mirror of
https://github.com/Anjok07/ultimatevocalremovergui.git
synced 2024-11-28 09:21:03 +01:00
Add files via upload
This commit is contained in:
parent
c1e6166ad6
commit
545ab10d47
BIN
img/UVR-logo.png
Normal file
BIN
img/UVR-logo.png
Normal file
Binary file not shown.
After Width: | Height: | Size: 100 KiB |
BIN
img/UVRBETA.jpg
Normal file
BIN
img/UVRBETA.jpg
Normal file
Binary file not shown.
After Width: | Height: | Size: 117 KiB |
BIN
img/refresh.png
Normal file
BIN
img/refresh.png
Normal file
Binary file not shown.
After Width: | Height: | Size: 1.6 KiB |
119
lib_v2/dataset.py
Normal file
119
lib_v2/dataset.py
Normal file
@ -0,0 +1,119 @@
|
|||||||
|
import os
|
||||||
|
|
||||||
|
import numpy as np
|
||||||
|
import torch
|
||||||
|
from tqdm import tqdm
|
||||||
|
|
||||||
|
from lib_v2 import spec_utils
|
||||||
|
|
||||||
|
|
||||||
|
class VocalRemoverValidationSet(torch.utils.data.Dataset):
|
||||||
|
|
||||||
|
def __init__(self, filelist):
|
||||||
|
self.filelist = filelist
|
||||||
|
|
||||||
|
def __len__(self):
|
||||||
|
return len(self.filelist)
|
||||||
|
|
||||||
|
def __getitem__(self, idx):
|
||||||
|
path = self.filelist[idx]
|
||||||
|
data = np.load(path)
|
||||||
|
|
||||||
|
return data['X'], data['y']
|
||||||
|
|
||||||
|
|
||||||
|
def mixup_generator(X, y, rate, alpha):
|
||||||
|
perm = np.random.permutation(len(X))[:int(len(X) * rate)]
|
||||||
|
for i in range(len(perm) - 1):
|
||||||
|
lam = np.random.beta(alpha, alpha)
|
||||||
|
X[perm[i]] = lam * X[perm[i]] + (1 - lam) * X[perm[i + 1]]
|
||||||
|
y[perm[i]] = lam * y[perm[i]] + (1 - lam) * y[perm[i + 1]]
|
||||||
|
|
||||||
|
return X, y
|
||||||
|
|
||||||
|
|
||||||
|
def get_oracle_data(X, y, instance_loss, oracle_rate, oracle_drop_rate):
|
||||||
|
k = int(len(X) * oracle_rate * (1 / (1 - oracle_drop_rate)))
|
||||||
|
n = int(len(X) * oracle_rate)
|
||||||
|
idx = np.argsort(instance_loss)[::-1][:k]
|
||||||
|
idx = np.random.choice(idx, n, replace=False)
|
||||||
|
oracle_X = X[idx].copy()
|
||||||
|
oracle_y = y[idx].copy()
|
||||||
|
|
||||||
|
return oracle_X, oracle_y, idx
|
||||||
|
|
||||||
|
|
||||||
|
def make_padding(width, cropsize, offset):
|
||||||
|
left = offset
|
||||||
|
roi_size = cropsize - left * 2
|
||||||
|
if roi_size == 0:
|
||||||
|
roi_size = cropsize
|
||||||
|
right = roi_size - (width % roi_size) + left
|
||||||
|
|
||||||
|
return left, right, roi_size
|
||||||
|
|
||||||
|
|
||||||
|
def make_training_set(filelist, cropsize, patches, sr, hop_length, offset):
|
||||||
|
len_dataset = patches * len(filelist)
|
||||||
|
X_dataset = np.zeros(
|
||||||
|
(len_dataset, 2, hop_length, cropsize), dtype=np.float32)
|
||||||
|
y_dataset = np.zeros(
|
||||||
|
(len_dataset, 2, hop_length, cropsize), dtype=np.float32)
|
||||||
|
for i, (X_path, y_path) in enumerate(tqdm(filelist)):
|
||||||
|
p = np.random.uniform()
|
||||||
|
if p < 0.1:
|
||||||
|
X_path.replace(os.path.splitext(X_path)[1], '_pitch-1.wav')
|
||||||
|
y_path.replace(os.path.splitext(y_path)[1], '_pitch-1.wav')
|
||||||
|
elif p < 0.2:
|
||||||
|
X_path.replace(os.path.splitext(X_path)[1], '_pitch1.wav')
|
||||||
|
y_path.replace(os.path.splitext(y_path)[1], '_pitch1.wav')
|
||||||
|
|
||||||
|
X, y = spec_utils.cache_or_load(X_path, y_path, sr, hop_length)
|
||||||
|
coeff = np.max([X.max(), y.max()])
|
||||||
|
X, y = X / coeff, y / coeff
|
||||||
|
|
||||||
|
l, r, roi_size = make_padding(X.shape[2], cropsize, offset)
|
||||||
|
X_pad = np.pad(X, ((0, 0), (0, 0), (l, r)), mode='constant')
|
||||||
|
y_pad = np.pad(y, ((0, 0), (0, 0), (l, r)), mode='constant')
|
||||||
|
|
||||||
|
starts = np.random.randint(0, X_pad.shape[2] - cropsize, patches)
|
||||||
|
ends = starts + cropsize
|
||||||
|
for j in range(patches):
|
||||||
|
idx = i * patches + j
|
||||||
|
X_dataset[idx] = X_pad[:, :, starts[j]:ends[j]]
|
||||||
|
y_dataset[idx] = y_pad[:, :, starts[j]:ends[j]]
|
||||||
|
if np.random.uniform() < 0.5:
|
||||||
|
# swap channel
|
||||||
|
X_dataset[idx] = X_dataset[idx, ::-1]
|
||||||
|
y_dataset[idx] = y_dataset[idx, ::-1]
|
||||||
|
|
||||||
|
return X_dataset, y_dataset
|
||||||
|
|
||||||
|
|
||||||
|
def make_validation_set(filelist, cropsize, sr, hop_length, offset):
|
||||||
|
patch_list = []
|
||||||
|
outdir = 'cs{}_sr{}_hl{}_of{}'.format(cropsize, sr, hop_length, offset)
|
||||||
|
os.makedirs(outdir, exist_ok=True)
|
||||||
|
for i, (X_path, y_path) in enumerate(tqdm(filelist)):
|
||||||
|
basename = os.path.splitext(os.path.basename(X_path))[0]
|
||||||
|
|
||||||
|
X, y = spec_utils.cache_or_load(X_path, y_path, sr, hop_length)
|
||||||
|
coeff = np.max([X.max(), y.max()])
|
||||||
|
X, y = X / coeff, y / coeff
|
||||||
|
|
||||||
|
l, r, roi_size = make_padding(X.shape[2], cropsize, offset)
|
||||||
|
X_pad = np.pad(X, ((0, 0), (0, 0), (l, r)), mode='constant')
|
||||||
|
y_pad = np.pad(y, ((0, 0), (0, 0), (l, r)), mode='constant')
|
||||||
|
|
||||||
|
len_dataset = int(np.ceil(X.shape[2] / roi_size))
|
||||||
|
for j in range(len_dataset):
