ultimatevocalremovergui/inference.py

285 lines
12 KiB
Python
Raw Normal View History

2021-04-08 00:51:18 +02:00
import argparse
import os
import cv2
import librosa
import numpy as np
import soundfile as sf
import torch
import time
from tqdm import tqdm
from lib import dataset
from lib import spec_utils
from lib.model_param_init import ModelParameters
class VocalRemover(object):
def __init__(self, model, device, window_size):
self.model = model
self.offset = model.offset
self.device = device
self.window_size = window_size
def _execute(self, X_mag_pad, roi_size, n_window, aggressiveness):
self.model.eval()
with torch.no_grad():
preds = []
for i in tqdm(range(n_window)):
start = i * roi_size
X_mag_window = X_mag_pad[None, :, :, start:start + self.window_size]
X_mag_window = torch.from_numpy(X_mag_window).to(self.device)
pred = self.model.predict(X_mag_window, aggressiveness)
pred = pred.detach().cpu().numpy()
preds.append(pred[0])
pred = np.concatenate(preds, axis=2)
return pred
def preprocess(self, X_spec):
X_mag = np.abs(X_spec)
X_phase = np.angle(X_spec)
return X_mag, X_phase
def inference(self, X_spec, aggressiveness):
X_mag, X_phase = self.preprocess(X_spec)
coef = X_mag.max()
X_mag_pre = X_mag / coef
n_frame = X_mag_pre.shape[2]
pad_l, pad_r, roi_size = dataset.make_padding(n_frame, self.window_size, self.offset)
n_window = int(np.ceil(n_frame / roi_size))
X_mag_pad = np.pad(X_mag_pre, ((0, 0), (0, 0), (pad_l, pad_r)), mode='constant')
pred = self._execute(X_mag_pad, roi_size, n_window, aggressiveness)
pred = pred[:, :, :n_frame]
return pred * coef, X_mag, np.exp(1.j * X_phase)
def inference_tta(self, X_spec, aggressiveness):
X_mag, X_phase = self.preprocess(X_spec)
coef = X_mag.max()
X_mag_pre = X_mag / coef
n_frame = X_mag_pre.shape[2]
pad_l, pad_r, roi_size = dataset.make_padding(n_frame, self.window_size, self.offset)
n_window = int(np.ceil(n_frame / roi_size))
X_mag_pad = np.pad(X_mag_pre, ((0, 0), (0, 0), (pad_l, pad_r)), mode='constant')
pred = self._execute(X_mag_pad, roi_size, n_window, aggressiveness)
pred = pred[:, :, :n_frame]
pad_l += roi_size // 2
pad_r += roi_size // 2
n_window += 1
X_mag_pad = np.pad(X_mag_pre, ((0, 0), (0, 0), (pad_l, pad_r)), mode='constant')
pred_tta = self._execute(X_mag_pad, roi_size, n_window, aggressiveness)
pred_tta = pred_tta[:, :, roi_size // 2:]
pred_tta = pred_tta[:, :, :n_frame]
return (pred + pred_tta) * 0.5 * coef, X_mag, np.exp(1.j * X_phase)
def main():
p = argparse.ArgumentParser()
p.add_argument('--gpu', '-g', type=int, default=-1)
p.add_argument('--pretrained_model', '-P', type=str, default='models/baseline.pth')
p.add_argument('--input', '-i', required=True)
2021-04-30 07:43:44 +02:00
p.add_argument('--nn_architecture', '-n', type=str, default='default')
2021-04-08 00:51:18 +02:00
p.add_argument('--model_params', '-m', type=str, default='')
2021-04-30 07:43:44 +02:00
p.add_argument('--window_size', '-w', type=int, default=512)
2021-04-08 00:51:18 +02:00
p.add_argument('--output_image', '-I', action='store_true')
2021-05-05 02:45:16 +02:00
p.add_argument('--deepextraction', '-D', action='store_true')
2021-04-08 00:51:18 +02:00
p.add_argument('--postprocess', '-p', action='store_true')
p.add_argument('--tta', '-t', action='store_true')
2021-05-09 10:23:25 +02:00
p.add_argument('--high_end_process', '-H', type=str, choices=['none', 'bypass', 'correlation', 'mirroring'], default='none')
2021-05-05 09:30:04 +02:00
p.add_argument('--aggressiveness', '-A', type=float, default=0.07)
2021-04-08 00:51:18 +02:00
args = p.parse_args()
2021-04-30 07:43:44 +02:00
if args.nn_architecture == 'default':
from lib import nets
if args.nn_architecture == '33966KB':
from lib import nets_33966KB as nets
if args.nn_architecture == '123821KB':
from lib import nets_123821KB as nets
if args.nn_architecture == '129605KB':
