mirror of
https://github.com/Anjok07/ultimatevocalremovergui.git
synced 2024-11-28 01:10:56 +01:00
Add files via upload
This commit is contained in:
parent
aa2dd10834
commit
32a3df2044
24
UVR.py
24
UVR.py
@ -114,6 +114,7 @@ DEFAULT_DATA = {
|
||||
'chunks': 'Auto',
|
||||
'n_fft_scale': 6144,
|
||||
'dim_f': 2048,
|
||||
'noise_pro_select': 'Auto Select',
|
||||
'overlap': 0.5,
|
||||
'shifts': 0,
|
||||
'margin': 44100,
|
||||
@ -408,6 +409,7 @@ class MainWindow(TkinterDnD.Tk):
|
||||
self.agg_var = tk.StringVar(value=data['agg'])
|
||||
self.n_fft_scale_var = tk.StringVar(value=data['n_fft_scale'])
|
||||
self.dim_f_var = tk.StringVar(value=data['dim_f'])
|
||||
self.noise_pro_select_var = tk.StringVar(value=data['noise_pro_select'])
|
||||
self.overlap_var = tk.StringVar(value=data['overlap'])
|
||||
self.shifts_var = tk.StringVar(value=data['shifts'])
|
||||
self.channel_var = tk.StringVar(value=data['channel'])
|
||||
@ -1083,6 +1085,7 @@ class MainWindow(TkinterDnD.Tk):
|
||||
'mixing': mixing,
|
||||
'n_fft_scale': self.n_fft_scale_var.get(),
|
||||
'dim_f': self.dim_f_var.get(),
|
||||
'noise_pro_select': self.noise_pro_select_var.get(),
|
||||
'overlap': self.overlap_var.get(),
|
||||
'shifts': self.shifts_var.get(),
|
||||
'margin': self.margin_var.get(),
|
||||
@ -1166,8 +1169,20 @@ class MainWindow(TkinterDnD.Tk):
|
||||
for char in e:
|
||||
file_name_1 = file_name_1.replace(char, "UVR-MDX-NET 1")
|
||||
|
||||
f = ["UVR_MDXNET_KARA"]
|
||||
f = ["UVR_MDXNET_9662"]
|
||||
for char in f:
|
||||
file_name_1 = file_name_1.replace(char, "UVR-MDX-NET 3")
|
||||
|
||||
g = ["UVR_MDXNET_9682"]
|
||||
for char in g:
|
||||
file_name_1 = file_name_1.replace(char, "UVR-MDX-NET 2")
|
||||
|
||||
h = ["UVR_MDXNET_9703"]
|
||||
for char in h:
|
||||
file_name_1 = file_name_1.replace(char, "UVR-MDX-NET 1")
|
||||
|
||||
i = ["UVR_MDXNET_KARA"]
|
||||
for char in i:
|
||||
file_name_1 = file_name_1.replace(char, "UVR-MDX-NET Karaoke")
|
||||
|
||||
self.options_mdxnetModel_Optionmenu['menu'].add_radiobutton(label=file_name_1,
|
||||
@ -1838,6 +1853,12 @@ class MainWindow(TkinterDnD.Tk):
|
||||
l0=ttk.Entry(frame0, textvariable=self.compensate_var, justify='center')
|
||||
l0.grid(row=7,column=0,padx=0,pady=0)
|
||||
|
||||
l0=tk.Label(frame0, text='Noise Profile', font=("Century Gothic", "9"), foreground='#13a4c9')
|
||||
l0.grid(row=8,column=0,padx=0,pady=10)
|
||||
|
||||
l0=ttk.OptionMenu(frame0, self.noise_pro_select_var, None, 'Auto Select', 'MDX-NET_Noise_Profile_14_kHz', 'MDX-NET_Noise_Profile_17_kHz', 'MDX-NET_Noise_Profile_Full_Band')
|
||||
l0.grid(row=9,column=0,padx=0,pady=0)
|
||||
|
||||
frame0=Frame(tab2, highlightbackground='red',highlightthicknes=0)
|
||||
frame0.grid(row=0,column=0,padx=0,pady=30)
|
||||
|
||||
@ -2873,6 +2894,7 @@ class MainWindow(TkinterDnD.Tk):
|
||||
'chunks': chunks,
|
||||
'n_fft_scale': self.n_fft_scale_var.get(),
|