|
||||||
|
outpath = os.path.join(outdir, '{}_p{}.npz'.format(basename, j))
|
||||||
|
start = j * roi_size
|
||||||
|
if not os.path.exists(outpath):
|
||||||
|
np.savez(
|
||||||
|
outpath,
|
||||||
|
X=X_pad[:, :, start:start + cropsize],
|
||||||
|
y=y_pad[:, :, start:start + cropsize])
|
||||||
|
patch_list.append(outpath)
|
||||||
|
|
||||||
|
return VocalRemoverValidationSet(patch_list)
|
117
lib_v2/layers.py
Normal file
117
lib_v2/layers.py
Normal file
@ -0,0 +1,117 @@
|
|||||||
|
import torch
|
||||||
|
from torch import nn
|
||||||
|
import torch.nn.functional as F
|
||||||
|
|
||||||
|
from lib_v2 import spec_utils
|
||||||
|
|
||||||
|
|
||||||
|
class Conv2DBNActiv(nn.Module):
|
||||||
|
|
||||||
|
def __init__(self, nin, nout, ksize=3, stride=1, pad=1, dilation=1, activ=nn.ReLU):
|
||||||
|
super(Conv2DBNActiv, self).__init__()
|
||||||
|
self.conv = nn.Sequential(
|
||||||
|
nn.Conv2d(
|
||||||
|
nin, nout,
|
||||||
|
kernel_size=ksize,
|
||||||
|
stride=stride,
|
||||||
|
padding=pad,
|
||||||
|
dilation=dilation,
|
||||||
|
bias=False),
|
||||||
|
nn.BatchNorm2d(nout),
|
||||||
|
activ()
|
||||||
|
)
|
||||||
|
|
||||||
|
def __call__(self, x):
|
||||||
|
return self.conv(x)
|
||||||
|
|
||||||
|
|
||||||
|
class SeperableConv2DBNActiv(nn.Module):
|
||||||
|
|
||||||
|
def __init__(self, nin, nout, ksize=3, stride=1, pad=1, dilation=1, activ=nn.ReLU):
|
||||||
|
super(SeperableConv2DBNActiv, self).__init__()
|
||||||
|
self.conv = nn.Sequential(
|
||||||
|
nn.Conv2d(
|
||||||
|
nin, nin,
|
||||||
|
kernel_size=ksize,
|
||||||
|
stride=stride,
|
||||||
|
padding=pad,
|
||||||
|
dilation=dilation,
|
||||||
|
groups=nin,
|
||||||
|
bias=False),
|
||||||
|
nn.Conv2d(
|
||||||
|
nin, nout,
|
||||||
|
kernel_size=1,
|
||||||
|
bias=False),
|
||||||
|
nn.BatchNorm2d(nout),
|
||||||
|
activ()
|
||||||
|
)
|
||||||
|
|
||||||
|
def __call__(self, x):
|
||||||
|
return self.conv(x)
|
||||||
|
|
||||||
|
|
||||||
|
class Encoder(nn.Module):
|
||||||
|
|
||||||
|
def __init__(self, nin, nout, ksize=3, stride=1, pad=1, activ=nn.LeakyReLU):
|
||||||
|
super(Encoder, self).__init__()
|
||||||
|
self.conv1 = Conv2DBNActiv(
|
||||||
|
nin, nout, ksize, 1, pad, activ=activ)
|
||||||
|
self.conv2 = Conv2DBNActiv(
|
||||||
|
nout, nout, ksize, stride, pad, activ=activ)
|
||||||
|
|
||||||
|
def __call__(self, x):
|
||||||
|
skip = self.conv1(x)
|
||||||
|
h = self.conv2(skip)
|
||||||
|
|
||||||
|
return h, skip
|
||||||
|
|
||||||
|
|
||||||
|
class Decoder(nn.Module):
|
||||||
|
|
||||||
|
def __init__(self, nin, nout, ksize=3, stride=1, pad=1, dropout=False):
|
||||||
|
super(Decoder, self).__init__()
|
||||||
|
self.conv = Conv2DBNActiv(nin, nout, ksize, 1, pad)
|
||||||
|
self.dropout = nn.Dropout2d(0.1) if dropout else None
|
||||||
|
|
||||||
|
def __call__(self, x, skip=None):
|
||||||
|
x = F.interpolate(x, scale_factor=2, mode='bilinear', align_corners=True)
|
||||||
|
if skip is not None:
|
||||||
|
x = spec_utils.crop_center(x, skip)
|
||||||
|
h = self.conv(x)
|
||||||
|
|
||||||
|
if self.dropout is not None:
|
||||||
|
h = self.dropout(h)
|
||||||
|
|
||||||
|
return h
|
||||||
|
|
||||||
|
|
||||||
|
class ASPPModule(nn.Module):
|
||||||
|
|
||||||
|
def __init__(self, nin, nout, dilations=(4, 8, 16)):
|
||||||
|
super(ASPPModule, self).__init__()
|
||||||
|
self.conv1 = nn.Sequential(
|
||||||
|
nn.AdaptiveAvgPool2d((1, None)),
|
||||||
|
Conv2DBNActiv(nin, nin, 1, 1, 0)
|
||||||
|
)
|
||||||
|
self.conv2 = Conv2DBNActiv(nin, nin, 1, 1, 0)
|
||||||
|
self.conv3 = SeperableConv2DBNActiv(
|
||||||
|
nin, nin, 3, 1, dilations[0], dilations[0])
|
||||||
|
self.conv4 = SeperableConv2DBNActiv(
|
||||||
|
nin, nin, 3, 1, dilations[1], dilations[1])
|
||||||
|
self.conv5 = SeperableConv2DBNActiv(
|
||||||
|
nin, nin, 3, 1, dilations[2], dilations[2])
|
||||||
|
self.bottleneck = nn.Sequential(
|
||||||
|
Conv2DBNActiv(nin * 5, nout, 1, 1, 0),
|
||||||
|
nn.Dropout2d(0.1)
|
||||||
|
)
|
||||||
|
|
||||||
|
def forward(self, x):
|
||||||
|
_, _, h, w = x.size()
|
||||||
|
feat1 = F.interpolate(self.conv1(x), size=(h, w), mode='bilinear', align_corners=True)
|
||||||
|
feat2 = self.conv2(x)
|
||||||
|
feat3 = self.conv3(x)
|
||||||
|
feat4 = self.conv4(x)
|
||||||
|
feat5 = self.conv5(x)
|
||||||
|
out = torch.cat((feat1, feat2, feat3, feat4, feat5), dim=1)
|
||||||
|
bottle = self.bottleneck(out)
|
||||||
|
return bottle
|
86
lib_v2/nets.py
Normal file
86
lib_v2/nets.py
Normal file
@ -0,0 +1,86 @@
|
|||||||
|
import torch
|
||||||
|
from torch import nn
|
||||||
|
|
||||||
|
from lib_v2 import layers
|
||||||
|
|
||||||
|
|
||||||
|
class BaseASPPNet(nn.Module):
|
||||||
|
|
||||||
|
def __init__(self, nin, ch, dilations=(4, 8, 16)):
|
||||||
|
super(BaseASPPNet, self).__init__()
|
||||||
|
self.enc1 = layers.Encoder(nin, ch, 3, 2, 1)
|
||||||
|
self.enc2 = layers.Encoder(ch, ch * 2, 3, 2, 1)
|
||||||
|
self.enc3 = layers.Encoder(ch * 2, ch * 4, 3, 2, 1)
|
||||||
|
self.enc4 = layers.Encoder(ch * 4, ch * 8, 3, 2, 1)
|
||||||
|
|