from lib import nets_129605KB as nets
2021-05-05 02:45:16 +02:00
dir = 'ensembled/temp'
for file in os.scandir(dir):
os.remove(file.path)
2021-04-30 07:43:44 +02:00
#if '' == args.model_params:
# mp = ModelParameters(args.pretrained_model)
#else:
2021-04-08 04:52:04 +02:00
mp = ModelParameters(args.model_params)
2021-04-08 00:51:18 +02:00
2021-04-30 07:43:44 +02:00
start_time = time.time()
2021-04-08 00:51:18 +02:00
print('loading model...', end=' ')
device = torch.device('cpu')
model = nets.CascadedASPPNet(mp.param['bins'] * 2)
model.load_state_dict(torch.load(args.pretrained_model, map_location=device))
if torch.cuda.is_available() and args.gpu >= 0:
device = torch.device('cuda:{}'.format(args.gpu))
model.to(device)
print('done')
print('loading & stft of wave source...', end=' ')
X_wave, y_wave, X_spec_s, y_spec_s = {}, {}, {}, {}
basename = os.path.splitext(os.path.basename(args.input))[0]
bands_n = len(mp.param['band'])
for d in range(bands_n, 0, -1):
bp = mp.param['band'][d]
2021-04-08 04:52:04 +02:00
if d == bands_n: # high-end band
2021-04-08 00:51:18 +02:00
X_wave[d], _ = librosa.load(
args.input, bp['sr'], False, dtype=np.float32, res_type=bp['res_type'])
if X_wave[d].ndim == 1:
X_wave[d] = np.asarray([X_wave[d], X_wave[d]])
else: # lower bands
X_wave[d] = librosa.resample(X_wave[d+1], mp.param['band'][d+1]['sr'], bp['sr'], res_type=bp['res_type'])
2021-04-30 07:43:44 +02:00
X_spec_s[d] = spec_utils.wave_to_spectrogram_mt(X_wave[d], bp['hl'], bp['n_fft'], mp.param['mid_side'], mp.param['reverse'])
2021-04-08 00:51:18 +02:00
2021-05-09 10:23:25 +02:00
if d == bands_n and args.high_end_process in ['bypass', 'correlation', 'mirroring']:
2021-04-08 00:51:18 +02:00
input_high_end_h = (bp['n_fft']//2 - bp['crop_stop']) + (mp.param['pre_filter_stop'] - mp.param['pre_filter_start'])
input_high_end = X_spec_s[d][:, bp['n_fft']//2-input_high_end_h:bp['n_fft']//2, :]
X_spec_m = spec_utils.combine_spectrograms(X_spec_s, mp)
del X_wave, X_spec_s
print('done')
vr = VocalRemover(model, device, args.window_size)
if args.tta:
pred, X_mag, X_phase = vr.inference_tta(X_spec_m, {'value': args.aggressiveness, 'split_bin': mp.param['band'][1]['crop_stop']})
else:
pred, X_mag, X_phase = vr.inference(X_spec_m, {'value': args.aggressiveness, 'split_bin': mp.param['band'][1]['crop_stop']})
if args.postprocess:
print('post processing...', end=' ')
pred_inv = np.clip(X_mag - pred, 0, np.inf)
pred = spec_utils.mask_silence(pred, pred_inv)
print('done')
if 'is_vocal_model' in mp.param: # swap
2021-04-08 04:52:04 +02:00
stems = {'inst': 'Vocals', 'vocals': 'Instruments'}
2021-04-08 00:51:18 +02:00
else:
2021-04-08 04:52:04 +02:00
stems = {'inst': 'Instruments', 'vocals': 'Vocals'}
2021-04-08 00:51:18 +02:00
print('inverse stft of {}...'.format(stems['inst']), end=' ')
y_spec_m = pred * X_phase
v_spec_m = X_spec_m - y_spec_m
if args.high_end_process == 'bypass':
wave = spec_utils.cmb_spectrogram_to_wave(y_spec_m, mp, input_high_end_h, input_high_end)
2021-04-30 07:43:44 +02:00
elif args.high_end_process == 'correlation':
2021-04-08 00:51:18 +02:00
for i in range(input_high_end.shape[2]):
for c in range(2):
X_mag_max = np.amax(input_high_end[c, :, i])
b1 = mp.param['pre_filter_start']-input_high_end_h//2
b2 = mp.param['pre_filter_start']-1
if X_mag_max > 0 and np.sum(np.abs(v_spec_m[c, b1:b2, i])) / (b2 - b1) > 0.07:
y_mag = np.median(y_spec_m[c, b1:b2, i])
input_high_end[c, :, i] = np.true_divide(input_high_end[c, :, i], abs(X_mag_max) / min(abs(y_mag * 4), abs(X_mag_max)))
2021-05-09 10:23:25 +02:00
wave = spec_utils.cmb_spectrogram_to_wave(y_spec_m, mp, input_high_end_h, input_high_end)
elif args.high_end_process == 'mirroring':
mirror = np.multiply(np.flip(y_spec_m[:, mp.param['pre_filter_start']-10-input_high_end.shape[1]:mp.param['pre_filter_start']-10, :], 1), 1.7)
