mirror of
https://github.com/Anjok07/ultimatevocalremovergui.git
synced 2024-11-12 01:50:48 +01:00
Add files via upload
This commit is contained in:
parent
ea201f7079
commit
67d5f16ea9
BIN
img/UVR-Icon.ico
Normal file
BIN
img/UVR-Icon.ico
Normal file
Binary file not shown.
After Width: | Height: | Size: 21 KiB |
BIN
img/UVR-banner-2.png
Normal file
BIN
img/UVR-banner-2.png
Normal file
Binary file not shown.
After Width: | Height: | Size: 20 KiB |
BIN
img/UVR-banner.png
Normal file
BIN
img/UVR-banner.png
Normal file
Binary file not shown.
After Width: | Height: | Size: 21 KiB |
BIN
img/UVRV5.png
Normal file
BIN
img/UVRV5.png
Normal file
Binary file not shown.
After Width: | Height: | Size: 56 KiB |
BIN
img/refresh.png
Normal file
BIN
img/refresh.png
Normal file
Binary file not shown.
After Width: | Height: | Size: 1.6 KiB |
BIN
lib_v5/__pycache__/dataset.cpython-37.pyc
Normal file
BIN
lib_v5/__pycache__/dataset.cpython-37.pyc
Normal file
Binary file not shown.
BIN
lib_v5/__pycache__/dataset.cpython-39.pyc
Normal file
BIN
lib_v5/__pycache__/dataset.cpython-39.pyc
Normal file
Binary file not shown.
BIN
lib_v5/__pycache__/layers.cpython-37.pyc
Normal file
BIN
lib_v5/__pycache__/layers.cpython-37.pyc
Normal file
Binary file not shown.
BIN
lib_v5/__pycache__/layers.cpython-39.pyc
Normal file
BIN
lib_v5/__pycache__/layers.cpython-39.pyc
Normal file
Binary file not shown.
BIN
lib_v5/__pycache__/layers_123821KB.cpython-39.pyc
Normal file
BIN
lib_v5/__pycache__/layers_123821KB.cpython-39.pyc
Normal file
Binary file not shown.
BIN
lib_v5/__pycache__/layers_537238KB.cpython-39.pyc
Normal file
BIN
lib_v5/__pycache__/layers_537238KB.cpython-39.pyc
Normal file
Binary file not shown.
BIN
lib_v5/__pycache__/model_param_init.cpython-39.pyc
Normal file
BIN
lib_v5/__pycache__/model_param_init.cpython-39.pyc
Normal file
Binary file not shown.
BIN
lib_v5/__pycache__/nets.cpython-37.pyc
Normal file
BIN
lib_v5/__pycache__/nets.cpython-37.pyc
Normal file
Binary file not shown.
BIN
lib_v5/__pycache__/nets.cpython-39.pyc
Normal file
BIN
lib_v5/__pycache__/nets.cpython-39.pyc
Normal file
Binary file not shown.
BIN
lib_v5/__pycache__/nets_123812KB.cpython-39.pyc
Normal file
BIN
lib_v5/__pycache__/nets_123812KB.cpython-39.pyc
Normal file
Binary file not shown.
BIN
lib_v5/__pycache__/nets_123821KB.cpython-39.pyc
Normal file
BIN
lib_v5/__pycache__/nets_123821KB.cpython-39.pyc
Normal file
Binary file not shown.
BIN
lib_v5/__pycache__/nets_537238KB.cpython-39.pyc
Normal file
BIN
lib_v5/__pycache__/nets_537238KB.cpython-39.pyc
Normal file
Binary file not shown.
BIN
lib_v5/__pycache__/spec_utils.cpython-37.pyc
Normal file
BIN
lib_v5/__pycache__/spec_utils.cpython-37.pyc
Normal file
Binary file not shown.
BIN
lib_v5/__pycache__/spec_utils.cpython-39.pyc
Normal file
BIN
lib_v5/__pycache__/spec_utils.cpython-39.pyc
Normal file
Binary file not shown.
170
lib_v5/dataset.py
Normal file
170
lib_v5/dataset.py
Normal file
@ -0,0 +1,170 @@
|
||||
import os
|
||||
import random
|
||||
|
||||
import numpy as np
|
||||
import torch
|
||||
import torch.utils.data
|
||||
from tqdm import tqdm
|
||||
|
||||
from lib_v5 import spec_utils
|
||||
|
||||
|
||||
class VocalRemoverValidationSet(torch.utils.data.Dataset):
|
||||
|
||||
def __init__(self, patch_list):
|
||||
self.patch_list = patch_list
|
||||
|
||||
def __len__(self):
|
||||
return len(self.patch_list)
|
||||
|
||||
def __getitem__(self, idx):
|
||||
path = self.patch_list[idx]
|
||||
data = np.load(path)
|
||||
|
||||
X, y = data['X'], data['y']
|
||||
|
||||
X_mag = np.abs(X)
|
||||
y_mag = np.abs(y)
|
||||
|
||||
return X_mag, y_mag
|
||||
|
||||
|
||||
def make_pair(mix_dir, inst_dir):
|
||||
input_exts = ['.wav', '.m4a', '.mp3', '.mp4', '.flac']
|
||||
|
||||
X_list = sorted([
|
||||
os.path.join(mix_dir, fname)
|
||||
for fname in os.listdir(mix_dir)
|
||||
if os.path.splitext(fname)[1] in input_exts])
|
||||
y_list = sorted([
|
||||
os.path.join(inst_dir, fname)
|
||||
for fname in os.listdir(inst_dir)
|
||||
if os.path.splitext(fname)[1] in input_exts])
|
||||
|
||||
filelist = list(zip(X_list, y_list))
|
||||
|
||||
return filelist
|
||||
|
||||
|
||||
def train_val_split(dataset_dir, split_mode, val_rate, val_filelist):
|
||||
if split_mode == 'random':
|
||||
filelist = make_pair(
|
||||
os.path.join(dataset_dir, 'mixtures'),
|
||||
os.path.join(dataset_dir, 'instruments'))
|
||||
|
||||
random.shuffle(filelist)
|
||||
|
||||
if len(val_filelist) == 0:
|
||||
val_size = int(len(filelist) * val_rate)
|
||||
train_filelist = filelist[:-val_size]
|
||||
val_filelist = filelist[-val_size:]
|
||||
else:
|
||||
train_filelist = [
|
||||
pair for pair in filelist
|
||||
if list(pair) not in val_filelist]
|
||||
elif split_mode == 'subdirs':
|
||||
if len(val_filelist) != 0:
|
||||
raise ValueError('The `val_filelist` option is not available in `subdirs` mode')
|
||||
|
||||
train_filelist = make_pair(
|
||||
os.path.join(dataset_dir, 'training/mixtures'),
|
||||
os.path.join(dataset_dir, 'training/instruments'))
|
||||
|
||||
val_filelist = make_pair(
|
||||
os.path.join(dataset_dir, 'validation/mixtures'),
|
||||
os.path.join(dataset_dir, 'validation/instruments'))
|
||||
|
||||
return train_filelist, val_filelist
|
||||
|
||||
|
||||
def augment(X, y, reduction_rate, reduction_mask, mixup_rate, mixup_alpha):
|
||||
perm = np.random.permutation(len(X))
|
||||
for i, idx in enumerate(tqdm(perm)):
|
||||
if np.random.uniform() < reduction_rate:
|
||||
y[idx] = spec_utils.reduce_vocal_aggressively(X[idx], y[idx], reduction_mask)
|
||||
|
||||
if np.random.uniform() < 0.5:
|
||||
# swap channel
|
||||
X[idx] = X[idx, ::-1]
|
||||
y[idx] = y[idx, ::-1]
|
||||
if np.random.uniform() < 0.02:
|
||||
# mono
|
||||
X[idx] = X[idx].mean(axis=0, keepdims=True)
|
||||
y[idx] = y[idx].mean(axis=0, keepdims=True)
|
||||
if np.random.uniform() < 0.02:
|
||||
# inst
|
||||
X[idx] = y[idx]
|
||||
|
||||
if np.random.uniform() < mixup_rate and i < len(perm) - 1:
|
||||
lam = np.random.beta(mixup_alpha, mixup_alpha)
|
||||
X[idx] = lam * X[idx] + (1 - lam) * X[perm[i + 1]]
|
||||
y[idx] = lam * y[idx] + (1 - lam) * y[perm[i + 1]]
|
||||
|
||||
return X, y
|
||||
|
||||
|
||||
def make_padding(width, cropsize, offset):
|
||||
left = offset
|
||||
roi_size = cropsize - left * 2
|
||||
if roi_size == 0:
|
||||
roi_size = cropsize
|
||||
right = roi_size - (width % roi_size) + left
|
||||
|
||||
return left, right, roi_size
|
||||
|
||||
|
||||
def make_training_set(filelist, cropsize, patches, sr, hop_length, n_fft, offset):
|
||||
len_dataset = patches * len(filelist)
|
||||
|
||||
X_dataset = np.zeros(
|
||||
(len_dataset, 2, n_fft // 2 + 1, cropsize), dtype=np.complex64)
|
||||
y_dataset = np.zeros(
|
||||
(len_dataset, 2, n_fft // 2 + 1, cropsize), dtype=np.complex64)
|
||||
|
||||
for i, (X_path, y_path) in enumerate(tqdm(filelist)):
|
||||
X, y = spec_utils.cache_or_load(X_path, y_path, sr, hop_length, n_fft)
|
||||
coef = np.max([np.abs(X).max(), np.abs(y).max()])
|
||||
X, y = X / coef, y / coef
|
||||
|
||||
l, r, roi_size = make_padding(X.shape[2], cropsize, offset)
|
||||
X_pad = np.pad(X, ((0, 0), (0, 0), (l, r)), mode='constant')
|
||||
y_pad = np.pad(y, ((0, 0), (0, 0), (l, r)), mode='constant')
|
||||
|
||||
starts = np.random.randint(0, X_pad.shape[2] - cropsize, patches)
|
||||
ends = starts + cropsize
|
||||
for j in range(patches):
|
||||
idx = i * patches + j
|
||||
X_dataset[idx] = X_pad[:, :, starts[j]:ends[j]]
|
||||
y_dataset[idx] = y_pad[:, :, starts[j]:ends[j]]
|
||||
|
||||
return X_dataset, y_dataset
|
||||
|
||||
|
||||
def make_validation_set(filelist, cropsize, sr, hop_length, n_fft, offset):
|
||||
patch_list = []
|
||||
patch_dir = 'cs{}_sr{}_hl{}_nf{}_of{}'.format(cropsize, sr, hop_length, n_fft, offset)
|
||||
os.makedirs(patch_dir, exist_ok=True)
|
||||
|
||||
for i, (X_path, y_path) in enumerate(tqdm(filelist)):
|
||||
basename = os.path.splitext(os.path.basename(X_path))[0]
|
||||
|
||||
X, y = spec_utils.cache_or_load(X_path, y_path, sr, hop_length, n_fft)
|
||||
coef = np.max([np.abs(X).max(), np.abs(y).max()])
|
||||
X, y = X / coef, y / coef
|
||||
|
||||
l, r, roi_size = make_padding(X.shape[2], cropsize, offset)
|
||||
X_pad = np.pad(X, ((0, 0), (0, 0), (l, r)), mode='constant')
|
||||
y_pad = np.pad(y, ((0, 0), (0, 0), (l, r)), mode='constant')
|
||||
|
||||
len_dataset = int(np.ceil(X.shape[2] / roi_size))
|
||||
for j in range(len_dataset):
|
||||
outpath = os.path.join(patch_dir, '{}_p{}.npz'.format(basename, j))
|
||||
start = j * roi_size
|
||||
if not os.path.exists(outpath):
|
||||
np.savez(
|
||||
outpath,
|
||||
X=X_pad[:, :, start:start + cropsize],
|
||||
y=y_pad[:, :, start:start + cropsize])
|
||||
patch_list.append(outpath)
|
||||
|
||||