||||||
|
self.aspp = layers.ASPPModule(ch * 8, ch * 16, dilations)
|
||||||
|
|
||||||
|
self.dec4 = layers.Decoder(ch * (8 + 16), ch * 8, 3, 1, 1)
|
||||||
|
self.dec3 = layers.Decoder(ch * (4 + 8), ch * 4, 3, 1, 1)
|
||||||
|
self.dec2 = layers.Decoder(ch * (2 + 4), ch * 2, 3, 1, 1)
|
||||||
|
self.dec1 = layers.Decoder(ch * (1 + 2), ch, 3, 1, 1)
|
||||||
|
|
||||||
|
def __call__(self, x):
|
||||||
|
h, e1 = self.enc1(x)
|
||||||
|
h, e2 = self.enc2(h)
|
||||||
|
h, e3 = self.enc3(h)
|
||||||
|
h, e4 = self.enc4(h)
|
||||||
|
|
||||||
|
h = self.aspp(h)
|
||||||
|
|
||||||
|
h = self.dec4(h, e4)
|
||||||
|
h = self.dec3(h, e3)
|
||||||
|
h = self.dec2(h, e2)
|
||||||
|
h = self.dec1(h, e1)
|
||||||
|
|
||||||
|
return h
|
||||||
|
|
||||||
|
|
||||||
|
class CascadedASPPNet(nn.Module):
|
||||||
|
|
||||||
|
def __init__(self):
|
||||||
|
super(CascadedASPPNet, self).__init__()
|
||||||
|
self.low_band_net = BaseASPPNet(2, 32, ((2, 4), (4, 8), (8, 16)))
|
||||||
|
self.high_band_net = BaseASPPNet(2, 32, ((2, 4), (4, 8), (8, 16)))
|
||||||
|
|
||||||
|
self.bridge = layers.Conv2DBNActiv(34, 16, 1, 1, 0)
|
||||||
|
self.full_band_net = BaseASPPNet(16, 32)
|
||||||
|
|
||||||
|
self.out = nn.Sequential(
|
||||||
|
layers.Conv2DBNActiv(32, 16, 3, 1, 1),
|
||||||
|
nn.Conv2d(16, 2, 1, bias=False))
|
||||||
|
self.aux_out = nn.Conv2d(32, 2, 1, bias=False)
|
||||||
|
|
||||||
|
self.offset = 128
|
||||||
|
|
||||||
|
def __call__(self, x):
|
||||||
|
bandw = x.size()[2] // 2
|
||||||
|
aux = torch.cat([
|
||||||
|
self.low_band_net(x[:, :, :bandw]),
|
||||||
|
self.high_band_net(x[:, :, bandw:])
|
||||||
|
], dim=2)
|
||||||
|
|
||||||
|
h = torch.cat([x, aux], dim=1)
|
||||||
|
h = self.full_band_net(self.bridge(h))
|
||||||
|
|
||||||
|
h = torch.sigmoid(self.out(h))
|
||||||
|
aux = torch.sigmoid(self.aux_out(aux))
|
||||||
|
|
||||||
|
return h, aux
|
||||||
|
|
||||||
|
def predict(self, x):
|
||||||
|
bandw = x.size()[2] // 2
|
||||||
|
aux = torch.cat([
|
||||||
|
self.low_band_net(x[:, :, :bandw]),
|
||||||
|
self.high_band_net(x[:, :, bandw:])
|
||||||
|
], dim=2)
|
||||||
|
|
||||||
|
h = torch.cat([x, aux], dim=1)
|
||||||
|
h = self.full_band_net(self.bridge(h))
|
||||||
|
|
||||||
|
h = torch.sigmoid(self.out(h))
|
||||||
|
if self.offset > 0:
|
||||||
|
h = h[:, :, :, self.offset:-self.offset]
|
||||||
|
assert h.size()[3] > 0
|
||||||
|
|
||||||
|
return h
|
136
lib_v2/spec_utils.py
Normal file
136
lib_v2/spec_utils.py
Normal file
@ -0,0 +1,136 @@
|
|||||||
|
import os
|
||||||
|
|
||||||
|
import librosa
|
||||||
|
import numpy as np
|
||||||
|
import soundfile as sf
|
||||||
|
import torch
|
||||||
|
|
||||||
|
|
||||||
|
def crop_center(h1, h2, concat=True):
|
||||||
|
# s_freq = (h2.shape[2] - h1.shape[2]) // 2
|
||||||
|
# e_freq = s_freq + h1.shape[2]
|
||||||
|
h1_shape = h1.size()
|
||||||
|
h2_shape = h2.size()
|
||||||
|
if h2_shape[3] < h1_shape[3]:
|
||||||
|
raise ValueError('h2_shape[3] must be greater than h1_shape[3]')
|
||||||
|
s_time = (h2_shape[3] - h1_shape[3]) // 2
|
||||||
|
e_time = s_time + h1_shape[3]
|
||||||
|
h2 = h2[:, :, :, s_time:e_time]
|
||||||
|
if concat:
|
||||||
|
return torch.cat([h1, h2], dim=1)
|
||||||
|
else:
|
||||||
|
return h2
|
||||||
|
|
||||||
|
|
||||||
|
def calc_spec(X, hop_length):
|
||||||
|
n_fft = (hop_length - 1) * 2
|
||||||
|
audio_left = np.asfortranarray(X[0])
|
||||||
|
audio_right = np.asfortranarray(X[1])
|
||||||
|
spec_left = librosa.stft(audio_left, n_fft, hop_length=hop_length)
|
||||||
|
spec_right = librosa.stft(audio_right, n_fft, hop_length=hop_length)
|
||||||
|
spec = np.asfortranarray([spec_left, spec_right])
|
||||||
|
|
||||||
|
return spec
|
||||||
|
|
||||||
|
|
||||||
|
def mask_uninformative(mask, ref, thres=0.3, min_range=64, fade_area=32):
|
||||||
|
if min_range < fade_area * 2:
|
||||||
|
raise ValueError('min_range must be >= fade_area * 2')
|
||||||
|
idx = np.where(ref.mean(axis=(0, 1)) < thres)[0]
|
||||||
|
starts = np.insert(idx[np.where(np.diff(idx) != 1)[0] + 1], 0, idx[0])
|
||||||
|
ends = np.append(idx[np.where(np.diff(idx) != 1)[0]], idx[-1])
|
||||||
|
uninformative = np.where(ends - starts > min_range)[0]
|
||||||
|
if len(uninformative) > 0:
|
||||||
|
starts = starts[uninformative]
|
||||||
|
ends = ends[uninformative]
|
||||||
|
old_e = None
|
||||||
|
for s, e in zip(starts, ends):
|
||||||
|
if old_e is not None and s - old_e < fade_area:
|
||||||
|
s = old_e - fade_area * 2
|
||||||
|
elif s != 0:
|
||||||
|
start_mask = mask[:, :, s:s + fade_area]
|
||||||
|
np.clip(
|
||||||
|
start_mask + np.linspace(0, 1, fade_area), 0, 1,
|
||||||
|
out=start_mask)
|
||||||
|
if e != mask.shape[2]:
|
||||||
|
end_mask = mask[:, :, e - fade_area:e]
|
||||||
|
np.clip(
|
||||||
|
end_mask + np.linspace(1, 0, fade_area), 0, 1,
|
||||||
|
out=end_mask)
|
||||||
|
mask[:, :, s + fade_area:e - fade_area] = 1
|
||||||
|
old_e = e
|
||||||
|
|
||||||
|
return mask
|
||||||
|
|
||||||
|
|
||||||
|
def align_wave_head_and_tail(a, b, sr):
|
||||||
|