||||
'dim_f': self.dim_f_var.get(),
|
||||
'noise_pro_select': self.noise_pro_select_var.get(),
|
||||
'overlap': self.overlap_var.get(),
|
||||
'shifts': self.shifts_var.get(),
|
||||
'margin': self.margin_var.get(),
|
||||
|
265
inference_MDX.py
265
inference_MDX.py
@ -9,6 +9,7 @@ import os.path
|
||||
from datetime import datetime
|
||||
import pydub
|
||||
import shutil
|
||||
import hashlib
|
||||
|
||||
import gc
|
||||
#MDX-Net
|
||||
@ -257,9 +258,10 @@ class Predictor():
|
||||
widget_text.write('Done!\n')
|
||||
widget_text.write(base_text + 'Performing Noise Reduction... ')
|
||||
reduction_sen = float(data['noisereduc_s'])/10
|
||||
print(noise_pro_set)
|
||||
subprocess.call("lib_v5\\sox\\sox.exe" + ' "' +
|
||||
f"{str(non_reduced_vocal_path)}" + '" "' + f"{str(vocal_path)}" + '" ' +
|
||||
"noisered lib_v5\\sox\\mdxnetnoisereduc.prof " + f"{reduction_sen}",
|
||||
"noisered lib_v5\\sox\\" + noise_pro_set + ".prof " + f"{reduction_sen}",
|
||||
shell=True, stdout=subprocess.PIPE,
|
||||
stdin=subprocess.PIPE, stderr=subprocess.PIPE)
|
||||
update_progress(**progress_kwargs,
|
||||
@ -688,6 +690,7 @@ data = {
|
||||
'inst_only': False,
|
||||
'n_fft_scale': 6144,
|
||||
'dim_f': 2048,
|
||||
'noise_pro_select': 'Auto Select',
|
||||
'overlap': 0.5,
|
||||
'shifts': 0,
|
||||
'margin': 44100,
|
||||
@ -747,6 +750,9 @@ def main(window: tk.Wm, text_widget: tk.Text, button_widget: tk.Button, progress
|
||||
global model_set
|
||||
global model_set_name
|
||||
global stemset_n
|
||||
global noise_pro_set
|
||||
|
||||
global mdx_model_hash
|
||||
|
||||
global channel_set
|
||||
global margin_set
|
||||
@ -773,6 +779,7 @@ def main(window: tk.Wm, text_widget: tk.Text, button_widget: tk.Button, progress
|
||||
file_err = "FileNotFoundError"
|
||||
ffmp_err = """audioread\__init__.py", line 116, in audio_open"""
|
||||
sf_write_err = "sf.write"
|
||||
model_adv_set_err = "Got invalid dimensions for input"
|
||||
|
||||
try:
|
||||
with open('errorlog.txt', 'w') as f:
|
||||
@ -816,71 +823,169 @@ def main(window: tk.Wm, text_widget: tk.Text, button_widget: tk.Button, progress
|
||||
source_val_set = 0
|
||||
stem_name = '(Bass)'
|
||||
|
||||
if data['mdxnetModel'] == 'UVR-MDX-NET 1':
|
||||
model_set = 'UVR_MDXNET_1_9703'
|
||||
model_set_name = 'UVR_MDXNET_1_9703'
|
||||
modeltype = 'v'
|
||||
stemset_n = '(Vocals)'
|
||||
source_val = 3
|
||||
n_fft_scale_set=6144
|
||||
dim_f_set=2048
|
||||
elif data['mdxnetModel'] == 'UVR-MDX-NET 2':
|
||||
model_set = 'UVR_MDXNET_2_9682'
|
||||
model_set_name = 'UVR_MDXNET_2_9682'
|
||||
modeltype = 'v'
|
||||
stemset_n = '(Vocals)'
|
||||
source_val = 3
|
||||
n_fft_scale_set=6144
|
||||
dim_f_set=2048
|
||||
elif data['mdxnetModel'] == 'UVR-MDX-NET 3':
|
||||
model_set = 'UVR_MDXNET_3_9662'
|
||||
model_set_name = 'UVR_MDXNET_3_9662'
|
||||
modeltype = 'v'
|
||||
stemset_n = '(Vocals)'
|
||||
source_val = 3
|
||||