return VocalRemoverValidationSet(patch_list)
|
116
lib_v5/layers_123812KB .py
Normal file
116
lib_v5/layers_123812KB .py
Normal file
@ -0,0 +1,116 @@
|
||||
import torch
|
||||
from torch import nn
|
||||
import torch.nn.functional as F
|
||||
|
||||
from lib_v5 import spec_utils
|
||||
|
||||
|
||||
class Conv2DBNActiv(nn.Module):
|
||||
|
||||
def __init__(self, nin, nout, ksize=3, stride=1, pad=1, dilation=1, activ=nn.ReLU):
|
||||
super(Conv2DBNActiv, self).__init__()
|
||||
self.conv = nn.Sequential(
|
||||
nn.Conv2d(
|
||||
nin, nout,
|
||||
kernel_size=ksize,
|
||||
stride=stride,
|
||||
padding=pad,
|
||||
dilation=dilation,
|
||||
bias=False),
|
||||
nn.BatchNorm2d(nout),
|
||||
activ()
|
||||
)
|
||||
|
||||
def __call__(self, x):
|
||||
return self.conv(x)
|
||||
|
||||
|
||||
class SeperableConv2DBNActiv(nn.Module):
|
||||
|
||||
def __init__(self, nin, nout, ksize=3, stride=1, pad=1, dilation=1, activ=nn.ReLU):
|
||||
super(SeperableConv2DBNActiv, self).__init__()
|
||||
self.conv = nn.Sequential(
|
||||
nn.Conv2d(
|
||||
nin, nin,
|
||||
kernel_size=ksize,
|
||||
stride=stride,
|
||||
padding=pad,
|
||||
dilation=dilation,
|
||||
groups=nin,
|
||||
bias=False),
|
||||
nn.Conv2d(
|
||||
nin, nout,
|
||||
kernel_size=1,
|
||||
bias=False),
|
||||
nn.BatchNorm2d(nout),
|
||||
activ()
|
||||
)
|
||||
|
||||
def __call__(self, x):
|
||||
return self.conv(x)
|
||||
|
||||
|
||||
class Encoder(nn.Module):
|
||||
|
||||
def __init__(self, nin, nout, ksize=3, stride=1, pad=1, activ=nn.LeakyReLU):
|
||||
super(Encoder, self).__init__()
|
||||
self.conv1 = Conv2DBNActiv(nin, nout, ksize, 1, pad, activ=activ)
|
||||
self.conv2 = Conv2DBNActiv(nout, nout, ksize, stride, pad, activ=activ)
|
||||
|
||||
def __call__(self, x):
|
||||
skip = self.conv1(x)
|
||||
h = self.conv2(skip)
|
||||
|
||||
return h, skip
|
||||
|
||||
|
||||
class Decoder(nn.Module):
|
||||
|
||||
def __init__(self, nin, nout, ksize=3, stride=1, pad=1, activ=nn.ReLU, dropout=False):
|
||||
super(Decoder, self).__init__()
|
||||
self.conv = Conv2DBNActiv(nin, nout, ksize, 1, pad, activ=activ)
|
||||
self.dropout = nn.Dropout2d(0.1) if dropout else None
|
||||
|
||||
def __call__(self, x, skip=None):
|
||||
x = F.interpolate(x, scale_factor=2, mode='bilinear', align_corners=True)
|
||||
if skip is not None:
|
||||
skip = spec_utils.crop_center(skip, x)
|
||||
x = torch.cat([x, skip], dim=1)
|
||||
h = self.conv(x)
|
||||
|
||||
if self.dropout is not None:
|
||||
h = self.dropout(h)
|
||||
|
||||
return h
|
||||
|
||||
|
||||
class ASPPModule(nn.Module):
|
||||
|
||||
def __init__(self, nin, nout, dilations=(4, 8, 16), activ=nn.ReLU):
|
||||
super(ASPPModule, self).__init__()
|
||||
self.conv1 = nn.Sequential(
|
||||
nn.AdaptiveAvgPool2d((1, None)),
|
||||
Conv2DBNActiv(nin, nin, 1, 1, 0, activ=activ)
|
||||
)
|
||||
self.conv2 = Conv2DBNActiv(nin, nin, 1, 1, 0, activ=activ)
|
||||
self.conv3 = SeperableConv2DBNActiv(
|
||||
nin, nin, 3, 1, dilations[0], dilations[0], activ=activ)
|
||||
self.conv4 = SeperableConv2DBNActiv(
|
||||
nin, nin, 3, 1, dilations[1], dilations[1], activ=activ)
|
||||
self.conv5 = SeperableConv2DBNActiv(
|
||||
nin, nin, 3, 1, dilations[2], dilations[2], activ=activ)
|
||||
self.bottleneck = nn.Sequential(
|
||||
Conv2DBNActiv(nin * 5, nout, 1, 1, 0, activ=activ),
|
||||
nn.Dropout2d(0.1)
|
||||
)
|
||||
|
||||
def forward(self, x):
|
||||
_, _, h, w = x.size()
|
||||
feat1 = F.interpolate(self.conv1(x), size=(h, w), mode='bilinear', align_corners=True)
|
||||
feat2 = self.conv2(x)
|
||||
feat3 = self.conv3(x)
|
||||
feat4 = self.conv4(x)
|
||||
feat5 = self.conv5(x)
|
||||
out = torch.cat((feat1, feat2, feat3, feat4, feat5), dim=1)
|
||||
bottle = self.bottleneck(out)
|
||||
return bottle
|
116
lib_v5/layers_123821KB.py
Normal file
116
lib_v5/layers_123821KB.py
Normal file
@ -0,0 +1,116 @@
|
||||
import torch
|
||||
from torch import nn
|
||||
import torch.nn.functional as F
|
||||
|
||||
from lib_v5 import spec_utils
|
||||
|
||||
|
||||
class Conv2DBNActiv(nn.Module):
|
||||
|
||||
def __init__(self, nin, nout, ksize=3, stride=1, pad=1, dilation=1, activ=nn.ReLU):
|
||||
super(Conv2DBNActiv, self).__init__()
|
||||
self.conv = nn.Sequential(
|
||||
nn.Conv2d(
|
||||
nin, nout,
|
||||
kernel_size=ksize,
|
||||
stride=stride,
|
||||
padding=pad,
|
||||
dilation=dilation,
|
||||
bias=False),
|
||||
nn.BatchNorm2d(nout),
|
||||
activ()
|
||||
)
|
||||
|
||||
def __call__(self, x):
|
||||
return self.conv(x)
|
||||
|
||||
|
||||
class SeperableConv2DBNActiv(nn.Module):
|
||||
|
||||
def __init__(self, nin, nout, ksize=3, stride=1, pad=1, dilation=1, activ=nn.ReLU):
|
||||
super(SeperableConv2DBNActiv, self).__init__()
|
||||
self.conv = nn.Sequential(
|
||||
nn.Conv2d(
|
||||
nin, nin,
|
||||
kernel_size=ksize,
|
||||
stride=stride,
|
||||
padding=pad,
|
||||
dilation=dilation,
|
||||
groups=nin,
|
||||
bias=False),
|
||||
nn.Conv2d(
|
||||
nin, nout,
|
||||
kernel_size=1,
|
||||
bias=False),
|
||||
nn.BatchNorm2d(nout),
|
||||
activ()
|
||||
)
|
||||
|
||||
def __call__(self, x):
|
||||
return self.conv(x)
|
||||
|
||||
|
||||
class Encoder(nn.Module):
|
||||
|
||||
def __init__(self, nin, nout, ksize=3, stride=1, pad=1, activ=nn.LeakyReLU):
|
||||
super(Encoder, self).__init__()
|
||||
self.conv1 = Conv2DBNActiv(nin, nout, ksize, 1, pad, activ=activ)
|
||||
self.conv2 = Conv2DBNActiv(nout, nout, ksize, stride, pad, activ=activ)
|
||||
|
||||
def __call__(self, x):
|
||||
skip = self.conv1(x)
|
||||
h = self.conv2(skip)
|
||||
|
||||
return h, skip
|
||||
|
||||
|
||||
class Decoder(nn.Module):
|
||||
|
||||
def __init__(self, nin, nout, ksize=3, stride=1, pad=1, activ=nn.ReLU, dropout=False):
|
||||
super(Decoder, self).__init__()
|
||||
self.conv = Conv2DBNActiv(nin, nout, ksize, 1, pad, activ=activ)
|
||||
self.dropout = nn.Dropout2d(0.1) if dropout else None
|
||||
|
||||
def __call__(self, x, skip=None):
|
||||
x = F.interpolate(x, scale_factor=2, mode='bilinear', align_corners=True)
|
||||
if skip is not None:
|
||||
skip = spec_utils.crop_center(skip, x)
|
||||
x = torch.cat([x, skip], dim=1)
|
||||
h = self.conv(x)
|
||||
|
||||
if self.dropout is not None:
|
||||
h = self.dropout(h)
|
||||
|
||||
return h
|
||||
|
||||
|
||||
class ASPPModule(nn.Module):
|
||||
|
||||
def __init__(self, nin, nout, dilations=(4, 8, 16), activ=nn.ReLU):
|
||||
super(ASPPModule, self).__init__()
|
||||
self.conv1 = nn.Sequential(
|
||||
nn.AdaptiveAvgPool2d((1, None)),
|
||||
Conv2DBNActiv(nin, nin, 1, 1, 0, activ=activ)
|
||||
)
|
||||
self.conv2 = Conv2DBNActiv(nin, nin, 1, 1, 0, activ=activ)
|
||||
self.conv3 = SeperableConv2DBNActiv(
|
||||
nin, nin, 3, 1, dilations[0], dilations[0], activ=activ)
|
||||
self.conv4 = SeperableConv2DBNActiv(
|
||||
nin, nin, 3, 1, dilations[1], dilations[1], activ=activ)
|
||||
self.conv5 = SeperableConv2DBNActiv(
|
||||
nin, nin, 3, 1, dilations[2], dilations[2], activ=activ)
|
||||
self.bottleneck = nn.Sequential(
|
||||
Conv2DBNActiv(nin * 5, nout, 1, 1, 0, activ=activ),
|
||||
nn.Dropout2d(0.1)
|
||||
)
|
||||
|
||||
def forward(self, x):
|
||||
_, _, h, w = x.size()
|
||||
feat1 = F.interpolate(self.conv1(x), size=(h, w), mode='bilinear', align_corners=True)
|
||||
feat2 = self.conv2(x)
|
||||
feat3 = self.conv3(x)
|
||||
feat4 = self.conv4(x)
|
||||
feat5 = self.conv5(x)
|
||||
out = torch.cat((feat1, feat2, feat3, feat4, feat5), dim=1)
|
||||
bottle = self.bottleneck(out)
|
||||
return bottle
|
122
lib_v5/layers_537238KB.py
Normal file
122
lib_v5/layers_537238KB.py
Normal file
@ -0,0 +1,122 @@
|
||||
import torch
|
||||
from torch import nn
|
||||
import torch.nn.functional as F
|
||||
|
||||
from lib_v5 import spec_utils
|
||||
|
||||
|
||||
class Conv2DBNActiv(nn.Module):
|
||||
|
||||
def __init__(self, nin, nout, ksize=3, stride=1, pad=1, dilation=1, activ=nn.ReLU):
|
||||
super(Conv2DBNActiv, self).__init__()
|
||||
self.conv = nn.Sequential(
|
||||
nn.Conv2d(
|
||||
nin, nout,
|
||||
kernel_size=ksize,
|
||||
stride=stride,
|
||||
padding=pad,
|
||||
dilation=dilation,
|
||||
bias=False),
|
||||
nn.BatchNorm2d(nout),
|
||||
activ()
|
||||
)
|
||||
|
||||
def __call__(self, x):
|
||||
return self.conv(x)
|
||||
|
||||
|
||||
class SeperableConv2DBNActiv(nn.Module):
|
||||
|
||||
def __init__(self, nin, nout, ksize=3, stride=1, pad=1, dilation=1, activ=nn.ReLU):
|
||||
super(SeperableConv2DBNActiv, self).__init__()
|
||||
self.conv = nn.Sequential(
|
||||
nn.Conv2d(
|
||||
nin, nin,
|
||||
kernel_size=ksize,
|
||||
stride=stride,
|
||||
padding=pad,
|
||||
dilation=dilation,
|
||||
groups=nin,
|
||||
bias=False),
|
||||
nn.Conv2d(
|
||||
nin, nout,
|
||||
kernel_size=1,
|
||||
bias=False),
|
||||
nn.BatchNorm2d(nout),
|
||||
activ()
|
||||
)
|
||||
|
||||