a_mono = a[:, :sr * 4].sum(axis=0)
|
||||||
|
b_mono = b[:, :sr * 4].sum(axis=0)
|
||||||
|
a_mono -= a_mono.mean()
|
||||||
|
b_mono -= b_mono.mean()
|
||||||
|
offset = len(a_mono) - 1
|
||||||
|
delay = np.argmax(np.correlate(a_mono, b_mono, 'full')) - offset
|
||||||
|
|
||||||
|
if delay > 0:
|
||||||
|
a = a[:, delay:]
|
||||||
|
else:
|
||||||
|
b = b[:, np.abs(delay):]
|
||||||
|
if a.shape[1] < b.shape[1]:
|
||||||
|
b = b[:, :a.shape[1]]
|
||||||
|
else:
|
||||||
|
a = a[:, :b.shape[1]]
|
||||||
|
|
||||||
|
return a, b
|
||||||
|
|
||||||
|
|
||||||
|
def cache_or_load(mix_path, inst_path, sr, hop_length):
|
||||||
|
_, mix_ext = os.path.splitext(mix_path)
|
||||||
|
_, inst_ext = os.path.splitext(inst_path)
|
||||||
|
spec_mix_path = mix_path.replace(mix_ext, '.npy')
|
||||||
|
spec_inst_path = inst_path.replace(inst_ext, '.npy')
|
||||||
|
|
||||||
|
if os.path.exists(spec_mix_path) and os.path.exists(spec_inst_path):
|
||||||
|
X = np.load(spec_mix_path)
|
||||||
|
y = np.load(spec_inst_path)
|
||||||
|
else:
|
||||||
|
X, _ = librosa.load(
|
||||||
|
mix_path, sr, False, dtype=np.float32, res_type='kaiser_fast')
|
||||||
|
y, _ = librosa.load(
|
||||||
|
inst_path, sr, False, dtype=np.float32, res_type='kaiser_fast')
|
||||||
|
X, _ = librosa.effects.trim(X)
|
||||||
|
y, _ = librosa.effects.trim(y)
|
||||||
|
X, y = align_wave_head_and_tail(X, y, sr)
|
||||||
|
|
||||||
|
X = np.abs(calc_spec(X, hop_length))
|
||||||
|
y = np.abs(calc_spec(y, hop_length))
|
||||||
|
|
||||||
|
_, ext = os.path.splitext(mix_path)
|
||||||
|
np.save(spec_mix_path, X)
|
||||||
|
np.save(spec_inst_path, y)
|
||||||
|
|
||||||
|
return X, y
|
||||||
|
|
||||||
|
|
||||||
|
def spec_to_wav(mag, phase, hop_length):
|
||||||
|
spec = mag * phase
|
||||||
|
spec_left = np.asfortranarray(spec[0])
|
||||||
|
spec_right = np.asfortranarray(spec[1])
|
||||||
|
wav_left = librosa.istft(spec_left, hop_length=hop_length)
|
||||||
|
wav_right = librosa.istft(spec_right, hop_length=hop_length)
|
||||||
|
wav = np.asfortranarray([wav_left, wav_right])
|
||||||
|
|
||||||
|
return wav
|
||||||
|
|
||||||
|
|
||||||
|
if __name__ == "__main__":
|
||||||
|
import sys
|
||||||
|
X, _ = librosa.load(
|
||||||
|
sys.argv[1], 44100, False, dtype=np.float32, res_type='kaiser_fast')
|
||||||
|
y, _ = librosa.load(
|
||||||
|
sys.argv[2], 44100, False, dtype=np.float32, res_type='kaiser_fast')
|
||||||
|
X, _ = librosa.effects.trim(X)
|
||||||
|
y, _ = librosa.effects.trim(y)
|
||||||
|
X, y = align_wave_head_and_tail(X, y, 44100)
|
||||||
|
sf.write('test_i.wav', y.T, 44100)
|
||||||
|
sf.write('test_m.wav', X.T, 44100)
|
||||||
|
sf.write('test_v.wav', (X - y).T, 44100)
|
170
lib_v4/dataset.py
Normal file
170
lib_v4/dataset.py
Normal file
@ -0,0 +1,170 @@
|
|||||||
|
import os
|
||||||
|
import random
|
||||||
|
|
||||||
|
import numpy as np
|
||||||
|
import torch
|
||||||
|
import torch.utils.data
|
||||||
|
from tqdm import tqdm
|
||||||
|
|
||||||
|
from lib_v4 import spec_utils
|
||||||
|
|
||||||
|
|
||||||
|
class VocalRemoverValidationSet(torch.utils.data.Dataset):
|
||||||
|
|
||||||
|
def __init__(self, patch_list):
|
||||||
|
self.patch_list = patch_list
|
||||||
|
|
||||||
|
def __len__(self):
|
||||||
|
return len(self.patch_list)
|
||||||
|
|
||||||
|
def __getitem__(self, idx):
|
||||||
|
path = self.patch_list[idx]
|
||||||
|
data = np.load(path)
|
||||||
|
|
||||||
|
X, y = data['X'], data['y']
|
||||||
|
|
||||||
|
X_mag = np.abs(X)
|
||||||
|
y_mag = np.abs(y)
|
||||||
|
|
||||||
|
return X_mag, y_mag
|
||||||
|
|
||||||
|
|
||||||
|
def make_pair(mix_dir, inst_dir):
|
||||||
|
input_exts = ['.wav', '.m4a', '.mp3', '.mp4', '.flac']
|
||||||
|
|
||||||
|
X_list = sorted([
|
||||||
|
os.path.join(mix_dir, fname)
|
||||||
|
for fname in os.listdir(mix_dir)
|
||||||
|
if os.path.splitext(fname)[1] in input_exts])
|
||||||
|
y_list = sorted([
|
||||||
|
os.path.join(inst_dir, fname)
|
||||||
|
for fname in os.listdir(inst_dir)
|
||||||
|
if os.path.splitext(fname)[1] in input_exts])
|
||||||
|
|
||||||
|
filelist = list(zip(X_list, y_list))
|
||||||
|
|
||||||
|
return filelist
|
||||||
|
|
||||||
|
|
||||||
|
def train_val_split(dataset_dir, split_mode, val_rate, val_filelist):
|
||||||
|
if split_mode == 'random':
|
||||||
|
filelist = make_pair(
|
||||||
|
os.path.join(dataset_dir, 'mixtures'),
|
||||||
|
os.path.join(dataset_dir, 'instruments'))
|
||||||
|
|
||||||
|
random.shuffle(filelist)
|
||||||
|
|
||||||
|
if len(val_filelist) == 0:
|
||||||
|
val_size = int(len(filelist) * val_rate)
|
||||||
|
train_filelist = filelist[:-val_size]
|
||||||
|
val_filelist = filelist[-val_size:]
|
||||||
|
else:
|
||||||
|
train_filelist = [
|
||||||
|
pair for pair in filelist
|
||||||
|
if list(pair) not in val_filelist]
|
||||||
|
elif split_mode == 'subdirs':
|
||||||
|
if len(val_filelist) != 0:
|
||||||
|
raise ValueError('The `val_filelist` option is not available in `subdirs` mode')
|
||||||
|
|
||||||
|
train_filelist = make_pair(
|
||||||
|