n_fft_scale_set=6144
|
||||
dim_f_set=2048
|
||||
elif data['mdxnetModel'] == 'UVR-MDX-NET Karaoke':
|
||||
model_set = 'UVR_MDXNET_KARA'
|
||||
model_set_name = 'UVR_MDXNET_Karaoke'
|
||||
modeltype = 'v'
|
||||
stemset_n = '(Vocals)'
|
||||
source_val = 3
|
||||
n_fft_scale_set=6144
|
||||
dim_f_set=2048
|
||||
elif data['mdxnetModel'] == 'other':
|
||||
model_set = 'other'
|
||||
model_set_name = 'other'
|
||||
modeltype = 'o'
|
||||
stemset_n = '(Other)'
|
||||
source_val = 2
|
||||
n_fft_scale_set=8192
|
||||
dim_f_set=2048
|
||||
elif data['mdxnetModel'] == 'drums':
|
||||
model_set = 'drums'
|
||||
model_set_name = 'drums'
|
||||
modeltype = 'd'
|
||||
stemset_n = '(Drums)'
|
||||
source_val = 1
|
||||
n_fft_scale_set=4096
|
||||
dim_f_set=2048
|
||||
elif data['mdxnetModel'] == 'bass':
|
||||
model_set = 'bass'
|
||||
model_set_name = 'bass'
|
||||
modeltype = 'b'
|
||||
stemset_n = '(Bass)'
|
||||
source_val = 0
|
||||
n_fft_scale_set=16384
|
||||
dim_f_set=2048
|
||||
else:
|
||||
model_set = data['mdxnetModel']
|
||||
model_set_name = data['mdxnetModel']
|
||||
modeltype = stemset
|
||||
stemset_n = stem_name
|
||||
source_val = source_val_set
|
||||
n_fft_scale_set=int(data['n_fft_scale'])
|
||||
dim_f_set=int(data['dim_f'])
|
||||
|
||||
try:
|
||||
if data['mdxnetModel'] == 'UVR-MDX-NET 1':
|
||||
model_set = 'UVR_MDXNET_1_9703'
|
||||
model_set_name = 'UVR_MDXNET_1_9703'
|
||||
modeltype = 'v'
|
||||
noise_pro = 'MDX-NET_Noise_Profile_14_kHz'
|
||||
stemset_n = '(Vocals)'
|
||||
source_val = 3
|
||||
n_fft_scale_set=6144
|
||||
dim_f_set=2048
|
||||
elif data['mdxnetModel'] == 'UVR-MDX-NET 2':
|
||||
model_set = 'UVR_MDXNET_2_9682'
|
||||
model_set_name = 'UVR_MDXNET_2_9682'
|
||||
modeltype = 'v'
|
||||
noise_pro = 'MDX-NET_Noise_Profile_14_kHz'
|
||||
stemset_n = '(Vocals)'
|
||||
source_val = 3
|
||||
n_fft_scale_set=6144
|
||||
dim_f_set=2048
|
||||
elif data['mdxnetModel'] == 'UVR-MDX-NET 3':
|
||||
model_set = 'UVR_MDXNET_3_9662'
|
||||
model_set_name = 'UVR_MDXNET_3_9662'
|
||||
modeltype = 'v'
|
||||
noise_pro = 'MDX-NET_Noise_Profile_14_kHz'
|
||||
stemset_n = '(Vocals)'
|
||||
source_val = 3
|
||||
n_fft_scale_set=6144
|
||||
dim_f_set=2048
|
||||
elif data['mdxnetModel'] == 'UVR-MDX-NET Karaoke':
|
||||
model_set = 'UVR_MDXNET_KARA'
|
||||
model_set_name = 'UVR_MDXNET_Karaoke'
|
||||
modeltype = 'v'
|
||||
noise_pro = 'MDX-NET_Noise_Profile_14_kHz'
|
||||
stemset_n = '(Vocals)'
|
||||
source_val = 3
|
||||
n_fft_scale_set=6144
|
||||
dim_f_set=2048
|
||||
elif data['mdxnetModel'] == 'other':
|
||||
model_set = 'other'
|
||||
model_set_name = 'other'
|
||||
modeltype = 'o'
|
||||
noise_pro = 'MDX-NET_Noise_Profile_Full_Band'
|
||||
stemset_n = '(Other)'
|
||||
source_val = 2
|
||||
n_fft_scale_set=8192
|
||||
dim_f_set=2048
|
||||
elif data['mdxnetModel'] == 'drums':
|
||||
model_set = 'drums'
|
||||
model_set_name = 'drums'
|
||||