def __call__(self, x):
|
||||
return self.conv(x)
|
||||
|
||||
|
||||
class Encoder(nn.Module):
|
||||
|
||||
def __init__(self, nin, nout, ksize=3, stride=1, pad=1, activ=nn.LeakyReLU):
|
||||
super(Encoder, self).__init__()
|
||||
self.conv1 = Conv2DBNActiv(nin, nout, ksize, 1, pad, activ=activ)
|
||||
self.conv2 = Conv2DBNActiv(nout, nout, ksize, stride, pad, activ=activ)
|
||||
|
||||
def __call__(self, x):
|
||||
skip = self.conv1(x)
|
||||
h = self.conv2(skip)
|
||||
|
||||
return h, skip
|
||||
|
||||
|
||||
class Decoder(nn.Module):
|
||||
|
||||
def __init__(self, nin, nout, ksize=3, stride=1, pad=1, activ=nn.ReLU, dropout=False):
|
||||
super(Decoder, self).__init__()
|
||||
self.conv = Conv2DBNActiv(nin, nout, ksize, 1, pad, activ=activ)
|
||||
self.dropout = nn.Dropout2d(0.1) if dropout else None
|
||||
|
||||
def __call__(self, x, skip=None):
|
||||
x = F.interpolate(x, scale_factor=2, mode='bilinear', align_corners=True)
|
||||
if skip is not None:
|
||||
skip = spec_utils.crop_center(skip, x)
|
||||
x = torch.cat([x, skip], dim=1)
|
||||
h = self.conv(x)
|
||||
|
||||
if self.dropout is not None:
|
||||
h = self.dropout(h)
|
||||
|
||||
return h
|
||||
|
||||
|
||||
class ASPPModule(nn.Module):
|
||||
|
||||
def __init__(self, nin, nout, dilations=(4, 8, 16, 32, 64), activ=nn.ReLU):
|
||||
super(ASPPModule, self).__init__()
|
||||
self.conv1 = nn.Sequential(
|
||||
nn.AdaptiveAvgPool2d((1, None)),
|
||||
Conv2DBNActiv(nin, nin, 1, 1, 0, activ=activ)
|
||||
)
|
||||
self.conv2 = Conv2DBNActiv(nin, nin, 1, 1, 0, activ=activ)
|
||||
self.conv3 = SeperableConv2DBNActiv(
|
||||
nin, nin, 3, 1, dilations[0], dilations[0], activ=activ)
|
||||
self.conv4 = SeperableConv2DBNActiv(
|
||||
nin, nin, 3, 1, dilations[1], dilations[1], activ=activ)
|
||||
self.conv5 = SeperableConv2DBNActiv(
|
||||
nin, nin, 3, 1, dilations[2], dilations[2], activ=activ)
|
||||
self.conv6 = SeperableConv2DBNActiv(
|
||||
nin, nin, 3, 1, dilations[2], dilations[2], activ=activ)
|
||||
self.conv7 = SeperableConv2DBNActiv(
|
||||
nin, nin, 3, 1, dilations[2], dilations[2], activ=activ)
|
||||
self.bottleneck = nn.Sequential(
|
||||
Conv2DBNActiv(nin * 7, nout, 1, 1, 0, activ=activ),
|
||||
nn.Dropout2d(0.1)
|
||||
)
|
||||
|
||||
def forward(self, x):
|
||||
_, _, h, w = x.size()
|
||||
feat1 = F.interpolate(self.conv1(x), size=(h, w), mode='bilinear', align_corners=True)
|
||||
feat2 = self.conv2(x)
|
||||
feat3 = self.conv3(x)
|
||||
feat4 = self.conv4(x)
|
||||
feat5 = self.conv5(x)
|
||||
feat6 = self.conv6(x)
|
||||
feat7 = self.conv7(x)
|
||||
out = torch.cat((feat1, feat2, feat3, feat4, feat5, feat6, feat7), dim=1)
|
||||
bottle = self.bottleneck(out)
|
||||
return bottle
|
60
lib_v5/model_param_init.py
Normal file
60
lib_v5/model_param_init.py
Normal file
@ -0,0 +1,60 @@
|
||||
import json
|
||||
import os
|
||||
import pathlib
|
||||
|
||||
default_param = {}
|
||||
default_param['bins'] = 768
|
||||
default_param['unstable_bins'] = 9 # training only
|
||||
default_param['reduction_bins'] = 762 # training only
|
||||
default_param['sr'] = 44100
|
||||
default_param['pre_filter_start'] = 757
|
||||
default_param['pre_filter_stop'] = 768
|
||||
default_param['band'] = {}
|
||||
|
||||
|
||||
default_param['band'][1] = {
|
||||
'sr': 11025,
|
||||
'hl': 128,
|
||||
'n_fft': 960,
|
||||
'crop_start': 0,
|
||||
'crop_stop': 245,
|
||||
'lpf_start': 61, # inference only
|
||||
'res_type': 'polyphase'
|
||||
}
|
||||
|
||||
default_param['band'][2] = {
|
||||
'sr': 44100,
|
||||
'hl': 512,
|
||||
'n_fft': 1536,
|
||||
'crop_start': 24,
|
||||
'crop_stop': 547,
|
||||
'hpf_start': 81, # inference only
|
||||
'res_type': 'sinc_best'
|
||||
}
|
||||
|
||||
|
||||
def int_keys(d):
|
||||
r = {}
|
||||
for k, v in d:
|
||||
if k.isdigit():
|
||||
k = int(k)
|
||||
r[k] = v
|
||||
return r
|
||||
|
||||
|
||||
class ModelParameters(object):
|
||||
def __init__(self, config_path=''):
|
||||
if '.pth' == pathlib.Path(config_path).suffix:
|
||||
import zipfile
|
||||
|
||||
with zipfile.ZipFile(config_path, 'r') as zip:
|
||||
self.param = json.loads(zip.read('param.json'), object_pairs_hook=int_keys)
|
||||
elif '.json' == pathlib.Path(config_path).suffix:
|
||||
with open(config_path, 'r') as f:
|
||||
self.param = json.loads(f.read(), object_pairs_hook=int_keys)
|
||||
else:
|
||||
self.param = default_param
|
||||
|
||||
for k in ['mid_side', 'mid_side_b', 'mid_side_b2', 'stereo_w', 'stereo_n', 'reverse']:
|
||||
if not k in self.param:
|
||||
self.param[k] = False
|
19
lib_v5/modelparams/1band_sr32000_hl512.json
Normal file
19
lib_v5/modelparams/1band_sr32000_hl512.json
Normal file
@ -0,0 +1,19 @@
|
||||
{
|
||||
"bins": 1024,
|
||||
"unstable_bins": 0,
|
||||
"reduction_bins": 0,
|
||||
"band": {
|
||||
"1": {
|
||||
"sr": 32000,
|
||||
"hl": 512,
|
||||
"n_fft": 2048,
|
||||
"crop_start": 0,
|
||||
"crop_stop": 1024,
|
||||
"hpf_start": -1,
|
||||
"res_type": "kaiser_fast"
|
||||
}
|
||||
},
|
||||
"sr": 32000,
|
||||
"pre_filter_start": 1000,
|
||||
"pre_filter_stop": 1021
|
||||
}
|
19
lib_v5/modelparams/1band_sr44100_hl256.json
Normal file
19
lib_v5/modelparams/1band_sr44100_hl256.json
Normal file
@ -0,0 +1,19 @@
|
||||
{
|
||||
"bins": 256,
|
||||
"unstable_bins": 0,
|
||||
"reduction_bins": 0,
|
||||
"band": {
|
||||
"1": {
|
||||
"sr": 44100,
|
||||
"hl": 256,
|
||||
"n_fft": 512,
|
||||
"crop_start": 0,
|
||||
"crop_stop": 256,
|
||||
"hpf_start": -1,
|
||||
"res_type": "sinc_best"
|
||||
}
|
||||
},
|
||||
"sr": 44100,
|
||||
"pre_filter_start": 256,
|
||||
"pre_filter_stop": 256
|
||||
}
|
19
lib_v5/modelparams/1band_sr44100_hl512.json
Normal file
19
lib_v5/modelparams/1band_sr44100_hl512.json
Normal file
@ -0,0 +1,19 @@
|
||||
{
|
||||
"bins": 1024,
|
||||
"unstable_bins": 0,
|
||||
"reduction_bins": 0,
|
||||
"band": {
|
||||
"1": {
|
||||
"sr": 44100,
|
||||
"hl": 512,
|
||||
"n_fft": 2048,
|
||||
"crop_start": 0,
|
||||
"crop_stop": 1024,
|
||||
"hpf_start": -1,
|
||||
"res_type": "sinc_best"
|
||||
}
|
||||
},
|
||||
"sr": 44100,
|
||||
"pre_filter_start": 1023,
|
||||
"pre_filter_stop": 1024
|
||||
}
|
30
lib_v5/modelparams/2band_32000.json
Normal file
30
lib_v5/modelparams/2band_32000.json
Normal file
@ -0,0 +1,30 @@
|
||||
{
|
||||
"bins": 768,
|
||||
"unstable_bins": 7,
|
||||
"reduction_bins": 705,
|
||||
"band": {
|
||||
"1": {
|
||||
"sr": 6000,
|
||||
"hl": 66,
|
||||
"n_fft": 512,
|
||||
"crop_start": 0,
|
||||
"crop_stop": 240,
|
||||
"lpf_start": 60,
|
||||
"lpf_stop": 118,
|
||||
"res_type": "sinc_fastest"
|
||||
},
|
||||
"2": {
|
||||
"sr": 32000,
|
||||
"hl": 352,
|
||||
"n_fft": 1024,
|
||||
"crop_start": 22,
|
||||
"crop_stop": 505,
|
||||
"hpf_start": 44,
|
||||
"hpf_stop": 23,
|
||||
"res_type": "sinc_medium"
|
||||
}
|
||||
},
|
||||
"sr": 32000,
|
||||
"pre_filter_start": 710,
|
||||
"pre_filter_stop": 731
|
||||
}
|
30
lib_v5/modelparams/2band_44100_lofi.json
Normal file
30
lib_v5/modelparams/2band_44100_lofi.json
Normal file
@ -0,0 +1,30 @@
|
||||
{
|
||||
"bins": 512,
|
||||
"unstable_bins": 7,
|
||||
"reduction_bins": 510,
|
||||
"band": {
|
||||
"1": {
|
||||
"sr": 11025,
|
||||
"hl": 160,
|
||||
"n_fft": 768,
|
||||
"crop_start": 0,
|
||||
"crop_stop": 192,
|
||||
"lpf_start": 41,
|
||||
"lpf_stop": 139,
|
||||
"res_type": "sinc_fastest"
|
||||
},
|
||||
"2": {
|
||||
"sr": 44100,
|
||||
"hl": 640,
|
||||
"n_fft": 1024,
|
||||
"crop_start": 10,
|
||||
"crop_stop": 320,
|
||||
"hpf_start": 47,
|
||||
"hpf_stop": 15,
|
||||
"res_type": "sinc_medium"
|
||||
}
|
||||
},
|
||||
"sr": 44100,
|
||||
"pre_filter_start": 510,
|
||||
"pre_filter_stop": 512
|
||||
}
|
30
lib_v5/modelparams/2band_48000.json
Normal file
30
lib_v5/modelparams/2band_48000.json
Normal file
@ -0,0 +1,30 @@
|
||||
{
|
||||
"bins": 768,
|
||||
"unstable_bins": 7,
|
||||
"reduction_bins": 705,
|
||||
"band": {
|
||||
"1": {
|
||||
"sr": 6000,
|
||||
"hl": 66,
|
||||
"n_fft": 512,
|
||||
"crop_start": 0,
|
||||
"crop_stop": 240,
|
||||
"lpf_start": 60,
|
||||
"lpf_stop": 240,
|
||||
"res_type": "sinc_fastest"
|
||||
},
|
||||
"2": {
|
||||
"sr": 48000,
|
||||
"hl": 528,
|
||||
"n_fft": 1536,
|
||||
"crop_start": 22,
|
||||
"crop_stop": 505,
|
||||
"hpf_start": 82,
|
||||
"hpf_stop": 22,
|
||||
"res_type": "sinc_medium"
|
||||
}
|
||||
},
|
||||
"sr": 48000,
|
||||
"pre_filter_start": 710,
|
||||
"pre_filter_stop": 731
|
||||
}
|
42
lib_v5/modelparams/3band_44100.json
Normal file
42
lib_v5/modelparams/3band_44100.json
Normal file
@ -0,0 +1,42 @@
|
||||
{
|
||||
"bins": 768,
|
||||
"unstable_bins": 5,
|
||||
"reduction_bins": 733,
|
||||
"band": {
|
||||
"1": {
|
||||
"sr": 11025,
|
||||
"hl": 128,
|
||||
"n_fft": 768,
|
||||
"crop_start": 0,
|
||||
"crop_stop": 278,
|
||||
"lpf_start": 28,
|
||||