os.path.join(dataset_dir, 'training/mixtures'),
|
||||||
|
os.path.join(dataset_dir, 'training/instruments'))
|
||||||
|
|
||||||
|
val_filelist = make_pair(
|
||||||
|
os.path.join(dataset_dir, 'validation/mixtures'),
|
||||||
|
os.path.join(dataset_dir, 'validation/instruments'))
|
||||||
|
|
||||||
|
return train_filelist, val_filelist
|
||||||
|
|
||||||
|
|
||||||
|
def augment(X, y, reduction_rate, reduction_mask, mixup_rate, mixup_alpha):
|
||||||
|
perm = np.random.permutation(len(X))
|
||||||
|
for i, idx in enumerate(tqdm(perm)):
|
||||||
|
if np.random.uniform() < reduction_rate:
|
||||||
|
y[idx] = spec_utils.reduce_vocal_aggressively(X[idx], y[idx], reduction_mask)
|
||||||
|
|
||||||
|
if np.random.uniform() < 0.5:
|
||||||
|
# swap channel
|
||||||
|
X[idx] = X[idx, ::-1]
|
||||||
|
y[idx] = y[idx, ::-1]
|
||||||
|
if np.random.uniform() < 0.02:
|
||||||
|
# mono
|
||||||
|
X[idx] = X[idx].mean(axis=0, keepdims=True)
|
||||||
|
y[idx] = y[idx].mean(axis=0, keepdims=True)
|
||||||
|
if np.random.uniform() < 0.02:
|
||||||
|
# inst
|
||||||
|
X[idx] = y[idx]
|
||||||
|
|
||||||
|
if np.random.uniform() < mixup_rate and i < len(perm) - 1:
|
||||||
|
lam = np.random.beta(mixup_alpha, mixup_alpha)
|
||||||
|
X[idx] = lam * X[idx] + (1 - lam) * X[perm[i + 1]]
|
||||||
|
y[idx] = lam * y[idx] + (1 - lam) * y[perm[i + 1]]
|
||||||
|
|
||||||
|
return X, y
|
||||||
|
|
||||||
|
|
||||||
|
def make_padding(width, cropsize, offset):
|
||||||
|
left = offset
|
||||||
|
roi_size = cropsize - left * 2
|
||||||
|
if roi_size == 0:
|
||||||
|
roi_size = cropsize
|
||||||
|
right = roi_size - (width % roi_size) + left
|
||||||
|
|
||||||
|
return left, right, roi_size
|
||||||
|
|
||||||
|
|
||||||
|
def make_training_set(filelist, cropsize, patches, sr, hop_length, n_fft, offset):
|
||||||
|
len_dataset = patches * len(filelist)
|
||||||
|
|
||||||
|
X_dataset = np.zeros(
|
||||||
|
(len_dataset, 2, n_fft // 2 + 1, cropsize), dtype=np.complex64)
|
||||||
|
y_dataset = np.zeros(
|
||||||
|
(len_dataset, 2, n_fft // 2 + 1, cropsize), dtype=np.complex64)
|
||||||
|
|
||||||
|
for i, (X_path, y_path) in enumerate(tqdm(filelist)):
|
||||||
|
X, y = spec_utils.cache_or_load(X_path, y_path, sr, hop_length, n_fft)
|
||||||
|
coef = np.max([np.abs(X).max(), np.abs(y).max()])
|
||||||
|
X, y = X / coef, y / coef
|
||||||
|
|
||||||
|
l, r, roi_size = make_padding(X.shape[2], cropsize, offset)
|
||||||
|
X_pad = np.pad(X, ((0, 0), (0, 0), (l, r)), mode='constant')
|
||||||
|
y_pad = np.pad(y, ((0, 0), (0, 0), (l, r)), mode='constant')
|
||||||
|
|
||||||
|
starts = np.random.randint(0, X_pad.shape[2] - cropsize, patches)
|
||||||
|
ends = starts + cropsize
|
||||||
|
for j in range(patches):
|
||||||
|
idx = i * patches + j
|
||||||
|
X_dataset[idx] = X_pad[:, :, starts[j]:ends[j]]
|
||||||
|
y_dataset[idx] = y_pad[:, :, starts[j]:ends[j]]
|
||||||
|
|
||||||
|
return X_dataset, y_dataset
|
||||||
|
|
||||||
|
|
||||||
|
def make_validation_set(filelist, cropsize, sr, hop_length, n_fft, offset):
|
||||||
|
patch_list = []
|
||||||
|
patch_dir = 'cs{}_sr{}_hl{}_nf{}_of{}'.format(cropsize, sr, hop_length, n_fft, offset)
|
||||||
|
os.makedirs(patch_dir, exist_ok=True)
|
||||||
|
|
||||||
|
for i, (X_path, y_path) in enumerate(tqdm(filelist)):
|
||||||
|
basename = os.path.splitext(os.path.basename(X_path))[0]
|
||||||
|
|
||||||
|
X, y = spec_utils.cache_or_load(X_path, y_path, sr, hop_length, n_fft)
|
||||||
|
coef = np.max([np.abs(X).max(), np.abs(y).max()])
|
||||||
|
X, y = X / coef, y / coef
|
||||||
|
|
||||||
|
l, r, roi_size = make_padding(X.shape[2], cropsize, offset)
|
||||||
|
X_pad = np.pad(X, ((0, 0), (0, 0), (l, r)), mode='constant')
|
||||||
|
y_pad = np.pad(y, ((0, 0), (0, 0), (l, r)), mode='constant')
|
||||||
|
|
||||||
|
len_dataset = int(np.ceil(X.shape[2] / roi_size))
|
||||||
|
for j in range(len_dataset):
|
||||||
|
outpath = os.path.join(patch_dir, '{}_p{}.npz'.format(basename, j))
|
||||||
|
start = j * roi_size
|
||||||
|
if not os.path.exists(outpath):
|
||||||
|
np.savez(
|
||||||
|
outpath,
|
||||||
|
X=X_pad[:, :, start:start + cropsize],
|
||||||
|
y=y_pad[:, :, start:start + cropsize])
|
||||||
|
patch_list.append(outpath)
|
||||||
|
|
||||||
|
return VocalRemoverValidationSet(patch_list)
|
116
lib_v4/layers.py
Normal file
116
lib_v4/layers.py
Normal file
@ -0,0 +1,116 @@
|
|||||||
|
import torch
|
||||||
|
from torch import nn
|
||||||
|
import torch.nn.functional as F
|
||||||
|
|
||||||
|
from lib_v4 import spec_utils
|
||||||
|
|
||||||
|
|
||||||
|
class Conv2DBNActiv(nn.Module):
|
||||||
|
|
||||||
|
def __init__(self, nin, nout, ksize=3, stride=1, pad=1, dilation=1, activ=nn.ReLU):
|
||||||
|
super(Conv2DBNActiv, self).__init__()
|
||||||
|
self.conv = nn.Sequential(
|
||||||
|
nn.Conv2d(
|
||||||
|
nin, nout,
|
||||||
|
kernel_size=ksize,
|
||||||
|
stride=stride,
|
||||||
|
padding=pad,
|
||||||
|
dilation=dilation,
|
||||||
|
bias=False),
|
||||||
|
nn.BatchNorm2d(nout),
|
||||||
|
activ()
|
||||||
|
)
|
||||||
|
|
||||||
|