modeltype = 'd'
|
||||
noise_pro = 'MDX-NET_Noise_Profile_Full_Band'
|
||||
stemset_n = '(Drums)'
|
||||
source_val = 1
|
||||
n_fft_scale_set=4096
|
||||
dim_f_set=2048
|
||||
elif data['mdxnetModel'] == 'bass':
|
||||
model_set = 'bass'
|
||||
model_set_name = 'bass'
|
||||
modeltype = 'b'
|
||||
noise_pro = 'MDX-NET_Noise_Profile_Full_Band'
|
||||
stemset_n = '(Bass)'
|
||||
source_val = 0
|
||||
n_fft_scale_set=16384
|
||||
dim_f_set=2048
|
||||
else:
|
||||
model_set = data['mdxnetModel']
|
||||
model_set_name = data['mdxnetModel']
|
||||
modeltype = stemset
|
||||
noise_pro = 'MDX-NET_Noise_Profile_Full_Band'
|
||||
stemset_n = stem_name
|
||||
source_val = source_val_set
|
||||
n_fft_scale_set=int(data['n_fft_scale'])
|
||||
dim_f_set=int(data['dim_f'])
|
||||
|
||||
MDXModelName=('models/MDX_Net_Models/' + model_set + '.onnx')
|
||||
mdx_model_hash = hashlib.md5(open(MDXModelName, 'rb').read()).hexdigest()
|
||||
print(mdx_model_hash)
|
||||
except:
|
||||
if data['mdxnetModel'] == 'UVR-MDX-NET 1':
|
||||
model_set = 'UVR_MDXNET_9703'
|
||||
model_set_name = 'UVR_MDXNET_9703'
|
||||
modeltype = 'v'
|
||||
noise_pro = 'MDX-NET_Noise_Profile_14_kHz'
|
||||
stemset_n = '(Vocals)'
|
||||
source_val = 3
|
||||
n_fft_scale_set=6144
|
||||
dim_f_set=2048
|
||||
elif data['mdxnetModel'] == 'UVR-MDX-NET 2':
|
||||
model_set = 'UVR_MDXNET_9682'
|
||||
model_set_name = 'UVR_MDXNET_9682'
|
||||
modeltype = 'v'
|
||||
noise_pro = 'MDX-NET_Noise_Profile_14_kHz'
|
||||
stemset_n = '(Vocals)'
|
||||
source_val = 3
|
||||
n_fft_scale_set=6144
|
||||
dim_f_set=2048
|
||||
elif data['mdxnetModel'] == 'UVR-MDX-NET 3':
|
||||
model_set = 'UVR_MDXNET_9662'
|
||||
model_set_name = 'UVR_MDXNET_9662'
|
||||
modeltype = 'v'
|
||||
noise_pro = 'MDX-NET_Noise_Profile_14_kHz'
|
||||
stemset_n = '(Vocals)'
|
||||
source_val = 3
|
||||
n_fft_scale_set=6144
|
||||
dim_f_set=2048
|
||||
elif data['mdxnetModel'] == 'UVR-MDX-NET Karaoke':
|
||||
model_set = 'UVR_MDXNET_KARA'
|
||||
model_set_name = 'UVR_MDXNET_Karaoke'
|
||||
modeltype = 'v'
|
||||
noise_pro = 'MDX-NET_Noise_Profile_14_kHz'
|
||||
stemset_n = '(Vocals)'
|
||||
source_val = 3
|
||||
n_fft_scale_set=6144
|
||||
dim_f_set=2048
|
||||
elif data['mdxnetModel'] == 'other':
|
||||
model_set = 'other'
|
||||
model_set_name = 'other'
|
||||
modeltype = 'o'
|
||||
noise_pro = 'MDX-NET_Noise_Profile_Full_Band'
|
||||
stemset_n = '(Other)'
|
||||
source_val = 2
|
||||
n_fft_scale_set=8192
|
||||
dim_f_set=2048
|
||||
elif data['mdxnetModel'] == 'drums':
|
||||
model_set = 'drums'
|
||||
model_set_name = 'drums'
|
||||
modeltype = 'd'
|
||||
noise_pro = 'MDX-NET_Noise_Profile_Full_Band'
|
||||
stemset_n = '(Drums)'
|
||||
source_val = 1
|
||||
n_fft_scale_set=4096
|
||||
dim_f_set=2048
|
||||
elif data['mdxnetModel'] == 'bass':
|
||||
model_set = 'bass'
|
||||
model_set_name = 'bass'
|
||||
modeltype = 'b'
|
||||