"lpf_stop": 140,
|
||||
"res_type": "polyphase"
|
||||
},
|
||||
"2": {
|
||||
"sr": 22050,
|
||||
"hl": 256,
|
||||
"n_fft": 768,
|
||||
"crop_start": 14,
|
||||
"crop_stop": 322,
|
||||
"hpf_start": 70,
|
||||
"hpf_stop": 14,
|
||||
"lpf_start": 283,
|
||||
"lpf_stop": 314,
|
||||
"res_type": "polyphase"
|
||||
},
|
||||
"3": {
|
||||
"sr": 44100,
|
||||
"hl": 512,
|
||||
"n_fft": 768,
|
||||
"crop_start": 131,
|
||||
"crop_stop": 313,
|
||||
"hpf_start": 154,
|
||||
"hpf_stop": 141,
|
||||
"res_type": "sinc_medium"
|
||||
}
|
||||
},
|
||||
"sr": 44100,
|
||||
"pre_filter_start": 757,
|
||||
"pre_filter_stop": 768
|
||||
}
|
43
lib_v5/modelparams/3band_44100_mid.json
Normal file
43
lib_v5/modelparams/3band_44100_mid.json
Normal file
@ -0,0 +1,43 @@
|
||||
{
|
||||
"mid_side": true,
|
||||
"bins": 768,
|
||||
"unstable_bins": 5,
|
||||
"reduction_bins": 733,
|
||||
"band": {
|
||||
"1": {
|
||||
"sr": 11025,
|
||||
"hl": 128,
|
||||
"n_fft": 768,
|
||||
"crop_start": 0,
|
||||
"crop_stop": 278,
|
||||
"lpf_start": 28,
|
||||
"lpf_stop": 140,
|
||||
"res_type": "polyphase"
|
||||
},
|
||||
"2": {
|
||||
"sr": 22050,
|
||||
"hl": 256,
|
||||
"n_fft": 768,
|
||||
"crop_start": 14,
|
||||
"crop_stop": 322,
|
||||
"hpf_start": 70,
|
||||
"hpf_stop": 14,
|
||||
"lpf_start": 283,
|
||||
"lpf_stop": 314,
|
||||
"res_type": "polyphase"
|
||||
},
|
||||
"3": {
|
||||
"sr": 44100,
|
||||
"hl": 512,
|
||||
"n_fft": 768,
|
||||
"crop_start": 131,
|
||||
"crop_stop": 313,
|
||||
"hpf_start": 154,
|
||||
"hpf_stop": 141,
|
||||
"res_type": "sinc_medium"
|
||||
}
|
||||
},
|
||||
"sr": 44100,
|
||||
"pre_filter_start": 757,
|
||||
"pre_filter_stop": 768
|
||||
}
|
43
lib_v5/modelparams/3band_44100_msb2.json
Normal file
43
lib_v5/modelparams/3band_44100_msb2.json
Normal file
@ -0,0 +1,43 @@
|
||||
{
|
||||
"mid_side_b2": true,
|
||||
"bins": 640,
|
||||
"unstable_bins": 7,
|
||||
"reduction_bins": 565,
|
||||
"band": {
|
||||
"1": {
|
||||
"sr": 11025,
|
||||
"hl": 108,
|
||||
"n_fft": 1024,
|
||||
"crop_start": 0,
|
||||
"crop_stop": 187,
|
||||
"lpf_start": 92,
|
||||
"lpf_stop": 186,
|
||||
"res_type": "polyphase"
|
||||
},
|
||||
"2": {
|
||||
"sr": 22050,
|
||||
"hl": 216,
|
||||
"n_fft": 768,
|
||||
"crop_start": 0,
|
||||
"crop_stop": 212,
|
||||
"hpf_start": 68,
|
||||
"hpf_stop": 34,
|
||||
"lpf_start": 174,
|
||||
"lpf_stop": 209,
|
||||
"res_type": "polyphase"
|
||||
},
|
||||
"3": {
|
||||
"sr": 44100,
|
||||
"hl": 432,
|
||||
"n_fft": 640,
|
||||
"crop_start": 66,
|
||||
"crop_stop": 307,
|
||||
"hpf_start": 86,
|
||||
"hpf_stop": 72,
|
||||
"res_type": "polyphase"
|
||||
}
|
||||
},
|
||||
"sr": 44100,
|
||||
"pre_filter_start": 639,
|
||||
"pre_filter_stop": 640
|
||||
}
|
54
lib_v5/modelparams/4band_44100.json
Normal file
54
lib_v5/modelparams/4band_44100.json
Normal file
@ -0,0 +1,54 @@
|
||||
{
|
||||
"bins": 768,
|
||||
"unstable_bins": 7,
|
||||
"reduction_bins": 668,
|
||||
"band": {
|
||||
"1": {
|
||||
"sr": 11025,
|
||||
"hl": 128,
|
||||
"n_fft": 1024,
|
||||
"crop_start": 0,
|
||||
"crop_stop": 186,
|
||||
"lpf_start": 37,
|
||||
"lpf_stop": 73,
|
||||
"res_type": "polyphase"
|
||||
},
|
||||
"2": {
|
||||
"sr": 11025,
|
||||
"hl": 128,
|
||||
"n_fft": 512,
|
||||
"crop_start": 4,
|
||||
"crop_stop": 185,
|
||||
"hpf_start": 36,
|
||||
"hpf_stop": 18,
|
||||
"lpf_start": 93,
|
||||
"lpf_stop": 185,
|
||||
"res_type": "polyphase"
|
||||
},
|
||||
"3": {
|
||||
"sr": 22050,
|
||||
"hl": 256,
|
||||
"n_fft": 512,
|
||||
"crop_start": 46,
|
||||
"crop_stop": 186,
|
||||
"hpf_start": 93,
|
||||
"hpf_stop": 46,
|
||||
"lpf_start": 164,
|
||||
"lpf_stop": 186,
|
||||
"res_type": "polyphase"
|
||||
},
|
||||
"4": {
|
||||
"sr": 44100,
|
||||
"hl": 512,
|
||||
"n_fft": 768,
|
||||
"crop_start": 121,
|
||||
"crop_stop": 382,
|
||||
"hpf_start": 138,
|
||||
"hpf_stop": 123,
|
||||
"res_type": "sinc_medium"
|
||||
}
|
||||
},
|
||||
"sr": 44100,
|
||||
"pre_filter_start": 740,
|
||||
"pre_filter_stop": 768
|
||||
}
|
55
lib_v5/modelparams/4band_44100_mid.json
Normal file
55
lib_v5/modelparams/4band_44100_mid.json
Normal file
@ -0,0 +1,55 @@
|
||||
{
|
||||
"bins": 768,
|
||||
"unstable_bins": 7,
|
||||
"mid_side": true,
|
||||
"reduction_bins": 668,
|
||||
"band": {
|
||||
"1": {
|
||||
"sr": 11025,
|
||||
"hl": 128,
|
||||
"n_fft": 1024,
|
||||
"crop_start": 0,
|
||||
"crop_stop": 186,
|
||||
"lpf_start": 37,
|
||||
"lpf_stop": 73,
|
||||
"res_type": "polyphase"
|
||||
},
|
||||
"2": {
|
||||
"sr": 11025,
|
||||
"hl": 128,
|
||||
"n_fft": 512,
|
||||
"crop_start": 4,
|
||||
"crop_stop": 185,
|
||||
"hpf_start": 36,
|
||||
"hpf_stop": 18,
|
||||
"lpf_start": 93,
|
||||
"lpf_stop": 185,
|
||||
"res_type": "polyphase"
|
||||
},
|
||||
"3": {
|
||||
"sr": 22050,
|
||||
"hl": 256,
|
||||
"n_fft": 512,
|
||||
"crop_start": 46,
|
||||
"crop_stop": 186,
|
||||
"hpf_start": 93,
|
||||
"hpf_stop": 46,
|
||||
"lpf_start": 164,
|
||||
"lpf_stop": 186,
|
||||
"res_type": "polyphase"
|
||||
},
|
||||
"4": {
|
||||
"sr": 44100,
|
||||
"hl": 512,
|
||||
"n_fft": 768,
|
||||
"crop_start": 121,
|
||||
"crop_stop": 382,
|
||||
"hpf_start": 138,
|
||||
"hpf_stop": 123,
|
||||
"res_type": "sinc_medium"
|
||||
}
|
||||
},
|
||||
"sr": 44100,
|
||||
"pre_filter_start": 740,
|
||||
"pre_filter_stop": 768
|
||||
}
|
55
lib_v5/modelparams/4band_44100_msb.json
Normal file
55
lib_v5/modelparams/4band_44100_msb.json
Normal file
@ -0,0 +1,55 @@
|
||||
{
|
||||
"mid_side_b": true,
|
||||
"bins": 768,
|
||||
"unstable_bins": 7,
|
||||
"reduction_bins": 668,
|
||||
"band": {
|
||||
"1": {
|
||||
"sr": 11025,
|
||||
"hl": 128,
|
||||
"n_fft": 1024,
|
||||
"crop_start": 0,
|
||||
"crop_stop": 186,
|
||||
"lpf_start": 37,
|
||||
"lpf_stop": 73,
|
||||
"res_type": "polyphase"
|
||||
},
|
||||
"2": {
|
||||
"sr": 11025,
|
||||
"hl": 128,
|
||||
"n_fft": 512,
|
||||
"crop_start": 4,
|
||||
"crop_stop": 185,
|
||||
"hpf_start": 36,
|
||||
"hpf_stop": 18,
|
||||
"lpf_start": 93,
|
||||
"lpf_stop": 185,
|
||||
"res_type": "polyphase"
|
||||
},
|
||||
"3": {
|
||||
"sr": 22050,
|
||||
"hl": 256,
|
||||
"n_fft": 512,
|
||||
"crop_start": 46,
|
||||
"crop_stop": 186,
|
||||
"hpf_start": 93,
|
||||
"hpf_stop": 46,
|
||||
"lpf_start": 164,
|
||||
"lpf_stop": 186,
|
||||
"res_type": "polyphase"
|
||||
},
|
||||
"4": {
|
||||
"sr": 44100,
|
||||
"hl": 512,
|
||||
"n_fft": 768,
|
||||
"crop_start": 121,
|
||||
"crop_stop": 382,
|
||||
"hpf_start": 138,
|
||||
"hpf_stop": 123,
|
||||
"res_type": "sinc_medium"
|
||||
}
|
||||
},
|
||||
"sr": 44100,
|
||||
"pre_filter_start": 740,
|
||||
"pre_filter_stop": 768
|
||||
}
|
55
lib_v5/modelparams/4band_44100_msb2.json
Normal file
55
lib_v5/modelparams/4band_44100_msb2.json
Normal file
@ -0,0 +1,55 @@
|
||||
{
|
||||
"mid_side_b": true,
|
||||
"bins": 768,
|
||||
"unstable_bins": 7,
|
||||
"reduction_bins": 668,
|
||||
"band": {
|
||||
"1": {
|
||||
"sr": 11025,
|
||||
"hl": 128,
|
||||
"n_fft": 1024,
|
||||
"crop_start": 0,
|
||||
"crop_stop": 186,
|
||||
"lpf_start": 37,
|
||||
"lpf_stop": 73,
|
||||
"res_type": "polyphase"
|
||||
},
|
||||
"2": {
|
||||
"sr": 11025,
|
||||
"hl": 128,
|
||||
"n_fft": 512,
|
||||
"crop_start": 4,
|
||||
"crop_stop": 185,
|
||||
"hpf_start": 36,
|
||||
"hpf_stop": 18,
|
||||
"lpf_start": 93,
|
||||
"lpf_stop": 185,
|
||||
"res_type": "polyphase"
|
||||
},
|
||||
"3": {
|
||||
"sr": 22050,
|
||||
"hl": 256,
|
||||
"n_fft": 512,
|
||||
"crop_start": 46,
|
||||
"crop_stop": 186,
|
||||
"hpf_start": 93,
|
||||
"hpf_stop": 46,
|
||||
"lpf_start": 164,
|
||||
"lpf_stop": 186,
|
||||
"res_type": "polyphase"
|
||||
},
|
||||
"4": {
|
||||
"sr": 44100,
|
||||
"hl": 512,
|
||||
"n_fft": 768,
|
||||
"crop_start": 121,
|
||||
"crop_stop": 382,
|
||||
"hpf_start": 138,
|
||||
"hpf_stop": 123,
|
||||
"res_type": "sinc_medium"
|
||||
}
|
||||
},
|
||||
"sr": 44100,
|
||||
"pre_filter_start": 740,
|
||||
"pre_filter_stop": 768
|
||||
}
|
55
lib_v5/modelparams/4band_44100_reverse.json
Normal file
55
lib_v5/modelparams/4band_44100_reverse.json
Normal file
@ -0,0 +1,55 @@
|
||||
{
|
||||
"reverse": true,
|
||||
"bins": 768,
|
||||
"unstable_bins": 7,
|
||||
"reduction_bins": 668,
|
||||
"band": {
|
||||
"1": {
|
||||
"sr": 11025,
|
||||
"hl": 128,
|
||||
"n_fft": 1024,
|
||||
"crop_start": 0,
|
||||
"crop_stop": 186,
|
||||
"lpf_start": 37,
|
||||
"lpf_stop": 73,
|
||||
"res_type": "polyphase"
|
||||
},
|
||||
"2": {
|
||||
"sr": 11025,
|
||||
"hl": 128,
|
||||
"n_fft": 512,
|
||||
"crop_start": 4,
|
||||
"crop_stop": 185,
|
||||
"hpf_start": 36,
|
||||
"hpf_stop": 18,
|
||||
"lpf_start": 93,
|
||||
"lpf_stop": 185,
|
||||
"res_type": "polyphase"
|
||||
},
|
||||
"3": {
|
||||
"sr": 22050,
|
||||
"hl": 256,
|
||||
"n_fft": 512,
|
||||
"crop_start": 46,
|
||||
"crop_stop": 186,
|
||||