def __call__(self, x):
|
||||||
|
return self.conv(x)
|
||||||
|
|
||||||
|
|
||||||
|
class SeperableConv2DBNActiv(nn.Module):
|
||||||
|
|
||||||
|
def __init__(self, nin, nout, ksize=3, stride=1, pad=1, dilation=1, activ=nn.ReLU):
|
||||||
|
super(SeperableConv2DBNActiv, self).__init__()
|
||||||
|
self.conv = nn.Sequential(
|
||||||
|
nn.Conv2d(
|
||||||
|
nin, nin,
|
||||||
|
kernel_size=ksize,
|
||||||
|
stride=stride,
|
||||||
|
padding=pad,
|
||||||
|
dilation=dilation,
|
||||||
|
groups=nin,
|
||||||
|
bias=False),
|
||||||
|
nn.Conv2d(
|
||||||
|
nin, nout,
|
||||||
|
kernel_size=1,
|
||||||
|
bias=False),
|
||||||
|
nn.BatchNorm2d(nout),
|
||||||
|
activ()
|
||||||
|
)
|
||||||
|
|
||||||
|
def __call__(self, x):
|
||||||
|
return self.conv(x)
|
||||||
|
|
||||||
|
|
||||||
|
class Encoder(nn.Module):
|
||||||
|
|
||||||
|
def __init__(self, nin, nout, ksize=3, stride=1, pad=1, activ=nn.LeakyReLU):
|
||||||
|
super(Encoder, self).__init__()
|
||||||
|
self.conv1 = Conv2DBNActiv(nin, nout, ksize, 1, pad, activ=activ)
|
||||||
|
self.conv2 = Conv2DBNActiv(nout, nout, ksize, stride, pad, activ=activ)
|
||||||
|
|
||||||
|
def __call__(self, x):
|
||||||
|
skip = self.conv1(x)
|
||||||
|
h = self.conv2(skip)
|
||||||
|
|
||||||
|
return h, skip
|
||||||
|
|
||||||
|
|
||||||
|
class Decoder(nn.Module):
|
||||||
|
|
||||||
|
def __init__(self, nin, nout, ksize=3, stride=1, pad=1, activ=nn.ReLU, dropout=False):
|
||||||
|
super(Decoder, self).__init__()
|
||||||
|
self.conv = Conv2DBNActiv(nin, nout, ksize, 1, pad, activ=activ)
|
||||||
|
self.dropout = nn.Dropout2d(0.1) if dropout else None
|
||||||
|
|
||||||
|
def __call__(self, x, skip=None):
|
||||||
|
x = F.interpolate(x, scale_factor=2, mode='bilinear', align_corners=True)
|
||||||
|
if skip is not None:
|
||||||
|
skip = spec_utils.crop_center(skip, x)
|
||||||
|
x = torch.cat([x, skip], dim=1)
|
||||||
|
h = self.conv(x)
|
||||||
|
|
||||||
|
if self.dropout is not None:
|
||||||
|
h = self.dropout(h)
|
||||||
|
|
||||||
|
return h
|
||||||
|
|
||||||
|
|
||||||
|
class ASPPModule(nn.Module):
|
||||||
|
|
||||||
|
def __init__(self, nin, nout, dilations=(4, 8, 16), activ=nn.ReLU):
|
||||||
|
super(ASPPModule, self).__init__()
|
||||||
|
self.conv1 = nn.Sequential(
|
||||||
|
nn.AdaptiveAvgPool2d((1, None)),
|
||||||
|
Conv2DBNActiv(nin, nin, 1, 1, 0, activ=activ)
|
||||||
|
)
|
||||||
|
self.conv2 = Conv2DBNActiv(nin, nin, 1, 1, 0, activ=activ)
|
||||||
|
self.conv3 = SeperableConv2DBNActiv(
|
||||||
|
nin, nin, 3, 1, dilations[0], dilations[0], activ=activ)
|
||||||
|
self.conv4 = SeperableConv2DBNActiv(
|
||||||
|
nin, nin, 3, 1, dilations[1], dilations[1], activ=activ)
|
||||||
|
self.conv5 = SeperableConv2DBNActiv(
|
||||||
|
nin, nin, 3, 1, dilations[2], dilations[2], activ=activ)
|
||||||
|
self.bottleneck = nn.Sequential(
|
||||||
|
Conv2DBNActiv(nin * 5, nout, 1, 1, 0, activ=activ),
|
||||||
|
nn.Dropout2d(0.1)
|
||||||
|
)
|
||||||
|
|
||||||
|
def forward(self, x):
|
||||||
|
_, _, h, w = x.size()
|
||||||
|
feat1 = F.interpolate(self.conv1(x), size=(h, w), mode='bilinear', align_corners=True)
|
||||||
|
feat2 = self.conv2(x)
|
||||||
|
feat3 = self.conv3(x)
|
||||||
|
feat4 = self.conv4(x)
|
||||||
|
feat5 = self.conv5(x)
|
||||||
|
out = torch.cat((feat1, feat2, feat3, feat4, feat5), dim=1)
|
||||||
|
bottle = self.bottleneck(out)
|
||||||
|
return bottle
|
108
lib_v4/nets.py
Normal file
108
lib_v4/nets.py
Normal file
@ -0,0 +1,108 @@
|
|||||||
|
import torch
|
||||||
|
from torch import nn
|
||||||
|
import torch.nn.functional as F
|
||||||
|
|
||||||
|
from lib_v4 import layers
|
||||||
|
|
||||||
|
|
||||||
|
class BaseASPPNet(nn.Module):
|
||||||
|
|
||||||
|
def __init__(self, nin, ch, dilations=(4, 8, 16)):
|
||||||
|
super(BaseASPPNet, self).__init__()
|
||||||
|
self.enc1 = layers.Encoder(nin, ch, 3, 2, 1)
|
||||||
|
self.enc2 = layers.Encoder(ch, ch * 2, 3, 2, 1)
|
||||||
|
self.enc3 = layers.Encoder(ch * 2, ch * 4, 3, 2, 1)
|
||||||
|
self.enc4 = layers.Encoder(ch * 4, ch * 8, 3, 2, 1)
|
||||||
|
|
||||||
|
self.aspp = layers.ASPPModule(ch * 8, ch * 16, dilations)
|
||||||
|
|
||||||
|
self.dec4 = layers.Decoder(ch * (8 + 16), ch * 8, 3, 1, 1)
|
||||||
|
self.dec3 = layers.Decoder(ch * (4 + 8), ch * 4, 3, 1, 1)
|
||||||
|
self.dec2 = layers.Decoder(ch * (2 + 4), ch * 2, 3, 1, 1)
|
||||||
|
self.dec1 = layers.Decoder(ch * (1 + 2), ch, 3, 1, 1)
|
||||||
|
|
||||||
|
def __call__(self, x):
|
||||||
|
h, e1 = self.enc1(x)
|
||||||
|
h, e2 = self.enc2(h)
|
||||||
|
h, e3 = self.enc3(h)
|
||||||
|
h, e4 = self.enc4(h)
|
||||||
|
|
||||||
|
h = self.aspp(h)
|
||||||
|
|
||||||
|
h = self.dec4(h, e4)
|
||||||
|
h = self.dec3(h, e3)
|
||||||
|
h = self.dec2(h, e2)
|
||||||
|
h = self.dec1(h, e1)
|
||||||
|
|
||||||
|
return h
|
||||||
|
|
||||||
|
|
||||||
|
class CascadedASPPNet(nn.Module):
|
||||||
|
|
||||||
|
def __init__(self, n_fft):
|
||||||
|
super(CascadedASPPNet, self).__init__()
|
||||||
|
self.stg1_low_band_net = BaseASPPNet(2, 16)
|
||||||
|