noise_pro = 'MDX-NET_Noise_Profile_Full_Band'
|
||||
stemset_n = '(Bass)'
|
||||
source_val = 0
|
||||
n_fft_scale_set=16384
|
||||
dim_f_set=2048
|
||||
else:
|
||||
model_set = data['mdxnetModel']
|
||||
model_set_name = data['mdxnetModel']
|
||||
modeltype = stemset
|
||||
noise_pro = 'MDX-NET_Noise_Profile_Full_Band'
|
||||
stemset_n = stem_name
|
||||
source_val = source_val_set
|
||||
n_fft_scale_set=int(data['n_fft_scale'])
|
||||
dim_f_set=int(data['dim_f'])
|
||||
|
||||
MDXModelName=('models/MDX_Net_Models/' + model_set_name + '.onnx')
|
||||
mdx_model_hash = hashlib.md5(open(MDXModelName, 'rb').read()).hexdigest()
|
||||
print(mdx_model_hash)
|
||||
|
||||
|
||||
if data['noise_pro_select'] == 'Auto Select':
|
||||
noise_pro_set = noise_pro
|
||||
else:
|
||||
noise_pro_set = data['noise_pro_select']
|
||||
|
||||
|
||||
print(n_fft_scale_set)
|
||||
print(dim_f_set)
|
||||
print(data['DemucsModel'])
|
||||
@ -1135,7 +1240,7 @@ def main(window: tk.Wm, text_widget: tk.Text, button_widget: tk.Button, progress
|
||||
with open('errorlog.txt', 'w') as f:
|
||||
f.write(f'Last Error Received:\n\n' +
|
||||
f'Error Received while processing "{os.path.basename(music_file)}":\n' +
|
||||
f'Process Method: Ensemble Mode\n\n' +
|
||||
f'Process Method: MDX-Net\n\n' +
|
||||
f'The application was unable to allocate enough GPU memory to use this model.\n' +
|
||||
f'Please do the following:\n\n1. Close any GPU intensive applications.\n2. Lower the set chunk size.\n3. Then try again.\n\n' +
|
||||
f'If the error persists, your GPU might not be supported.\n\n' +
|
||||
@ -1159,7 +1264,7 @@ def main(window: tk.Wm, text_widget: tk.Text, button_widget: tk.Button, progress
|
||||
with open('errorlog.txt', 'w') as f:
|
||||
f.write(f'Last Error Received:\n\n' +
|
||||
f'Error Received while processing "{os.path.basename(music_file)}":\n' +
|
||||
f'Process Method: Ensemble Mode\n\n' +
|
||||
f'Process Method: MDX-Net\n\n' +
|
||||
f'The application was unable to allocate enough GPU memory to use this model.\n' +
|
||||
f'Please do the following:\n\n1. Close any GPU intensive applications.\n2. Lower the set chunk size.\n3. Then try again.\n\n' +
|
||||
f'If the error persists, your GPU might not be supported.\n\n' +
|
||||
@ -1184,7 +1289,7 @@ def main(window: tk.Wm, text_widget: tk.Text, button_widget: tk.Button, progress
|
||||
with open('errorlog.txt', 'w') as f:
|
||||
f.write(f'Last Error Received:\n\n' +
|
||||
f'Error Received while processing "{os.path.basename(music_file)}":\n' +
|
||||
f'Process Method: Ensemble Mode\n\n' +
|
||||
f'Process Method: MDX-Net\n\n' +
|
||||
f'Could not write audio file.\n' +
|
||||
f'This could be due to low storage on target device or a system permissions issue.\n' +
|
||||
f'If the error persists, please contact the developers.\n\n' +
|
||||
@ -1209,7 +1314,7 @@ def main(window: tk.Wm, text_widget: tk.Text, button_widget: tk.Button, progress