"hpf_start": 93,
|
||||
"hpf_stop": 46,
|
||||
"lpf_start": 164,
|
||||
"lpf_stop": 186,
|
||||
"res_type": "polyphase"
|
||||
},
|
||||
"4": {
|
||||
"sr": 44100,
|
||||
"hl": 512,
|
||||
"n_fft": 768,
|
||||
"crop_start": 121,
|
||||
"crop_stop": 382,
|
||||
"hpf_start": 138,
|
||||
"hpf_stop": 123,
|
||||
"res_type": "sinc_medium"
|
||||
}
|
||||
},
|
||||
"sr": 44100,
|
||||
"pre_filter_start": 740,
|
||||
"pre_filter_stop": 768
|
||||
}
|
55
lib_v5/modelparams/4band_44100_sw.json
Normal file
55
lib_v5/modelparams/4band_44100_sw.json
Normal file
@ -0,0 +1,55 @@
|
||||
{
|
||||
"stereo_w": true,
|
||||
"bins": 768,
|
||||
"unstable_bins": 7,
|
||||
"reduction_bins": 668,
|
||||
"band": {
|
||||
"1": {
|
||||
"sr": 11025,
|
||||
"hl": 128,
|
||||
"n_fft": 1024,
|
||||
"crop_start": 0,
|
||||
"crop_stop": 186,
|
||||
"lpf_start": 37,
|
||||
"lpf_stop": 73,
|
||||
"res_type": "polyphase"
|
||||
},
|
||||
"2": {
|
||||
"sr": 11025,
|
||||
"hl": 128,
|
||||
"n_fft": 512,
|
||||
"crop_start": 4,
|
||||
"crop_stop": 185,
|
||||
"hpf_start": 36,
|
||||
"hpf_stop": 18,
|
||||
"lpf_start": 93,
|
||||
"lpf_stop": 185,
|
||||
"res_type": "polyphase"
|
||||
},
|
||||
"3": {
|
||||
"sr": 22050,
|
||||
"hl": 256,
|
||||
"n_fft": 512,
|
||||
"crop_start": 46,
|
||||
"crop_stop": 186,
|
||||
"hpf_start": 93,
|
||||
"hpf_stop": 46,
|
||||
"lpf_start": 164,
|
||||
"lpf_stop": 186,
|
||||
"res_type": "polyphase"
|
||||
},
|
||||
"4": {
|
||||
"sr": 44100,
|
||||
"hl": 512,
|
||||
"n_fft": 768,
|
||||
"crop_start": 121,
|
||||
"crop_stop": 382,
|
||||
"hpf_start": 138,
|
||||
"hpf_stop": 123,
|
||||
"res_type": "sinc_medium"
|
||||
}
|
||||
},
|
||||
"sr": 44100,
|
||||
"pre_filter_start": 740,
|
||||
"pre_filter_stop": 768
|
||||
}
|
54
lib_v5/modelparams/4band_v2.json
Normal file
54
lib_v5/modelparams/4band_v2.json
Normal file
@ -0,0 +1,54 @@
|
||||
{
|
||||
"bins": 672,
|
||||
"unstable_bins": 8,
|
||||
"reduction_bins": 637,
|
||||
"band": {
|
||||
"1": {
|
||||
"sr": 7350,
|
||||
"hl": 80,
|
||||
"n_fft": 640,
|
||||
"crop_start": 0,
|
||||
"crop_stop": 85,
|
||||
"lpf_start": 25,
|
||||
"lpf_stop": 53,
|
||||
"res_type": "polyphase"
|
||||
},
|
||||
"2": {
|
||||
"sr": 7350,
|
||||
"hl": 80,
|
||||
"n_fft": 320,
|
||||
"crop_start": 4,
|
||||
"crop_stop": 87,
|
||||
"hpf_start": 25,
|
||||
"hpf_stop": 12,
|
||||
"lpf_start": 31,
|
||||
"lpf_stop": 62,
|
||||
"res_type": "polyphase"
|
||||
},
|
||||
"3": {
|
||||
"sr": 14700,
|
||||
"hl": 160,
|
||||
"n_fft": 512,
|
||||
"crop_start": 17,
|
||||
"crop_stop": 216,
|
||||
"hpf_start": 48,
|
||||
"hpf_stop": 24,
|
||||
"lpf_start": 139,
|
||||
"lpf_stop": 210,
|
||||
"res_type": "polyphase"
|
||||
},
|
||||
"4": {
|
||||
"sr": 44100,
|
||||
"hl": 480,
|
||||
"n_fft": 960,
|
||||
"crop_start": 78,
|
||||
"crop_stop": 383,
|
||||
"hpf_start": 130,
|
||||
"hpf_stop": 86,
|
||||
"res_type": "kaiser_fast"
|
||||
}
|
||||
},
|
||||
"sr": 44100,
|
||||
"pre_filter_start": 668,
|
||||
"pre_filter_stop": 672
|
||||
}
|
55
lib_v5/modelparams/4band_v2_sn.json
Normal file
55
lib_v5/modelparams/4band_v2_sn.json
Normal file
@ -0,0 +1,55 @@
|
||||
{
|
||||
"bins": 672,
|
||||
"unstable_bins": 8,
|
||||
"reduction_bins": 637,
|
||||
"band": {
|
||||
"1": {
|
||||
"sr": 7350,
|
||||
"hl": 80,
|
||||
"n_fft": 640,
|
||||
"crop_start": 0,
|
||||
"crop_stop": 85,
|
||||
"lpf_start": 25,
|
||||
"lpf_stop": 53,
|
||||
"res_type": "polyphase"
|
||||
},
|
||||
"2": {
|
||||
"sr": 7350,
|
||||
"hl": 80,
|
||||
"n_fft": 320,
|
||||
"crop_start": 4,
|
||||
"crop_stop": 87,
|
||||
"hpf_start": 25,
|
||||
"hpf_stop": 12,
|
||||
"lpf_start": 31,
|
||||
"lpf_stop": 62,
|
||||
"res_type": "polyphase"
|
||||
},
|
||||
"3": {
|
||||
"sr": 14700,
|
||||
"hl": 160,
|
||||
"n_fft": 512,
|
||||
"crop_start": 17,
|
||||
"crop_stop": 216,
|
||||
"hpf_start": 48,
|
||||
"hpf_stop": 24,
|
||||
"lpf_start": 139,
|
||||
"lpf_stop": 210,
|
||||
"res_type": "polyphase"
|
||||
},
|
||||
"4": {
|
||||
"sr": 44100,
|
||||
"hl": 480,
|
||||
"n_fft": 960,
|
||||
"crop_start": 78,
|
||||
"crop_stop": 383,
|
||||
"hpf_start": 130,
|
||||
"hpf_stop": 86,
|
||||
"convert_channels": "stereo_n",
|
||||
"res_type": "kaiser_fast"
|
||||
}
|
||||
},
|
||||
"sr": 44100,
|
||||
"pre_filter_start": 668,
|
||||
"pre_filter_stop": 672
|
||||
}
|
43
lib_v5/modelparams/ensemble.json
Normal file
43
lib_v5/modelparams/ensemble.json
Normal file
@ -0,0 +1,43 @@
|
||||
{
|
||||
"mid_side_b2": true,
|
||||
"bins": 1280,
|
||||
"unstable_bins": 7,
|
||||
"reduction_bins": 565,
|
||||
"band": {
|
||||
"1": {
|
||||
"sr": 11025,
|
||||
"hl": 108,
|
||||
"n_fft": 2048,
|
||||
"crop_start": 0,
|
||||
"crop_stop": 374,
|
||||
"lpf_start": 92,
|
||||
"lpf_stop": 186,
|
||||
"res_type": "polyphase"
|
||||
},
|
||||
"2": {
|
||||
"sr": 22050,
|
||||
"hl": 216,
|
||||
"n_fft": 1536,
|
||||
"crop_start": 0,
|
||||
"crop_stop": 424,
|
||||
"hpf_start": 68,
|
||||
"hpf_stop": 34,
|
||||
"lpf_start": 348,
|
||||
"lpf_stop": 418,
|
||||
"res_type": "polyphase"
|
||||
},
|
||||
"3": {
|
||||
"sr": 44100,
|
||||
"hl": 432,
|
||||
"n_fft": 1280,
|
||||
"crop_start": 132,
|
||||
"crop_stop": 614,
|
||||
"hpf_start": 172,
|
||||
"hpf_stop": 144,
|
||||
"res_type": "polyphase"
|
||||
}
|
||||
},
|
||||
"sr": 44100,
|
||||
"pre_filter_start": 1280,
|
||||
"pre_filter_stop": 1280
|
||||
}
|
112
lib_v5/nets_123812KB.py
Normal file
112
lib_v5/nets_123812KB.py
Normal file
@ -0,0 +1,112 @@
|
||||
import torch
|
||||
from torch import nn
|
||||
import torch.nn.functional as F
|
||||
|
||||
from lib_v5 import layers_123821KB as layers
|
||||
|
||||
|
||||
class BaseASPPNet(nn.Module):
|
||||
|
||||
def __init__(self, nin, ch, dilations=(4, 8, 16)):
|
||||
super(BaseASPPNet, self).__init__()
|
||||
self.enc1 = layers.Encoder(nin, ch, 3, 2, 1)
|
||||
self.enc2 = layers.Encoder(ch, ch * 2, 3, 2, 1)
|
||||
self.enc3 = layers.Encoder(ch * 2, ch * 4, 3, 2, 1)
|
||||
self.enc4 = layers.Encoder(ch * 4, ch * 8, 3, 2, 1)
|
||||
|
||||
self.aspp = layers.ASPPModule(ch * 8, ch * 16, dilations)
|
||||
|
||||
self.dec4 = layers.Decoder(ch * (8 + 16), ch * 8, 3, 1, 1)
|
||||
self.dec3 = layers.Decoder(ch * (4 + 8), ch * 4, 3, 1, 1)
|
||||
self.dec2 = layers.Decoder(ch * (2 + 4), ch * 2, 3, 1, 1)
|
||||
self.dec1 = layers.Decoder(ch * (1 + 2), ch, 3, 1, 1)
|
||||
|
||||
def __call__(self, x):
|
||||
h, e1 = self.enc1(x)
|
||||
h, e2 = self.enc2(h)
|
||||
h, e3 = self.enc3(h)
|
||||
h, e4 = self.enc4(h)
|
||||
|
||||
h = self.aspp(h)
|
||||
|
||||
h = self.dec4(h, e4)
|
||||
h = self.dec3(h, e3)
|
||||
h = self.dec2(h, e2)
|
||||
h = self.dec1(h, e1)
|
||||
|
||||
return h
|
||||
|
||||
|
||||
class CascadedASPPNet(nn.Module):
|
||||
|
||||
def __init__(self, n_fft):
|
||||
super(CascadedASPPNet, self).__init__()
|
||||
self.stg1_low_band_net = BaseASPPNet(2, 32)
|
||||
self.stg1_high_band_net = BaseASPPNet(2, 32)
|
||||
|
||||
self.stg2_bridge = layers.Conv2DBNActiv(34, 16, 1, 1, 0)
|
||||
self.stg2_full_band_net = BaseASPPNet(16, 32)
|
||||
|
||||
self.stg3_bridge = layers.Conv2DBNActiv(66, 32, 1, 1, 0)
|
||||
self.stg3_full_band_net = BaseASPPNet(32, 64)
|
||||
|
||||
self.out = nn.Conv2d(64, 2, 1, bias=False)
|
||||
self.aux1_out = nn.Conv2d(32, 2, 1, bias=False)
|
||||
self.aux2_out = nn.Conv2d(32, 2, 1, bias=False)
|
||||
|
||||
self.max_bin = n_fft // 2
|
||||
self.output_bin = n_fft // 2 + 1
|
||||
|
||||
self.offset = 128
|
||||
|
||||
def forward(self, x, aggressiveness=None):
|
||||
mix = x.detach()
|
||||
x = x.clone()
|
||||
|
||||
x = x[:, :, :self.max_bin]
|
||||
|
||||
bandw = x.size()[2] // 2
|
||||
aux1 = torch.cat([
|
||||
self.stg1_low_band_net(x[:, :, :bandw]),
|
||||
self.stg1_high_band_net(x[:, :, bandw:])
|
||||
], dim=2)
|
||||
|
||||
h = torch.cat([x, aux1], dim=1)
|
||||
aux2 = self.stg2_full_band_net(self.stg2_bridge(h))
|
||||
|
||||
h = torch.cat([x, aux1, aux2], dim=1)
|
||||
h = self.stg3_full_band_net(self.stg3_bridge(h))
|
||||
|
||||
mask = torch.sigmoid(self.out(h))
|
||||
mask = F.pad(
|
||||
input=mask,
|
||||
pad=(0, 0, 0, self.output_bin - mask.size()[2]),
|
||||
mode='replicate')
|
||||
|
||||
if self.training:
|
||||
aux1 = torch.sigmoid(self.aux1_out(aux1))
|
||||
aux1 = F.pad(
|
||||
input=aux1,
|
||||
pad=(0, 0, 0, self.output_bin - aux1.size()[2]),
|
||||
mode='replicate')
|
||||
aux2 = torch.sigmoid(self.aux2_out(aux2))
|
||||
aux2 = F.pad(
|
||||
input=aux2,
|
||||
pad=(0, 0, 0, self.output_bin - aux2.size()[2]),
|
||||
mode='replicate')
|
||||
return mask * mix, aux1 * mix, aux2 * mix
|
||||
else:
|
||||
if aggressiveness:
|
||||
mask[:, :, :aggressiveness['split_bin']] = torch.pow(mask[:, :, :aggressiveness['split_bin']], 1 + aggressiveness['value'] / 3)
|
||||