self.stg1_high_band_net = BaseASPPNet(2, 16)
|
||||||
|
|
||||||
|
self.stg2_bridge = layers.Conv2DBNActiv(18, 8, 1, 1, 0)
|
||||||
|
self.stg2_full_band_net = BaseASPPNet(8, 16)
|
||||||
|
|
||||||
|
self.stg3_bridge = layers.Conv2DBNActiv(34, 16, 1, 1, 0)
|
||||||
|
self.stg3_full_band_net = BaseASPPNet(16, 32)
|
||||||
|
|
||||||
|
self.out = nn.Conv2d(32, 2, 1, bias=False)
|
||||||
|
self.aux1_out = nn.Conv2d(16, 2, 1, bias=False)
|
||||||
|
self.aux2_out = nn.Conv2d(16, 2, 1, bias=False)
|
||||||
|
|
||||||
|
self.max_bin = n_fft // 2
|
||||||
|
self.output_bin = n_fft // 2 + 1
|
||||||
|
|
||||||
|
self.offset = 128
|
||||||
|
|
||||||
|
def forward(self, x):
|
||||||
|
mix = x.detach()
|
||||||
|
x = x.clone()
|
||||||
|
|
||||||
|
x = x[:, :, :self.max_bin]
|
||||||
|
|
||||||
|
bandw = x.size()[2] // 2
|
||||||
|
aux1 = torch.cat([
|
||||||
|
self.stg1_low_band_net(x[:, :, :bandw]),
|
||||||
|
self.stg1_high_band_net(x[:, :, bandw:])
|
||||||
|
], dim=2)
|
||||||
|
|
||||||
|
h = torch.cat([x, aux1], dim=1)
|
||||||
|
aux2 = self.stg2_full_band_net(self.stg2_bridge(h))
|
||||||
|
|
||||||
|
h = torch.cat([x, aux1, aux2], dim=1)
|
||||||
|
h = self.stg3_full_band_net(self.stg3_bridge(h))
|
||||||
|
|
||||||
|
mask = torch.sigmoid(self.out(h))
|
||||||
|
mask = F.pad(
|
||||||
|
input=mask,
|
||||||
|
pad=(0, 0, 0, self.output_bin - mask.size()[2]),
|
||||||
|
mode='replicate')
|
||||||
|
|
||||||
|
if self.training:
|
||||||
|
aux1 = torch.sigmoid(self.aux1_out(aux1))
|
||||||
|
aux1 = F.pad(
|
||||||
|
input=aux1,
|
||||||
|
pad=(0, 0, 0, self.output_bin - aux1.size()[2]),
|
||||||
|
mode='replicate')
|
||||||
|
aux2 = torch.sigmoid(self.aux2_out(aux2))
|
||||||
|
aux2 = F.pad(
|
||||||
|
input=aux2,
|
||||||
|
pad=(0, 0, 0, self.output_bin - aux2.size()[2]),
|
||||||
|
mode='replicate')
|
||||||
|
return mask * mix, aux1 * mix, aux2 * mix
|
||||||
|
else:
|
||||||
|
return mask * mix
|
||||||
|
|
||||||
|
def predict(self, x_mag):
|
||||||
|
h = self.forward(x_mag)
|
||||||
|
|
||||||
|
if self.offset > 0:
|
||||||
|
h = h[:, :, :, self.offset:-self.offset]
|
||||||
|
assert h.size()[3] > 0
|
||||||
|
|
||||||
|
return h
|
216
lib_v4/spec_utils.py
Normal file
216
lib_v4/spec_utils.py
Normal file
@ -0,0 +1,216 @@
|
|||||||
|
import os
|
||||||
|
|
||||||
|
import librosa
|
||||||
|
import numpy as np
|
||||||
|
import soundfile as sf
|
||||||
|
|
||||||
|
|
||||||
|
def crop_center(h1, h2):
|
||||||
|
h1_shape = h1.size()
|
||||||
|
h2_shape = h2.size()
|
||||||
|
|
||||||
|
if h1_shape[3] == h2_shape[3]:
|
||||||
|
return h1
|
||||||
|
elif h1_shape[3] < h2_shape[3]:
|
||||||
|
raise ValueError('h1_shape[3] must be greater than h2_shape[3]')
|
||||||
|
|
||||||
|
# s_freq = (h2_shape[2] - h1_shape[2]) // 2
|
||||||
|
# e_freq = s_freq + h1_shape[2]
|
||||||
|
s_time = (h1_shape[3] - h2_shape[3]) // 2
|
||||||
|
e_time = s_time + h2_shape[3]
|
||||||
|
h1 = h1[:, :, :, s_time:e_time]
|
||||||
|
|
||||||
|
return h1
|
||||||
|
|
||||||
|
|
||||||
|
def wave_to_spectrogram(wave, hop_length, n_fft):
|
||||||
|
wave_left = np.asfortranarray(wave[0])
|
||||||
|
wave_right = np.asfortranarray(wave[1])
|
||||||
|
|
||||||
|
spec_left = librosa.stft(wave_left, n_fft, hop_length=hop_length)
|
||||||
|
spec_right = librosa.stft(wave_right, n_fft, hop_length=hop_length)
|
||||||
|
spec = np.asfortranarray([spec_left, spec_right])
|
||||||
|
|
||||||
|
return spec
|
||||||
|
|
||||||
|
|
||||||
|
def spectrogram_to_image(spec, mode='magnitude'):
|
||||||
|
if mode == 'magnitude':
|
||||||
|
if np.iscomplexobj(spec):
|
||||||
|
y = np.abs(spec)
|
||||||
|
else:
|
||||||
|
y = spec
|
||||||
|
y = np.log10(y ** 2 + 1e-8)
|
||||||
|
elif mode == 'phase':
|
||||||
|
if np.iscomplexobj(spec):
|
||||||
|
y = np.angle(spec)
|
||||||
|
else:
|
||||||
|
y = spec
|
||||||
|
|
||||||
|
y -= y.min()
|
||||||
|
y *= 255 / y.max()
|
||||||
|
img = np.uint8(y)
|
||||||
|
|
||||||
|
if y.ndim == 3:
|
||||||
|
img = img.transpose(1, 2, 0)
|
||||||
|
img = np.concatenate([
|
||||||
|
np.max(img, axis=2, keepdims=True), img
|
||||||
|
], axis=2)
|
||||||
|
|
||||||
|
return img
|
||||||
|
|
||||||
|
|
||||||
|
def reduce_vocal_aggressively(X, y, softmask):
|
||||||
|
v = X - y
|
||||||
|
y_mag_tmp = np.abs(y)
|
||||||
|
v_mag_tmp = np.abs(v)
|
||||||
|
|
||||||
|
v_mask = v_mag_tmp > y_mag_tmp
|
||||||
|
y_mag = np.clip(y_mag_tmp - v_mag_tmp * v_mask * softmask, 0, np.inf)
|
||||||
|
|
||||||
|
return y_mag * np.exp(1.j * np.angle(y))
|
||||||
|
|
||||||
|
|
||||||
|
def mask_silence(mag, ref, thres=0.2, min_range=64, fade_size=32):
|
||||||
|
if min_range < fade_size * 2:
|
||||||
|
raise ValueError('min_range must be >= fade_area * 2')
|
||||||
|
|
||||||
|
mag = mag.copy()
|
||||||
|
|
||||||
|
idx = np.where(ref.mean(axis=(0, 1)) < thres)[0]
|
||||||
|
starts = np.insert(idx[np.where(np.diff(idx) != 1)[0] + 1], 0, idx[0])
|
||||||
|
ends = np.append(idx[np.where(np.diff(idx) != 1)[0]], idx[-1])
|
||||||
|
uninformative = np.where(ends - starts > min_range)[0]
|
||||||