|
||||
with open('errorlog.txt', 'w') as f:
|
||||
f.write(f'Last Error Received:\n\n' +
|
||||
f'Error Received while processing "{os.path.basename(music_file)}":\n' +
|
||||
f'Process Method: Ensemble Mode\n\n' +
|
||||
f'Process Method: MDX-Net\n\n' +
|
||||
f'The application was unable to allocate enough system memory to use this model.\n' +
|
||||
f'Please do the following:\n\n1. Restart this application.\n2. Ensure any CPU intensive applications are closed.\n3. Then try again.\n\n' +
|
||||
f'Please Note: Intel Pentium and Intel Celeron processors do not work well with this application.\n\n' +
|
||||
@ -1222,6 +1327,28 @@ def main(window: tk.Wm, text_widget: tk.Text, button_widget: tk.Button, progress
|
||||
button_widget.configure(state=tk.NORMAL) # Enable Button
|
||||
return
|
||||
|
||||
if model_adv_set_err in message:
|
||||
text_widget.write("\n" + base_text + f'Separation failed for the following audio file:\n')
|
||||
text_widget.write(base_text + f'"{os.path.basename(music_file)}"\n')
|
||||
text_widget.write(f'\nError Received:\n\n')
|
||||
text_widget.write(f'The current ONNX model settings are not compatible with the selected \nmodel.\n\n')
|
||||
text_widget.write(f'Please re-configure the advanced ONNX model settings accordingly and try \nagain.\n\n')
|
||||
text_widget.write(f'Time Elapsed: {time.strftime("%H:%M:%S", time.gmtime(int(time.perf_counter() - stime)))}')
|
||||
try:
|
||||
with open('errorlog.txt', 'w') as f:
|
||||
f.write(f'Last Error Received:\n\n' +
|
||||
f'Error Received while processing "{os.path.basename(music_file)}":\n' +
|
||||
f'Process Method: MDX-Net\n\n' +
|
||||
f'The current ONNX model settings are not compatible with the selected model.\n\n' +
|
||||
f'Please re-configure the advanced ONNX model settings accordingly and try again.\n\n' +
|
||||
message + f'\nError Time Stamp [{datetime.now().strftime("%Y-%m-%d %H:%M:%S")}]\n')
|
||||
except:
|
||||
pass
|
||||
torch.cuda.empty_cache()
|
||||
progress_var.set(0)
|
||||
button_widget.configure(state=tk.NORMAL) # Enable Button
|
||||
return
|
||||
|
||||
|
||||
print(traceback_text)
|
||||
print(type(e).__name__, e)
|
||||
|
@ -167,9 +167,10 @@ class Predictor():
|
||||
widget_text.write('Done!\n')
|
||||
widget_text.write(base_text + 'Performing Noise Reduction... ')
|
||||
reduction_sen = float(int(data['noisereduc_s'])/10)
|
||||
print(noise_pro_set)
|
||||
subprocess.call("lib_v5\\sox\\sox.exe" + ' "' +
|
||||
f"{str(non_reduced_vocal_path)}" + '" "' + f"{str(vocal_path)}" + '" ' +
|
||||
"noisered lib_v5\\sox\\mdxnetnoisereduc.prof " + f"{reduction_sen}",
|
||||
"noisered lib_v5\\sox\\" + noise_pro_set + ".prof " + f"{reduction_sen}",
|
||||
shell=True, stdout=subprocess.PIPE,
|
||||
stdin=subprocess.PIPE, stderr=subprocess.PIPE)
|
||||
widget_text.write('Done!\n')
|
||||
@ -188,7 +189,7 @@ class Predictor():
|
||||
reduction_sen = float(data['noisereduc_s'])/10