mask[:, :, aggressiveness['split_bin']:] = torch.pow(mask[:, :, aggressiveness['split_bin']:], 1 + aggressiveness['value'])
|
||||
|
||||
return mask * mix
|
||||
|
||||
def predict(self, x_mag, aggressiveness=None):
|
||||
h = self.forward(x_mag, aggressiveness)
|
||||
|
||||
if self.offset > 0:
|
||||
h = h[:, :, :, self.offset:-self.offset]
|
||||
assert h.size()[3] > 0
|
||||
|
||||
return h
|
112
lib_v5/nets_123821KB.py
Normal file
112
lib_v5/nets_123821KB.py
Normal file
@ -0,0 +1,112 @@
|
||||
import torch
|
||||
from torch import nn
|
||||
import torch.nn.functional as F
|
||||
|
||||
from lib_v5 import layers_123821KB as layers
|
||||
|
||||
|
||||
class BaseASPPNet(nn.Module):
|
||||
|
||||
def __init__(self, nin, ch, dilations=(4, 8, 16)):
|
||||
super(BaseASPPNet, self).__init__()
|
||||
self.enc1 = layers.Encoder(nin, ch, 3, 2, 1)
|
||||
self.enc2 = layers.Encoder(ch, ch * 2, 3, 2, 1)
|
||||
self.enc3 = layers.Encoder(ch * 2, ch * 4, 3, 2, 1)
|
||||
self.enc4 = layers.Encoder(ch * 4, ch * 8, 3, 2, 1)
|
||||
|
||||
self.aspp = layers.ASPPModule(ch * 8, ch * 16, dilations)
|
||||
|
||||
self.dec4 = layers.Decoder(ch * (8 + 16), ch * 8, 3, 1, 1)
|
||||
self.dec3 = layers.Decoder(ch * (4 + 8), ch * 4, 3, 1, 1)
|
||||
self.dec2 = layers.Decoder(ch * (2 + 4), ch * 2, 3, 1, 1)
|
||||
self.dec1 = layers.Decoder(ch * (1 + 2), ch, 3, 1, 1)
|
||||
|
||||
def __call__(self, x):
|
||||
h, e1 = self.enc1(x)
|
||||
h, e2 = self.enc2(h)
|
||||
h, e3 = self.enc3(h)
|
||||
h, e4 = self.enc4(h)
|
||||
|
||||
h = self.aspp(h)
|
||||
|
||||
h = self.dec4(h, e4)
|
||||
h = self.dec3(h, e3)
|
||||
h = self.dec2(h, e2)
|
||||
h = self.dec1(h, e1)
|
||||
|
||||
return h
|
||||
|
||||
|
||||
class CascadedASPPNet(nn.Module):
|
||||
|
||||
def __init__(self, n_fft):
|
||||
super(CascadedASPPNet, self).__init__()
|
||||
self.stg1_low_band_net = BaseASPPNet(2, 32)
|
||||
self.stg1_high_band_net = BaseASPPNet(2, 32)
|
||||
|
||||
self.stg2_bridge = layers.Conv2DBNActiv(34, 16, 1, 1, 0)
|
||||
self.stg2_full_band_net = BaseASPPNet(16, 32)
|
||||
|
||||
self.stg3_bridge = layers.Conv2DBNActiv(66, 32, 1, 1, 0)
|
||||
self.stg3_full_band_net = BaseASPPNet(32, 64)
|
||||
|
||||
self.out = nn.Conv2d(64, 2, 1, bias=False)
|
||||
self.aux1_out = nn.Conv2d(32, 2, 1, bias=False)
|
||||
self.aux2_out = nn.Conv2d(32, 2, 1, bias=False)
|
||||
|
||||
self.max_bin = n_fft // 2
|
||||
self.output_bin = n_fft // 2 + 1
|
||||
|
||||
self.offset = 128
|
||||
|
||||
def forward(self, x, aggressiveness=None):
|
||||
mix = x.detach()
|
||||
x = x.clone()
|
||||
|
||||
x = x[:, :, :self.max_bin]
|
||||
|
||||
bandw = x.size()[2] // 2
|
||||
aux1 = torch.cat([
|
||||
self.stg1_low_band_net(x[:, :, :bandw]),
|
||||
self.stg1_high_band_net(x[:, :, bandw:])
|
||||
], dim=2)
|
||||
|
||||
h = torch.cat([x, aux1], dim=1)
|
||||
aux2 = self.stg2_full_band_net(self.stg2_bridge(h))
|
||||
|
||||
h = torch.cat([x, aux1, aux2], dim=1)
|
||||
h = self.stg3_full_band_net(self.stg3_bridge(h))
|
||||
|
||||
mask = torch.sigmoid(self.out(h))
|
||||
mask = F.pad(
|
||||
input=mask,
|
||||
pad=(0, 0, 0, self.output_bin - mask.size()[2]),
|
||||
mode='replicate')
|
||||
|
||||
if self.training:
|
||||
aux1 = torch.sigmoid(self.aux1_out(aux1))
|
||||
aux1 = F.pad(
|
||||
input=aux1,
|
||||
pad=(0, 0, 0, self.output_bin - aux1.size()[2]),
|
||||
mode='replicate')
|
||||
aux2 = torch.sigmoid(self.aux2_out(aux2))
|
||||
aux2 = F.pad(
|
||||
input=aux2,
|
||||
pad=(0, 0, 0, self.output_bin - aux2.size()[2]),
|
||||
mode='replicate')
|
||||
return mask * mix, aux1 * mix, aux2 * mix
|
||||
else:
|
||||
if aggressiveness:
|
||||
mask[:, :, :aggressiveness['split_bin']] = torch.pow(mask[:, :, :aggressiveness['split_bin']], 1 + aggressiveness['value'] / 3)
|
||||
mask[:, :, aggressiveness['split_bin']:] = torch.pow(mask[:, :, aggressiveness['split_bin']:], 1 + aggressiveness['value'])
|
||||
|
||||
return mask * mix
|
||||
|
||||
def predict(self, x_mag, aggressiveness=None):
|
||||
h = self.forward(x_mag, aggressiveness)
|
||||
|
||||
if self.offset > 0:
|
||||
h = h[:, :, :, self.offset:-self.offset]
|
||||
assert h.size()[3] > 0
|
||||
|
||||
return h
|
113
lib_v5/nets_537238KB.py
Normal file
113
lib_v5/nets_537238KB.py
Normal file
@ -0,0 +1,113 @@
|
||||
import torch
|
||||
import numpy as np
|
||||
from torch import nn
|
||||
import torch.nn.functional as F
|
||||
|
||||
from lib_v5 import layers_537238KB as layers
|
||||
|
||||
|
||||
class BaseASPPNet(nn.Module):
|
||||
|
||||
def __init__(self, nin, ch, dilations=(4, 8, 16)):
|
||||
super(BaseASPPNet, self).__init__()
|
||||
self.enc1 = layers.Encoder(nin, ch, 3, 2, 1)
|
||||
self.enc2 = layers.Encoder(ch, ch * 2, 3, 2, 1)
|
||||
self.enc3 = layers.Encoder(ch * 2, ch * 4, 3, 2, 1)
|
||||
self.enc4 = layers.Encoder(ch * 4, ch * 8, 3, 2, 1)
|
||||
|
||||
self.aspp = layers.ASPPModule(ch * 8, ch * 16, dilations)
|
||||
|
||||
self.dec4 = layers.Decoder(ch * (8 + 16), ch * 8, 3, 1, 1)
|
||||
self.dec3 = layers.Decoder(ch * (4 + 8), ch * 4, 3, 1, 1)
|
||||
self.dec2 = layers.Decoder(ch * (2 + 4), ch * 2, 3, 1, 1)
|
||||
self.dec1 = layers.Decoder(ch * (1 + 2), ch, 3, 1, 1)
|
||||
|
||||
def __call__(self, x):
|
||||
h, e1 = self.enc1(x)
|
||||
h, e2 = self.enc2(h)
|
||||
h, e3 = self.enc3(h)
|
||||
h, e4 = self.enc4(h)
|
||||
|
||||
h = self.aspp(h)
|
||||
|
||||
h = self.dec4(h, e4)
|
||||
h = self.dec3(h, e3)
|
||||
h = self.dec2(h, e2)
|
||||
h = self.dec1(h, e1)
|
||||
|
||||
return h
|
||||
|
||||
|
||||
class CascadedASPPNet(nn.Module):
|
||||
|
||||
def __init__(self, n_fft):
|
||||
super(CascadedASPPNet, self).__init__()
|
||||
self.stg1_low_band_net = BaseASPPNet(2, 64)
|
||||
self.stg1_high_band_net = BaseASPPNet(2, 64)
|
||||
|
||||
self.stg2_bridge = layers.Conv2DBNActiv(66, 32, 1, 1, 0)
|
||||
self.stg2_full_band_net = BaseASPPNet(32, 64)
|
||||
|
||||
self.stg3_bridge = layers.Conv2DBNActiv(130, 64, 1, 1, 0)
|
||||
self.stg3_full_band_net = BaseASPPNet(64, 128)
|
||||
|
||||
self.out = nn.Conv2d(128, 2, 1, bias=False)
|
||||
self.aux1_out = nn.Conv2d(64, 2, 1, bias=False)
|
||||
self.aux2_out = nn.Conv2d(64, 2, 1, bias=False)
|
||||
|
||||
self.max_bin = n_fft // 2
|
||||
self.output_bin = n_fft // 2 + 1
|
||||
|
||||
self.offset = 128
|
||||
|
||||
def forward(self, x, aggressiveness=None):
|
||||
mix = x.detach()
|
||||
x = x.clone()
|
||||
|
||||
x = x[:, :, :self.max_bin]
|
||||
|
||||
bandw = x.size()[2] // 2
|
||||
aux1 = torch.cat([
|
||||
self.stg1_low_band_net(x[:, :, :bandw]),
|
||||
self.stg1_high_band_net(x[:, :, bandw:])
|
||||
], dim=2)
|
||||
|
||||
h = torch.cat([x, aux1], dim=1)
|
||||
aux2 = self.stg2_full_band_net(self.stg2_bridge(h))
|
||||
|
||||
h = torch.cat([x, aux1, aux2], dim=1)
|
||||
h = self.stg3_full_band_net(self.stg3_bridge(h))
|
||||
|
||||
mask = torch.sigmoid(self.out(h))
|
||||
mask = F.pad(
|
||||
input=mask,
|
||||
pad=(0, 0, 0, self.output_bin - mask.size()[2]),
|
||||
mode='replicate')
|
||||
|
||||
if self.training:
|
||||
aux1 = torch.sigmoid(self.aux1_out(aux1))
|
||||
aux1 = F.pad(
|
||||
input=aux1,
|
||||
pad=(0, 0, 0, self.output_bin - aux1.size()[2]),
|
||||
mode='replicate')
|
||||
aux2 = torch.sigmoid(self.aux2_out(aux2))
|
||||
aux2 = F.pad(
|
||||
input=aux2,
|
||||
pad=(0, 0, 0, self.output_bin - aux2.size()[2]),
|
||||
mode='replicate')
|
||||
return mask * mix, aux1 * mix, aux2 * mix
|
||||
else:
|
||||
if aggressiveness:
|
||||
mask[:, :, :aggressiveness['split_bin']] = torch.pow(mask[:, :, :aggressiveness['split_bin']], 1 + aggressiveness['value'] / 3)
|
||||
mask[:, :, aggressiveness['split_bin']:] = torch.pow(mask[:, :, aggressiveness['split_bin']:], 1 + aggressiveness['value'])
|
||||
|
||||
return mask * mix
|
||||
|
||||
def predict(self, x_mag, aggressiveness=None):
|
||||
h = self.forward(x_mag, aggressiveness)
|
||||
|
||||
if self.offset > 0:
|
||||
h = h[:, :, :, self.offset:-self.offset]
|
||||
assert h.size()[3] > 0
|
||||
|
||||
return h
|
472
lib_v5/spec_utils.py
Normal file
472
lib_v5/spec_utils.py
Normal file
@ -0,0 +1,472 @@
|
||||
import os
|
||||
|
||||
import librosa
|
||||
import numpy as np
|
||||
import soundfile as sf
|
||||
import math
|
||||
import json
|
||||
import hashlib
|
||||
from tqdm import tqdm
|
||||
|
||||
|
||||
def crop_center(h1, h2):
|
||||
h1_shape = h1.size()
|
||||
h2_shape = h2.size()
|
||||
|
||||
if h1_shape[3] == h2_shape[3]:
|
||||
return h1
|
||||
elif h1_shape[3] < h2_shape[3]:
|
||||
raise ValueError('h1_shape[3] must be greater than h2_shape[3]')
|
||||
|
||||
# s_freq = (h2_shape[2] - h1_shape[2]) // 2
|
||||
# e_freq = s_freq + h1_shape[2]
|
||||
s_time = (h1_shape[3] - h2_shape[3]) // 2
|
||||
e_time = s_time + h2_shape[3]
|
||||
h1 = h1[:, :, :, s_time:e_time]
|
||||
|
||||
return h1
|
||||
|
||||
|
||||
