mirror of
https://github.com/Anjok07/ultimatevocalremovergui.git
synced 2024-11-24 07:20:10 +01:00
Add files via upload
This commit is contained in:
parent
03787f5a61
commit
5331ff0bd5
@ -5,7 +5,14 @@ import math
|
||||
import random
|
||||
import pyrubberband
|
||||
import math
|
||||
#import noisereduce as nr
|
||||
import platform
|
||||
|
||||
OPERATING_SYSTEM = platform.system()
|
||||
|
||||
if OPERATING_SYSTEM == 'Windows':
|
||||
wav_resolution = "sinc_fastest"
|
||||
else:
|
||||
wav_resolution = "polyphase"
|
||||
|
||||
MAX_SPEC = 'Max Spec'
|
||||
MIN_SPEC = 'Min Spec'
|
||||
@ -189,7 +196,7 @@ def reduce_vocal_aggressively(X, y, softmask):
|
||||
|
||||
return y_mag * np.exp(1.j * np.angle(y))
|
||||
|
||||
def merge_artifacts(y_mask, thres=0.05, min_range=64, fade_size=32):
|
||||
def merge_artifacts(y_mask, thres=0.01, min_range=64, fade_size=32):
|
||||
if min_range < fade_size * 2:
|
||||
raise ValueError('min_range must be >= fade_size * 2')
|
||||
|
||||
@ -224,7 +231,7 @@ def merge_artifacts(y_mask, thres=0.05, min_range=64, fade_size=32):
|
||||
|
||||
return y_mask
|
||||
|
||||
def mask_silence(mag, ref, thres=0.2, min_range=64, fade_size=32):
|
||||
def mask_silence(mag, ref, thres=0.1, min_range=64, fade_size=32):
|
||||
if min_range < fade_size * 2:
|
||||
raise ValueError('min_range must be >= fade_area * 2')
|
||||
|
||||
@ -329,12 +336,12 @@ def cmb_spectrogram_to_wave(spec_m, mp, extra_bins_h=None, extra_bins=None):
|
||||
sr = mp.param['band'][d+1]['sr']
|
||||
if d == 1: # lower
|
||||
spec_s = fft_lp_filter(spec_s, bp['lpf_start'], bp['lpf_stop'])
|
||||
wave = librosa.resample(spectrogram_to_wave(spec_s, bp['hl'], mp.param['mid_side'], mp.param['mid_side_b2'], mp.param['reverse']), bp['sr'], sr, res_type="sinc_fastest")
|
||||
wave = librosa.resample(spectrogram_to_wave(spec_s, bp['hl'], mp.param['mid_side'], mp.param['mid_side_b2'], mp.param['reverse']), bp['sr'], sr, res_type=wav_resolution)
|
||||
else: # mid
|
||||
spec_s = fft_hp_filter(spec_s, bp['hpf_start'], bp['hpf_stop'] - 1)
|
||||
spec_s = fft_lp_filter(spec_s, bp['lpf_start'], bp['lpf_stop'])
|
||||
wave2 = np.add(wave, spectrogram_to_wave(spec_s, bp['hl'], mp.param['mid_side'], mp.param['mid_side_b2'], mp.param['reverse']))
|
||||
wave = librosa.resample(wave2, bp['sr'], sr, res_type="sinc_fastest")
|
||||
wave = librosa.resample(wave2, bp['sr'], sr, res_type=wav_resolution)
|
||||
|
||||
return wave
|
||||
|
||||
@ -460,30 +467,6 @@ def wave_to_spectrogram_no_mp(wave):
|
||||
|
||||
return spec
|
||||
|
||||
# def noise_reduction(audio_file):
|
||||
|
||||
# noise_pro = 'noise_pro.wav'
|
||||
|
||||
# wav, sr = librosa.load(audio_file, sr=44100, mono=False)
|
||||
# wav_noise, noise_rate = librosa.load(noise_pro, sr=44100, mono=False)
|
||||
|
||||
# if wav.ndim == 1:
|
||||
# wav = np.asfortranarray([wav,wav])
|
||||
|
||||
# wav_1 = nr.reduce_noise(audio_clip=wav[0], noise_clip=wav_noise, verbose=True)
|
||||
# wav_2 = nr.reduce_noise(audio_clip=wav[1], noise_clip=wav_noise, verbose=True)
|
||||
|
||||
# if wav_1.shape > wav_2.shape:
|
||||
# wav_2 = to_shape(wav_2, wav_1.shape)
|
||||
# if wav_1.shape < wav_2.shape:
|
||||
# wav_1 = to_shape(wav_1, wav_2.shape)
|
||||
|
||||
# #print('wav_1.shape: ', wav_1.shape)
|
||||
|
||||
# wav_mix = np.asfortranarray([wav_1, wav_2])
|
||||
|
||||
# return wav_mix, sr
|
||||
|
||||
def invert_audio(specs, invert_p=True):
|
||||
|
||||
ln = min([specs[0].shape[2], specs[1].shape[2]])
|
||||
@ -518,8 +501,6 @@ def ensembling(a, specs):
|
||||
spec = spec[:,:,:ln]
|
||||
specs[i] = specs[i][:,:,:ln]
|
||||
|
||||
#print('spec: ', a)
|
||||
|
||||
if MIN_SPEC == a:
|
||||
spec = np.where(np.abs(specs[i]) <= np.abs(spec), specs[i], spec)
|
||||
if MAX_SPEC == a:
|
||||
@ -531,8 +512,6 @@ def ensembling(a, specs):
|
||||
|
||||
def ensemble_inputs(audio_input, algorithm, is_normalization, wav_type_set, save_path):
|
||||
|
||||
#print(algorithm)
|
||||
|
||||
if algorithm == AVERAGE:
|
||||
output = average_audio(audio_input)
|
||||
samplerate = 44100
|
||||
@ -543,9 +522,6 @@ def ensemble_inputs(audio_input, algorithm, is_normalization, wav_type_set, save
|
||||
wave, samplerate = librosa.load(audio_input[i], mono=False, sr=44100)
|
||||
spec = wave_to_spectrogram_no_mp(wave)
|
||||
specs.append(spec)
|
||||
#print('output size: ', sys.getsizeof(spec))
|
||||
|
||||
#print('output size: ', sys.getsizeof(specs))
|
||||
|
||||
output = spectrogram_to_wave_no_mp(ensembling(algorithm, specs))
|
||||
|
||||
@ -572,8 +548,6 @@ def to_shape_minimize(x: np.ndarray, target_shape):
|
||||
|
||||
def augment_audio(export_path, audio_file, rate, is_normalization, wav_type_set, save_format=None, is_pitch=False):
|
||||
|
||||
#print(rate)
|
||||
|
||||
wav, sr = librosa.load(audio_file, sr=44100, mono=False)
|
||||
|
||||
if wav.ndim == 1:
|
||||
|
Loading…
Reference in New Issue
Block a user