|
||||
subprocess.call("lib_v5\\sox\\sox.exe" + ' "' +
|
||||
f"{str(non_reduced_vocal_path)}" + '" "' + f"{str(vocal_path)}" + '" ' +
|
||||
"noisered lib_v5\\sox\\mdxnetnoisereduc.prof " + f"{reduction_sen}",
|
||||
"noisered lib_v5\\sox\\" + noise_pro_set + ".prof " + f"{reduction_sen}",
|
||||
shell=True, stdout=subprocess.PIPE,
|
||||
stdin=subprocess.PIPE, stderr=subprocess.PIPE)
|
||||
update_progress(**progress_kwargs,
|
||||
@ -570,7 +571,7 @@ data = {
|
||||
'algo': 'Instrumentals (Min Spec)',
|
||||
#Advanced Options
|
||||
'appendensem': False,
|
||||
|
||||
'noise_pro_select': 'Auto Select',
|
||||
'overlap': 0.5,
|
||||
'shifts': 0,
|
||||
'margin': 44100,
|
||||
@ -624,12 +625,16 @@ def main(window: tk.Wm, text_widget: tk.Text, button_widget: tk.Button, progress
|
||||
global model_set
|
||||
global model_set_name
|
||||
global ModelName_2
|
||||
global mdx_model_hash
|
||||
|
||||
global channel_set
|
||||
global margin_set
|
||||
global overlap_set
|
||||
global shift_set
|
||||
|
||||
global noise_pro_set
|
||||
|
||||
|
||||
global n_fft_scale_set
|
||||
global dim_f_set
|
||||
|
||||
@ -1215,18 +1220,39 @@ def main(window: tk.Wm, text_widget: tk.Text, button_widget: tk.Button, progress
|
||||
vr_ensem_mdx_c_name = data['vr_ensem_mdx_c']
|
||||
vr_ensem_mdx_c = f'models/Main_Models/{vr_ensem_mdx_c_name}.pth'
|
||||
|
||||
|
||||
|
||||
|
||||
#MDX-Net Model
|
||||
|
||||
if data['mdx_ensem'] == 'UVR-MDX-NET 1':
|
||||
mdx_ensem = 'UVR_MDXNET_1_9703'
|
||||
if data['mdx_ensem'] == 'UVR-MDX-NET 2':
|
||||
mdx_ensem = 'UVR_MDXNET_2_9682'
|
||||
if data['mdx_ensem'] == 'UVR-MDX-NET 3':
|
||||
mdx_ensem = 'UVR_MDXNET_3_9662'
|
||||
if data['mdx_ensem'] == 'UVR-MDX-NET Karaoke':
|
||||
mdx_ensem = 'UVR_MDXNET_KARA'
|
||||
|
||||
try:
|
||||
if data['mdx_ensem'] == 'UVR-MDX-NET 1':
|
||||
mdx_ensem = 'UVR_MDXNET_1_9703'
|
||||
if data['mdx_ensem'] == 'UVR-MDX-NET 2':
|
||||
mdx_ensem = 'UVR_MDXNET_2_9682'
|
||||
if data['mdx_ensem'] == 'UVR-MDX-NET 3':
|
||||
mdx_ensem = 'UVR_MDXNET_3_9662'
|
||||
if data['mdx_ensem'] == 'UVR-MDX-NET Karaoke':
|
||||
mdx_ensem = 'UVR_MDXNET_KARA'
|
||||
|
||||
MDXModelName=('models/MDX_Net_Models/' + mdx_ensem + '.onnx')
|
||||
mdx_model_hash = hashlib.md5(open(MDXModelName, 'rb').read()).hexdigest()
|
||||
print(mdx_ensem)
|
||||
except:
|
||||
if data['mdx_ensem'] == 'UVR-MDX-NET 1':
|
||||
mdx_ensem = 'UVR_MDXNET_9703'
|
||||
if data['mdx_ensem'] == 'UVR-MDX-NET 2':
|
||||
mdx_ensem = 'UVR_MDXNET_9682'
|
||||
if data['mdx_ensem'] == 'UVR-MDX-NET 3':
|
||||
mdx_ensem = 'UVR_MDXNET_9662'
|
||||
if data['mdx_ensem'] == 'UVR-MDX-NET Karaoke':
|
||||
mdx_ensem = 'UVR_MDXNET_KARA'
|
||||
|
||||
MDXModelName=('models/MDX_Net_Models/' + mdx_ensem + '.onnx')
|
||||
mdx_model_hash = hashlib.md5(open(MDXModelName, 'rb').read()).hexdigest()
|
||||
print(mdx_model_hash)
|
||||
print(mdx_ensem)
|
||||
|
||||
|
||||