def wave_to_spectrogram(wave, hop_length, n_fft, mid_side=False, mid_side_b2=False, reverse=False):
|
||||
if reverse:
|
||||
wave_left = np.flip(np.asfortranarray(wave[0]))
|
||||
wave_right = np.flip(np.asfortranarray(wave[1]))
|
||||
elif mid_side:
|
||||
wave_left = np.asfortranarray(np.add(wave[0], wave[1]) / 2)
|
||||
wave_right = np.asfortranarray(np.subtract(wave[0], wave[1]))
|
||||
elif mid_side_b2:
|
||||
wave_left = np.asfortranarray(np.add(wave[1], wave[0] * .5))
|
||||
wave_right = np.asfortranarray(np.subtract(wave[0], wave[1] * .5))
|
||||
else:
|
||||
wave_left = np.asfortranarray(wave[0])
|
||||
wave_right = np.asfortranarray(wave[1])
|
||||
|
||||
spec_left = librosa.stft(wave_left, n_fft, hop_length=hop_length)
|
||||
spec_right = librosa.stft(wave_right, n_fft, hop_length=hop_length)
|
||||
|
||||
spec = np.asfortranarray([spec_left, spec_right])
|
||||
|
||||
return spec
|
||||
|
||||
|
||||
def wave_to_spectrogram_mt(wave, hop_length, n_fft, mid_side=False, mid_side_b2=False, reverse=False):
|
||||
import threading
|
||||
|
||||
if reverse:
|
||||
wave_left = np.flip(np.asfortranarray(wave[0]))
|
||||
wave_right = np.flip(np.asfortranarray(wave[1]))
|
||||
elif mid_side:
|
||||
wave_left = np.asfortranarray(np.add(wave[0], wave[1]) / 2)
|
||||
wave_right = np.asfortranarray(np.subtract(wave[0], wave[1]))
|
||||
elif mid_side_b2:
|
||||
wave_left = np.asfortranarray(np.add(wave[1], wave[0] * .5))
|
||||
wave_right = np.asfortranarray(np.subtract(wave[0], wave[1] * .5))
|
||||
else:
|
||||
wave_left = np.asfortranarray(wave[0])
|
||||
wave_right = np.asfortranarray(wave[1])
|
||||
|
||||
def run_thread(**kwargs):
|
||||
global spec_left
|
||||
spec_left = librosa.stft(**kwargs)
|
||||
|
||||
thread = threading.Thread(target=run_thread, kwargs={'y': wave_left, 'n_fft': n_fft, 'hop_length': hop_length})
|
||||
thread.start()
|
||||
spec_right = librosa.stft(wave_right, n_fft, hop_length=hop_length)
|
||||
thread.join()
|
||||
|
||||
spec = np.asfortranarray([spec_left, spec_right])
|
||||
|
||||
return spec
|
||||
|
||||
|
||||
def combine_spectrograms(specs, mp):
|
||||
l = min([specs[i].shape[2] for i in specs])
|
||||
spec_c = np.zeros(shape=(2, mp.param['bins'] + 1, l), dtype=np.complex64)
|
||||
offset = 0
|
||||
bands_n = len(mp.param['band'])
|
||||
|
||||
for d in range(1, bands_n + 1):
|
||||
h = mp.param['band'][d]['crop_stop'] - mp.param['band'][d]['crop_start']
|
||||
spec_c[:, offset:offset+h, :l] = specs[d][:, mp.param['band'][d]['crop_start']:mp.param['band'][d]['crop_stop'], :l]
|
||||
offset += h
|
||||
|
||||
if offset > mp.param['bins']:
|
||||
raise ValueError('Too much bins')
|
||||
|
||||
# lowpass fiter
|
||||
if mp.param['pre_filter_start'] > 0: # and mp.param['band'][bands_n]['res_type'] in ['scipy', 'polyphase']:
|
||||
if bands_n == 1:
|
||||
spec_c = fft_lp_filter(spec_c, mp.param['pre_filter_start'], mp.param['pre_filter_stop'])
|
||||
else:
|
||||
gp = 1
|
||||
for b in range(mp.param['pre_filter_start'] + 1, mp.param['pre_filter_stop']):
|
||||
g = math.pow(10, -(b - mp.param['pre_filter_start']) * (3.5 - gp) / 20.0)
|
||||
gp = g
|
||||
spec_c[:, b, :] *= g
|
||||
|
||||
return np.asfortranarray(spec_c)
|
||||
|
||||
|
||||
def spectrogram_to_image(spec, mode='magnitude'):
|
||||
if mode == 'magnitude':
|
||||
if np.iscomplexobj(spec):
|
||||
y = np.abs(spec)
|
||||
else:
|
||||
y = spec
|
||||
y = np.log10(y ** 2 + 1e-8)
|
||||
elif mode == 'phase':
|
||||
if np.iscomplexobj(spec):
|
||||
y = np.angle(spec)
|
||||
else:
|
||||
y = spec
|
||||
|
||||
y -= y.min()
|
||||
y *= 255 / y.max()
|
||||
img = np.uint8(y)
|
||||
|
||||
if y.ndim == 3:
|
||||
img = img.transpose(1, 2, 0)
|
||||
img = np.concatenate([
|
||||
np.max(img, axis=2, keepdims=True), img
|
||||
], axis=2)
|
||||
|
||||
return img
|
||||
|
||||
|
||||
def reduce_vocal_aggressively(X, y, softmask):
|
||||
v = X - y
|
||||
y_mag_tmp = np.abs(y)
|
||||
v_mag_tmp = np.abs(v)
|
||||
|
||||
v_mask = v_mag_tmp > y_mag_tmp
|
||||
y_mag = np.clip(y_mag_tmp - v_mag_tmp * v_mask * softmask, 0, np.inf)
|
||||
|
||||
return y_mag * np.exp(1.j * np.angle(y))
|
||||
|
||||
|
||||
def mask_silence(mag, ref, thres=0.2, min_range=64, fade_size=32):
|
||||
if min_range < fade_size * 2:
|
||||
raise ValueError('min_range must be >= fade_area * 2')
|
||||
|
||||
mag = mag.copy()
|
||||
|
||||
idx = np.where(ref.mean(axis=(0, 1)) < thres)[0]
|
||||
starts = np.insert(idx[np.where(np.diff(idx) != 1)[0] + 1], 0, idx[0])
|
||||
ends = np.append(idx[np.where(np.diff(idx) != 1)[0]], idx[-1])
|
||||
uninformative = np.where(ends - starts > min_range)[0]
|
||||
if len(uninformative) > 0:
|
||||
starts = starts[uninformative]
|
||||
ends = ends[uninformative]
|
||||
old_e = None
|
||||
for s, e in zip(starts, ends):
|
||||
if old_e is not None and s - old_e < fade_size:
|
||||
s = old_e - fade_size * 2
|
||||
|
||||
if s != 0:
|
||||
weight = np.linspace(0, 1, fade_size)
|
||||
mag[:, :, s:s + fade_size] += weight * ref[:, :, s:s + fade_size]
|
||||
else:
|
||||
s -= fade_size
|
||||
|
||||
if e != mag.shape[2]:
|
||||
weight = np.linspace(1, 0, fade_size)
|
||||
mag[:, :, e - fade_size:e] += weight * ref[:, :, e - fade_size:e]
|
||||
else:
|
||||
e += fade_size
|
||||
|
||||
mag[:, :, s + fade_size:e - fade_size] += ref[:, :, s + fade_size:e - fade_size]
|
||||
old_e = e
|
||||
|
||||
return mag
|
||||
|
||||
|
||||
def align_wave_head_and_tail(a, b):
|
||||
l = min([a[0].size, b[0].size])
|
||||
|
||||
return a[:l,:l], b[:l,:l]
|
||||
|
||||
|
||||
def cache_or_load(mix_path, inst_path, mp):
|
||||
mix_basename = os.path.splitext(os.path.basename(mix_path))[0]
|
||||
inst_basename = os.path.splitext(os.path.basename(inst_path))[0]
|
||||
|
||||
cache_dir = 'mph{}'.format(hashlib.sha1(json.dumps(mp.param, sort_keys=True).encode('utf-8')).hexdigest())
|
||||
mix_cache_dir = os.path.join('cache', cache_dir)
|
||||
inst_cache_dir = os.path.join('cache', cache_dir)
|
||||
|
||||
os.makedirs(mix_cache_dir, exist_ok=True)
|
||||
os.makedirs(inst_cache_dir, exist_ok=True)
|
||||
|
||||
mix_cache_path = os.path.join(mix_cache_dir, mix_basename + '.npy')
|
||||
inst_cache_path = os.path.join(inst_cache_dir, inst_basename + '.npy')
|
||||
|
||||
if os.path.exists(mix_cache_path) and os.path.exists(inst_cache_path):
|
||||
X_spec_m = np.load(mix_cache_path)
|
||||
y_spec_m = np.load(inst_cache_path)
|
||||
else:
|
||||
X_wave, y_wave, X_spec_s, y_spec_s = {}, {}, {}, {}
|
||||
|
||||
for d in range(len(mp.param['band']), 0, -1):
|
||||
bp = mp.param['band'][d]
|
||||
|
||||
if d == len(mp.param['band']): # high-end band
|
||||
X_wave[d], _ = librosa.load(
|
||||
mix_path, bp['sr'], False, dtype=np.float32, res_type=bp['res_type'])
|
||||
y_wave[d], _ = librosa.load(
|
||||
inst_path, bp['sr'], False, dtype=np.float32, res_type=bp['res_type'])
|
||||
else: # lower bands
|
||||
X_wave[d] = librosa.resample(X_wave[d+1], mp.param['band'][d+1]['sr'], bp['sr'], res_type=bp['res_type'])
|
||||
y_wave[d] = librosa.resample(y_wave[d+1], mp.param['band'][d+1]['sr'], bp['sr'], res_type=bp['res_type'])
|
||||
|
||||
X_wave[d], y_wave[d] = align_wave_head_and_tail(X_wave[d], y_wave[d])
|
||||
|
||||
X_spec_s[d] = wave_to_spectrogram(X_wave[d], bp['hl'], bp['n_fft'], mp.param['mid_side'], mp.param['mid_side_b2'], mp.param['reverse'])
|
||||
y_spec_s[d] = wave_to_spectrogram(y_wave[d], bp['hl'], bp['n_fft'], mp.param['mid_side'], mp.param['mid_side_b2'], mp.param['reverse'])
|
||||
|
||||
del X_wave, y_wave
|
||||
|
||||
X_spec_m = combine_spectrograms(X_spec_s, mp)
|
||||
y_spec_m = combine_spectrograms(y_spec_s, mp)
|
||||
|
||||
if X_spec_m.shape != y_spec_m.shape:
|
||||
raise ValueError('The combined spectrograms are different: ' + mix_path)
|
||||
|
||||
_, ext = os.path.splitext(mix_path)
|
||||
|
||||
np.save(mix_cache_path, X_spec_m)
|
||||
np.save(inst_cache_path, y_spec_m)
|
||||
|
||||
return X_spec_m, y_spec_m
|
||||
|
||||
|
||||
def spectrogram_to_wave(spec, hop_length, mid_side, mid_side_b2, reverse):
|
||||
spec_left = np.asfortranarray(spec[0])
|
||||
spec_right = np.asfortranarray(spec[1])
|
||||
|
||||
wave_left = librosa.istft(spec_left, hop_length=hop_length)
|
||||
wave_right = librosa.istft(spec_right, hop_length=hop_length)
|
||||
|
||||
if reverse:
|
||||
return np.asfortranarray([np.flip(wave_left), np.flip(wave_right)])
|
||||
elif mid_side:
|
||||
return np.asfortranarray([np.add(wave_left, wave_right / 2), np.subtract(wave_left, wave_right / 2)])
|
||||
elif mid_side_b2:
|
||||
return np.asfortranarray([np.add(wave_right / 1.25, .4 * wave_left), np.subtract(wave_left / 1.25, .4 * wave_right)])
|
||||
else:
|
||||
return np.asfortranarray([wave_left, wave_right])
|
||||
|
||||
|
||||
def spectrogram_to_wave_mt(spec, hop_length, mid_side, reverse, mid_side_b2):
