|
||
|
return uniform_unquantize(levels, param_scale, bits).view_as(qparam.param.data)
|
||
|
|
||
|
def detach(self):
|
||
|
super().detach()
|
||
|
for qparam in self._qparams:
|
||
|
delattr(qparam.module, qparam.name + self.suffix)
|
||
|
|
||
|
def __repr__(self):
|
||
|
return simple_repr(self)
|