#MDX-Net Model 2
|
||||
|
||||
if data['mdx_ensem_b'] == 'UVR-MDX-NET 1':
|
||||
@ -1236,12 +1262,10 @@ def main(window: tk.Wm, text_widget: tk.Text, button_widget: tk.Button, progress
|
||||
if data['mdx_ensem_b'] == 'UVR-MDX-NET 3':
|
||||
mdx_ensem_b = 'UVR_MDXNET_3_9662'
|
||||
if data['mdx_ensem_b'] == 'UVR-MDX-NET Karaoke':
|
||||
mdx_ensem_b = 'UVR_MDXNET_Karaoke'
|
||||
mdx_ensem_b = 'UVR_MDXNET_KARA'
|
||||
if data['mdx_ensem_b'] == 'No Model':
|
||||
mdx_ensem_b = 'pass'
|
||||
|
||||
|
||||
|
||||
if data['vr_ensem'] == 'No Model' and data['vr_ensem_mdx_a'] == 'No Model' and data['vr_ensem_mdx_b'] == 'No Model' and data['vr_ensem_mdx_c'] == 'No Model':
|
||||
mdx_vr = [
|
||||
{
|
||||
@ -1949,22 +1973,51 @@ def main(window: tk.Wm, text_widget: tk.Text, button_widget: tk.Button, progress
|
||||
text_widget.write('Ensemble Mode - Running Model - ' + mdx_name + '\n\n')
|
||||
|
||||
if mdx_name == 'UVR_MDXNET_1_9703':
|
||||
mdx_ensem_b = 'UVR_MDXNET_1_9703'
|
||||
model_set = 'UVR_MDXNET_1_9703.onnx'
|
||||
model_set_name = 'UVR_MDXNET_1_9703'
|
||||
modeltype = 'v'
|
||||
noise_pro = 'MDX-NET_Noise_Profile_14_kHz'
|
||||
if mdx_name == 'UVR_MDXNET_2_9682':
|
||||
model_set = 'UVR_MDXNET_2_9682.onnx'
|
||||
model_set_name = 'UVR_MDXNET_2_9682'
|
||||
modeltype = 'v'
|
||||
noise_pro = 'MDX-NET_Noise_Profile_14_kHz'
|
||||
if mdx_name == 'UVR_MDXNET_3_9662':
|
||||
model_set = 'UVR_MDXNET_3_9662.onnx'
|
||||
model_set_name = 'UVR_MDXNET_3_9662'
|
||||
modeltype = 'v'
|
||||
if mdx_name == 'UVR_MDXNET_Karaoke':
|
||||
noise_pro = 'MDX-NET_Noise_Profile_14_kHz'
|
||||
if mdx_name == 'UVR_MDXNET_KARA':
|
||||
model_set = 'UVR_MDXNET_KARA.onnx'
|
||||
model_set_name = 'UVR_MDXNET_Karaoke'
|
||||
model_set_name = 'UVR_MDXNET_KARA'
|
||||
modeltype = 'v'
|
||||
noise_pro = 'MDX-NET_Noise_Profile_14_kHz'
|
||||
if mdx_name == 'UVR_MDXNET_9703':
|
||||
model_set = 'UVR_MDXNET_9703.onnx'
|
||||
model_set_name = 'UVR_MDXNET_9703'
|
||||
modeltype = 'v'
|
||||
noise_pro = 'MDX-NET_Noise_Profile_14_kHz'
|
||||
if mdx_name == 'UVR_MDXNET_9682':
|
||||
model_set = 'UVR_MDXNET_9682.onnx'
|
||||
model_set_name = 'UVR_MDXNET_9682'
|
||||
modeltype = 'v'
|
||||
noise_pro = 'MDX-NET_Noise_Profile_14_kHz'
|
||||
if mdx_name == 'UVR_MDXNET_9662':
|
||||
model_set = 'UVR_MDXNET_9662.onnx'
|
||||
model_set_name = 'UVR_MDXNET_9662'
|
||||
modeltype = 'v'
|
||||
noise_pro = 'MDX-NET_Noise_Profile_14_kHz'
|
||||
if mdx_name == 'UVR_MDXNET_KARA':
|
||||
model_set = 'UVR_MDXNET_KARA.onnx'
|
||||
model_set_name = 'UVR_MDXNET_KARA'
|
||||
modeltype = 'v'
|
||||
noise_pro = 'MDX-NET_Noise_Profile_14_kHz'
|
||||
|
||||
|
||||
if data['noise_pro_select'] == 'Auto Select':
|
||||
noise_pro_set = noise_pro
|
||||
else:
|
||||
noise_pro_set = data['noise_pro_select']
|
||||
|
||||
update_progress(**progress_kwargs,
|
||||
step=0)
|
||||
|
Loading…
Reference in New Issue
Block a user