input_high_end_ = np.where(np.abs(input_high_end) <= np.abs(mirror), input_high_end, mirror)
2021-05-09 10:23:25 +02:00
wave = spec_utils.cmb_spectrogram_to_wave(y_spec_m, mp, input_high_end_h, input_high_end_)
2021-04-08 00:51:18 +02:00
else:
wave = spec_utils.cmb_spectrogram_to_wave(y_spec_m, mp)
2021-05-05 02:45:16 +02:00
if args.deepextraction:
print('done')
model_name = os.path.splitext(os.path.basename(args.pretrained_model))[0]
sf.write(os.path.join('separated', '{}_{}_{}.wav'.format(basename, model_name, stems['inst'])), wave, mp.param['sr'])
sf.write(os.path.join('ensembled/temp', 'tempI.wav'.format(basename, model_name, stems['inst'])), wave, mp.param['sr'])
if True:
print('inverse stft of {}...'.format(stems['vocals']), end=' ')
#v_spec_m = X_spec_m - y_spec_m
wave = spec_utils.cmb_spectrogram_to_wave(v_spec_m, mp)
print('done')
sf.write(os.path.join('separated', '{}_{}_{}.wav'.format(basename, model_name, stems['vocals'])), wave, mp.param['sr'])
sf.write(os.path.join('ensembled/temp', 'tempV.wav'.format(basename, model_name, stems['vocals'])), wave, mp.param['sr'])
if args.output_image:
with open('{}_{}.jpg'.format(basename, stems['inst']), mode='wb') as f:
image = spec_utils.spectrogram_to_image(y_spec_m)
_, bin_image = cv2.imencode('.jpg', image)
bin_image.tofile(f)
with open('{}_{}.jpg'.format(basename, stems['vocals']), mode='wb') as f:
image = spec_utils.spectrogram_to_image(v_spec_m)
_, bin_image = cv2.imencode('.jpg', image)
bin_image.tofile(f)
print('Performing Deep Extraction...')
os.system("python lib/spec_utils.py -a min_mag -m modelparams/1band_sr44100_hl512.json ensembled/temp/tempI.wav ensembled/temp/tempV.wav -o ensembled/temp/difftemp")
2021-05-05 09:30:04 +02:00
os.system("python lib/spec_utils.py -a invertB -m modelparams/1band_sr44100_hl512.json ensembled/temp/tempI.wav ensembled/temp/difftemp_v.wav -o ensembled/temp/difftemp")
os.rename('ensembled/temp/difftemp_v.wav', 'separated/{}_{}_DeepExtraction_Instruments.wav'.format(basename, model_name))
2021-05-05 02:45:16 +02:00
print('Complete!')
print('Total time: {0:.{1}f}s'.format(time.time() - start_time, 1))
dir = 'ensembled/temp'
for file in os.scandir(dir):
os.remove(file.path)
else:
2021-04-30 07:43:44 +02:00
print('done')
2021-05-05 02:45:16 +02:00
model_name = os.path.splitext(os.path.basename(args.pretrained_model))[0]
sf.write(os.path.join('separated', '{}_{}_{}.wav'.format(basename, model_name, stems['inst'])), wave, mp.param['sr'])
2021-04-08 00:51:18 +02:00
2021-05-05 02:45:16 +02:00
if True:
print('inverse stft of {}...'.format(stems['vocals']), end=' ')
if args.high_end_process == 'mirroring':
mirror = np.multiply(np.flip(v_spec_m[:, mp.param['pre_filter_start']-10-input_high_end.shape[1]:mp.param['pre_filter_start']-10, :], 1), 1.7)
input_high_end_ = np.where(np.abs(input_high_end) <= np.abs(mirror), input_high_end, mirror)
wave = spec_utils.cmb_spectrogram_to_wave(v_spec_m, mp, input_high_end_h, input_high_end_)
else:
wave = spec_utils.cmb_spectrogram_to_wave(v_spec_m, mp)
2021-05-05 02:45:16 +02:00
print('done')
sf.write(os.path.join('separated', '{}_{}_{}.wav'.format(basename, model_name, stems['vocals'])), wave, mp.param['sr'])
if args.output_image:
with open('{}_{}.jpg'.format(basename, stems['inst']), mode='wb') as f:
image = spec_utils.spectrogram_to_image(y_spec_m)
_, bin_image = cv2.imencode('.jpg', image)
bin_image.tofile(f)
with open('{}_{}.jpg'.format(basename, stems['vocals']), mode='wb') as f:
image = spec_utils.spectrogram_to_image(v_spec_m)
_, bin_image = cv2.imencode('.jpg', image)
bin_image.tofile(f)
dir = 'ensembled/temp'
for file in os.scandir(dir):
os.remove(file.path)
print('Total time: {0:.{1}f}s'.format(time.time() - start_time, 1))
2021-04-08 00:51:18 +02:00
if __name__ == '__main__':
main()
2021-05-05 02:45:16 +02:00