|
if len(uninformative) > 0:
|
||||||
|
starts = starts[uninformative]
|
||||||
|
ends = ends[uninformative]
|
||||||
|
old_e = None
|
||||||
|
for s, e in zip(starts, ends):
|
||||||
|
if old_e is not None and s - old_e < fade_size:
|
||||||
|
s = old_e - fade_size * 2
|
||||||
|
|
||||||
|
if s != 0:
|
||||||
|
weight = np.linspace(0, 1, fade_size)
|
||||||
|
mag[:, :, s:s + fade_size] += weight * ref[:, :, s:s + fade_size]
|
||||||
|
else:
|
||||||
|
s -= fade_size
|
||||||
|
|
||||||
|
if e != mag.shape[2]:
|
||||||
|
weight = np.linspace(1, 0, fade_size)
|
||||||
|
mag[:, :, e - fade_size:e] += weight * ref[:, :, e - fade_size:e]
|
||||||
|
else:
|
||||||
|
e += fade_size
|
||||||
|
|
||||||
|
mag[:, :, s + fade_size:e - fade_size] += ref[:, :, s + fade_size:e - fade_size]
|
||||||
|
old_e = e
|
||||||
|
|
||||||
|
return mag
|
||||||
|
|
||||||
|
|
||||||
|
def align_wave_head_and_tail(a, b, sr):
|
||||||
|
a, _ = librosa.effects.trim(a)
|
||||||
|
b, _ = librosa.effects.trim(b)
|
||||||
|
|
||||||
|
a_mono = a[:, :sr * 4].sum(axis=0)
|
||||||
|
b_mono = b[:, :sr * 4].sum(axis=0)
|
||||||
|
|
||||||
|
a_mono -= a_mono.mean()
|
||||||
|
b_mono -= b_mono.mean()
|
||||||
|
|
||||||
|
offset = len(a_mono) - 1
|
||||||
|
delay = np.argmax(np.correlate(a_mono, b_mono, 'full')) - offset
|
||||||
|
|
||||||
|
if delay > 0:
|
||||||
|
a = a[:, delay:]
|
||||||
|
else:
|
||||||
|
b = b[:, np.abs(delay):]
|
||||||
|
|
||||||
|
if a.shape[1] < b.shape[1]:
|
||||||
|
b = b[:, :a.shape[1]]
|
||||||
|
else:
|
||||||
|
a = a[:, :b.shape[1]]
|
||||||
|
|
||||||
|
return a, b
|
||||||
|
|
||||||
|
|
||||||
|
def cache_or_load(mix_path, inst_path, sr, hop_length, n_fft):
|
||||||
|
mix_basename = os.path.splitext(os.path.basename(mix_path))[0]
|
||||||
|
inst_basename = os.path.splitext(os.path.basename(inst_path))[0]
|
||||||
|
|
||||||
|
cache_dir = 'sr{}_hl{}_nf{}'.format(sr, hop_length, n_fft)
|
||||||
|
mix_cache_dir = os.path.join(os.path.dirname(mix_path), cache_dir)
|
||||||
|
inst_cache_dir = os.path.join(os.path.dirname(inst_path), cache_dir)
|
||||||
|
os.makedirs(mix_cache_dir, exist_ok=True)
|
||||||
|
os.makedirs(inst_cache_dir, exist_ok=True)
|
||||||
|
|
||||||
|
mix_cache_path = os.path.join(mix_cache_dir, mix_basename + '.npy')
|
||||||
|
inst_cache_path = os.path.join(inst_cache_dir, inst_basename + '.npy')
|
||||||
|
|
||||||
|
if os.path.exists(mix_cache_path) and os.path.exists(inst_cache_path):
|
||||||
|
X = np.load(mix_cache_path)
|
||||||
|
y = np.load(inst_cache_path)
|
||||||
|
else:
|
||||||
|
X, _ = librosa.load(
|
||||||
|
mix_path, sr, False, dtype=np.float32, res_type='kaiser_fast')
|
||||||
|
y, _ = librosa.load(
|
||||||
|
inst_path, sr, False, dtype=np.float32, res_type='kaiser_fast')
|
||||||
|
|
||||||
|
X, y = align_wave_head_and_tail(X, y, sr)
|
||||||
|
|
||||||
|
X = wave_to_spectrogram(X, hop_length, n_fft)
|
||||||
|
y = wave_to_spectrogram(y, hop_length, n_fft)
|
||||||
|
|
||||||
|
_, ext = os.path.splitext(mix_path)
|
||||||
|
np.save(mix_cache_path, X)
|
||||||
|
np.save(inst_cache_path, y)
|
||||||
|
|
||||||
|
return X, y
|
||||||
|
|
||||||
|
|
||||||
|
def spectrogram_to_wave(spec, hop_length=1024):
|
||||||
|
spec_left = np.asfortranarray(spec[0])
|
||||||
|
spec_right = np.asfortranarray(spec[1])
|
||||||
|
|
||||||
|
wave_left = librosa.istft(spec_left, hop_length=hop_length)
|
||||||
|
wave_right = librosa.istft(spec_right, hop_length=hop_length)
|
||||||
|
wave = np.asfortranarray([wave_left, wave_right])
|
||||||
|
|
||||||
|
return wave
|
||||||
|
|
||||||
|
|
||||||
|
if __name__ == "__main__":
|
||||||
|
import cv2
|
||||||
|
import sys
|
||||||
|
|
||||||
|
X, _ = librosa.load(
|
||||||
|
sys.argv[1], 44100, False, dtype=np.float32, res_type='kaiser_fast')
|
||||||
|
y, _ = librosa.load(
|
||||||
|
sys.argv[2], 44100, False, dtype=np.float32, res_type='kaiser_fast')
|
||||||
|
|
||||||
|
X, y = align_wave_head_and_tail(X, y, 44100)
|
||||||
|
|
||||||
|
X_spec = wave_to_spectrogram(X, 1024, 2048)
|
||||||
|
y_spec = wave_to_spectrogram(y, 1024, 2048)
|
||||||
|
|
||||||
|
y_spec = reduce_vocal_aggressively(X_spec, y_spec, 0.2)
|
||||||
|
v_spec = X_spec - y_spec
|
||||||
|
|
||||||
|
# v_mask = np.abs(v_spec) > np.abs(y_spec)
|
||||||
|
# y_spec = X_spec - v_spec * v_mask
|
||||||
|
# v_spec = X_spec - y_spec
|
||||||
|
|
||||||
|
X_mag = np.abs(X_spec)
|
||||||
|
y_mag = np.abs(y_spec)
|
||||||
|
v_mag = np.abs(v_spec)
|
||||||
|
|
||||||
|
X_image = spectrogram_to_image(X_mag)
|
||||||
|
y_image = spectrogram_to_image(y_mag)
|
||||||
|
v_image = spectrogram_to_image(v_mag)
|
||||||
|
|
||||||
|
cv2.imwrite('test_X.jpg', X_image)
|
||||||
|
cv2.imwrite('test_y.jpg', y_image)
|
||||||
|
cv2.imwrite('test_v.jpg', v_image)
|
||||||
|
|
||||||
|
sf.write('test_X.wav', spectrogram_to_wave(X_spec).T, 44100)
|
||||||
|
sf.write('test_y.wav', spectrogram_to_wave(y_spec).T, 44100)
|
||||||
|
sf.write('test_v.wav', spectrogram_to_wave(v_spec).T, 44100)
|
Loading…
Reference in New Issue
Block a user