|
||||
import threading
|
||||
|
||||
spec_left = np.asfortranarray(spec[0])
|
||||
spec_right = np.asfortranarray(spec[1])
|
||||
|
||||
def run_thread(**kwargs):
|
||||
global wave_left
|
||||
wave_left = librosa.istft(**kwargs)
|
||||
|
||||
thread = threading.Thread(target=run_thread, kwargs={'stft_matrix': spec_left, 'hop_length': hop_length})
|
||||
thread.start()
|
||||
wave_right = librosa.istft(spec_right, hop_length=hop_length)
|
||||
thread.join()
|
||||
|
||||
if reverse:
|
||||
return np.asfortranarray([np.flip(wave_left), np.flip(wave_right)])
|
||||
elif mid_side:
|
||||
return np.asfortranarray([np.add(wave_left, wave_right / 2), np.subtract(wave_left, wave_right / 2)])
|
||||
elif mid_side_b2:
|
||||
return np.asfortranarray([np.add(wave_right / 1.25, .4 * wave_left), np.subtract(wave_left / 1.25, .4 * wave_right)])
|
||||
else:
|
||||
return np.asfortranarray([wave_left, wave_right])
|
||||
|
||||
|
||||
def cmb_spectrogram_to_wave(spec_m, mp, extra_bins_h=None, extra_bins=None):
|
||||
wave_band = {}
|
||||
bands_n = len(mp.param['band'])
|
||||
offset = 0
|
||||
|
||||
for d in range(1, bands_n + 1):
|
||||
bp = mp.param['band'][d]
|
||||
spec_s = np.ndarray(shape=(2, bp['n_fft'] // 2 + 1, spec_m.shape[2]), dtype=complex)
|
||||
h = bp['crop_stop'] - bp['crop_start']
|
||||
spec_s[:, bp['crop_start']:bp['crop_stop'], :] = spec_m[:, offset:offset+h, :]
|
||||
|
||||
offset += h
|
||||
if d == bands_n: # higher
|
||||
if extra_bins_h: # if --high_end_process bypass
|
||||
max_bin = bp['n_fft'] // 2
|
||||
spec_s[:, max_bin-extra_bins_h:max_bin, :] = extra_bins[:, :extra_bins_h, :]
|
||||
if bp['hpf_start'] > 0:
|
||||
spec_s = fft_hp_filter(spec_s, bp['hpf_start'], bp['hpf_stop'] - 1)
|
||||
if bands_n == 1:
|
||||
wave = spectrogram_to_wave(spec_s, bp['hl'], mp.param['mid_side'], mp.param['mid_side_b2'], mp.param['reverse'])
|
||||
else:
|
||||
wave = np.add(wave, spectrogram_to_wave(spec_s, bp['hl'], mp.param['mid_side'], mp.param['mid_side_b2'], mp.param['reverse']))
|
||||
else:
|
||||
sr = mp.param['band'][d+1]['sr']
|
||||
if d == 1: # lower
|
||||
spec_s = fft_lp_filter(spec_s, bp['lpf_start'], bp['lpf_stop'])
|
||||
wave = librosa.resample(spectrogram_to_wave(spec_s, bp['hl'], mp.param['mid_side'], mp.param['mid_side_b2'], mp.param['reverse']), bp['sr'], sr, res_type="sinc_fastest")
|
||||
else: # mid
|
||||
spec_s = fft_hp_filter(spec_s, bp['hpf_start'], bp['hpf_stop'] - 1)
|
||||
spec_s = fft_lp_filter(spec_s, bp['lpf_start'], bp['lpf_stop'])
|
||||
wave2 = np.add(wave, spectrogram_to_wave(spec_s, bp['hl'], mp.param['mid_side'], mp.param['mid_side_b2'], mp.param['reverse']))
|
||||
wave = librosa.resample(wave2, bp['sr'], sr, res_type="sinc_fastest")
|
||||
|
||||
return wave.T
|
||||
|
||||
|
||||
def fft_lp_filter(spec, bin_start, bin_stop):
|
||||
g = 1.0
|
||||
for b in range(bin_start, bin_stop):
|
||||
g -= 1 / (bin_stop - bin_start)
|
||||
spec[:, b, :] = g * spec[:, b, :]
|
||||
|
||||
spec[:, bin_stop:, :] *= 0
|
||||
|
||||
return spec
|
||||
|
||||
|
||||
def fft_hp_filter(spec, bin_start, bin_stop):
|
||||
g = 1.0
|
||||
for b in range(bin_start, bin_stop, -1):
|
||||
g -= 1 / (bin_start - bin_stop)
|
||||
spec[:, b, :] = g * spec[:, b, :]
|
||||
|
||||
spec[:, 0:bin_stop+1, :] *= 0
|
||||
|
||||
return spec
|
||||
|
||||
|
||||
def mirroring(a, spec_m, input_high_end, mp):
|
||||
if 'mirroring' == a:
|
||||
mirror = np.flip(np.abs(spec_m[:, mp.param['pre_filter_start']-10-input_high_end.shape[1]:mp.param['pre_filter_start']-10, :]), 1)
|
||||
mirror = mirror * np.exp(1.j * np.angle(input_high_end))
|
||||
|
||||
return np.where(np.abs(input_high_end) <= np.abs(mirror), input_high_end, mirror)
|
||||
|
||||
if 'mirroring2' == a:
|
||||
mirror = np.flip(np.abs(spec_m[:, mp.param['pre_filter_start']-10-input_high_end.shape[1]:mp.param['pre_filter_start']-10, :]), 1)
|
||||
mi = np.multiply(mirror, input_high_end * 1.7)
|
||||
|
||||
return np.where(np.abs(input_high_end) <= np.abs(mi), input_high_end, mi)
|
||||
|
||||
|
||||
def ensembling(a, specs):
|
||||
for i in range(1, len(specs)):
|
||||
if i == 1:
|
||||
spec = specs[0]
|
||||
|
||||
ln = min([spec.shape[2], specs[i].shape[2]])
|
||||
spec = spec[:,:,:ln]
|
||||
specs[i] = specs[i][:,:,:ln]
|
||||
|
||||
if 'min_mag' == a:
|
||||
spec = np.where(np.abs(specs[i]) <= np.abs(spec), specs[i], spec)
|
||||
if 'max_mag' == a:
|
||||
spec = np.where(np.abs(specs[i]) >= np.abs(spec), specs[i], spec)
|
||||
|
||||
return spec
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
import cv2
|
||||
import sys
|
||||
import time
|
||||
import argparse
|
||||
from model_param_init import ModelParameters
|
||||
|
||||
p = argparse.ArgumentParser()
|
||||
p.add_argument('--algorithm', '-a', type=str, choices=['invert', 'invert_p', 'min_mag', 'max_mag', 'deep', 'align'], default='min_mag')
|
||||
p.add_argument('--model_params', '-m', type=str, default=os.path.join('modelparams', '1band_sr44100_hl512.json'))
|
||||
p.add_argument('--output_name', '-o', type=str, default='output')
|
||||
p.add_argument('--vocals_only', '-v', action='store_true')
|
||||
p.add_argument('input', nargs='+')
|
||||
args = p.parse_args()
|
||||
|
||||
start_time = time.time()
|
||||
|
||||
if args.algorithm.startswith('invert') and len(args.input) != 2:
|
||||
raise ValueError('There should be two input files.')
|
||||
|
||||
if not args.algorithm.startswith('invert') and len(args.input) < 2:
|
||||
raise ValueError('There must be at least two input files.')
|
||||
|
||||
wave, specs = {}, {}
|
||||
mp = ModelParameters(args.model_params)
|
||||
|
||||
for i in range(len(args.input)):
|
||||
spec = {}
|
||||
|
||||
for d in range(len(mp.param['band']), 0, -1):
|
||||
bp = mp.param['band'][d]
|
||||
|
||||
if d == len(mp.param['band']): # high-end band
|
||||
wave[d], _ = librosa.load(
|
||||
args.input[i], bp['sr'], False, dtype=np.float32, res_type=bp['res_type'])
|
||||
|
||||
if len(wave[d].shape) == 1: # mono to stereo
|
||||
wave[d] = np.array([wave[d], wave[d]])
|
||||
else: # lower bands
|
||||
wave[d] = librosa.resample(wave[d+1], mp.param['band'][d+1]['sr'], bp['sr'], res_type=bp['res_type'])
|
||||
|
||||
spec[d] = wave_to_spectrogram(wave[d], bp['hl'], bp['n_fft'], mp.param['mid_side'], mp.param['mid_side_b2'], mp.param['reverse'])
|
||||
|
||||
specs[i] = combine_spectrograms(spec, mp)
|
||||
|
||||
del wave
|
||||
|
||||
if args.algorithm == 'deep':
|
||||
d_spec = np.where(np.abs(specs[0]) <= np.abs(spec[1]), specs[0], spec[1])
|
||||
v_spec = d_spec - specs[1]
|
||||
sf.write(os.path.join('{}.wav'.format(args.output_name)), cmb_spectrogram_to_wave(v_spec, mp), mp.param['sr'])
|
||||
|
||||
if args.algorithm.startswith('invert'):
|
||||
ln = min([specs[0].shape[2], specs[1].shape[2]])
|
||||
specs[0] = specs[0][:,:,:ln]
|
||||
specs[1] = specs[1][:,:,:ln]
|
||||
|
||||
if 'invert_p' == args.algorithm:
|
||||
X_mag = np.abs(specs[0])
|
||||
y_mag = np.abs(specs[1])
|
||||
max_mag = np.where(X_mag >= y_mag, X_mag, y_mag)
|
||||
v_spec = specs[1] - max_mag * np.exp(1.j * np.angle(specs[0]))
|
||||
else:
|
||||
specs[1] = reduce_vocal_aggressively(specs[0], specs[1], 0.2)
|
||||
v_spec = specs[0] - specs[1]
|
||||
|
||||
if not args.vocals_only:
|
||||
X_mag = np.abs(specs[0])
|
||||
y_mag = np.abs(specs[1])
|
||||
v_mag = np.abs(v_spec)
|
||||
|
||||
X_image = spectrogram_to_image(X_mag)
|
||||
y_image = spectrogram_to_image(y_mag)
|
||||
v_image = spectrogram_to_image(v_mag)
|
||||
|
||||
cv2.imwrite('{}_X.png'.format(args.output_name), X_image)
|
||||
cv2.imwrite('{}_y.png'.format(args.output_name), y_image)
|
||||
cv2.imwrite('{}_v.png'.format(args.output_name), v_image)
|
||||
|
||||
sf.write('{}_X.wav'.format(args.output_name), cmb_spectrogram_to_wave(specs[0], mp), mp.param['sr'])
|
||||
sf.write('{}_y.wav'.format(args.output_name), cmb_spectrogram_to_wave(specs[1], mp), mp.param['sr'])
|
||||
|
||||
sf.write('{}_v.wav'.format(args.output_name), cmb_spectrogram_to_wave(v_spec, mp), mp.param['sr'])
|
||||
else:
|
||||
if not args.algorithm == 'deep':
|
||||
sf.write(os.path.join('ensembled','{}.wav'.format(args.output_name)), cmb_spectrogram_to_wave(ensembling(args.algorithm, specs), mp), mp.param['sr'])
|
||||
|
||||
if args.algorithm == 'align':
|
||||
|
||||
trackalignment = [
|
||||
{
|
||||
'file1':'"{}"'.format(args.input[0]),
|
||||
'file2':'"{}"'.format(args.input[1])
|
||||
}
|
||||
]
|
||||
|
||||
for i,e in tqdm(enumerate(trackalignment), desc="Performing Alignment..."):
|
||||
os.system(f"python lib/align_tracks.py {e['file1']} {e['file2']}")
|
||||
|
||||
#print('Total time: {0:.{1}f}s'.format(time.time() - start_time, 1))
|
Loading…
Reference in New Issue
Block a user