mirror of
https://github.com/Anjok07/ultimatevocalremovergui.git
synced 2024-11-28 01:10:56 +01:00
Delete spec_utils.py
This commit is contained in:
parent
87ddb36584
commit
6b333e4aa1
@ -1,136 +0,0 @@
|
||||
import os
|
||||
|
||||
import librosa
|
||||
import numpy as np
|
||||
import soundfile as sf
|
||||
import torch
|
||||
|
||||
|
||||
def crop_center(h1, h2, concat=True):
|
||||
# s_freq = (h2.shape[2] - h1.shape[2]) // 2
|
||||
# e_freq = s_freq + h1.shape[2]
|
||||
h1_shape = h1.size()
|
||||
h2_shape = h2.size()
|
||||
if h2_shape[3] < h1_shape[3]:
|
||||
raise ValueError('h2_shape[3] must be greater than h1_shape[3]')
|
||||
s_time = (h2_shape[3] - h1_shape[3]) // 2
|
||||
e_time = s_time + h1_shape[3]
|
||||
h2 = h2[:, :, :, s_time:e_time]
|
||||
if concat:
|
||||
return torch.cat([h1, h2], dim=1)
|
||||
else:
|
||||
return h2
|
||||
|
||||
|
||||
def calc_spec(X, hop_length):
|
||||
n_fft = (hop_length - 1) * 2
|
||||
audio_left = np.asfortranarray(X[0])
|
||||
audio_right = np.asfortranarray(X[1])
|
||||
spec_left = librosa.stft(audio_left, n_fft, hop_length=hop_length)
|
||||
spec_right = librosa.stft(audio_right, n_fft, hop_length=hop_length)
|
||||
spec = np.asfortranarray([spec_left, spec_right])
|
||||
|
||||
return spec
|
||||
|
||||
|
||||
def mask_uninformative(mask, ref, thres=0.3, min_range=64, fade_area=32):
|
||||
if min_range < fade_area * 2:
|
||||
raise ValueError('min_range must be >= fade_area * 2')
|
||||
idx = np.where(ref.mean(axis=(0, 1)) < thres)[0]
|
||||
starts = np.insert(idx[np.where(np.diff(idx) != 1)[0] + 1], 0, idx[0])
|
||||
ends = np.append(idx[np.where(np.diff(idx) != 1)[0]], idx[-1])
|
||||
uninformative = np.where(ends - starts > min_range)[0]
|
||||
if len(uninformative) > 0:
|
||||
starts = starts[uninformative]
|
||||
ends = ends[uninformative]
|
||||
old_e = None
|
||||
for s, e in zip(starts, ends):
|
||||
if old_e is not None and s - old_e < fade_area:
|
||||
s = old_e - fade_area * 2
|
||||
elif s != 0:
|
||||
start_mask = mask[:, :, s:s + fade_area]
|
||||
np.clip(
|
||||
start_mask + np.linspace(0, 1, fade_area), 0, 1,
|
||||
out=start_mask)
|
||||
if e != mask.shape[2]:
|
||||
end_mask = mask[:, :, e - fade_area:e]
|
||||
np.clip(
|
||||
end_mask + np.linspace(1, 0, fade_area), 0, 1,
|
||||
out=end_mask)
|
||||
mask[:, :, s + fade_area:e - fade_area] = 1
|
||||
old_e = e
|
||||
|
||||
return mask
|
||||
|
||||
|
||||
def align_wave_head_and_tail(a, b, sr):
|
||||
a_mono = a[:, :sr * 4].sum(axis=0)
|
||||
b_mono = b[:, :sr * 4].sum(axis=0)
|
||||
a_mono -= a_mono.mean()
|
||||
b_mono -= b_mono.mean()
|
||||
offset = len(a_mono) - 1
|
||||
delay = np.argmax(np.correlate(a_mono, b_mono, 'full')) - offset
|
||||
|
||||
if delay > 0:
|
||||
a = a[:, delay:]
|
||||
else:
|
||||
b = b[:, np.abs(delay):]
|
||||
if a.shape[1] < b.shape[1]:
|
||||
b = b[:, :a.shape[1]]
|
||||
else:
|
||||
a = a[:, :b.shape[1]]
|
||||
|
||||
return a, b
|
||||
|
||||
|
||||
def cache_or_load(mix_path, inst_path, sr, hop_length):
|
||||
_, mix_ext = os.path.splitext(mix_path)
|
||||
_, inst_ext = os.path.splitext(inst_path)
|
||||
spec_mix_path = mix_path.replace(mix_ext, '.npy')
|
||||
spec_inst_path = inst_path.replace(inst_ext, '.npy')
|
||||
|
||||
if os.path.exists(spec_mix_path) and os.path.exists(spec_inst_path):
|
||||
X = np.load(spec_mix_path)
|
||||
y = np.load(spec_inst_path)
|
||||
else:
|
||||
X, _ = librosa.load(
|
||||
mix_path, sr, False, dtype=np.float32, res_type='kaiser_fast')
|
||||
y, _ = librosa.load(
|
||||
inst_path, sr, False, dtype=np.float32, res_type='kaiser_fast')
|
||||
X, _ = librosa.effects.trim(X)
|
||||
y, _ = librosa.effects.trim(y)
|
||||
X, y = align_wave_head_and_tail(X, y, sr)
|
||||
|
||||
X = np.abs(calc_spec(X, hop_length))
|
||||
y = np.abs(calc_spec(y, hop_length))
|
||||
|
||||
_, ext = os.path.splitext(mix_path)
|
||||
np.save(spec_mix_path, X)
|
||||
np.save(spec_inst_path, y)
|
||||
|
||||
return X, y
|
||||
|
||||
|
||||
def spec_to_wav(mag, phase, hop_length):
|
||||
spec = mag * phase
|
||||
spec_left = np.asfortranarray(spec[0])
|
||||
spec_right = np.asfortranarray(spec[1])
|
||||
wav_left = librosa.istft(spec_left, hop_length=hop_length)
|
||||
wav_right = librosa.istft(spec_right, hop_length=hop_length)
|
||||
wav = np.asfortranarray([wav_left, wav_right])
|
||||
|
||||
return wav
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
import sys
|
||||
X, _ = librosa.load(
|
||||
sys.argv[1], 44100, False, dtype=np.float32, res_type='kaiser_fast')
|
||||
y, _ = librosa.load(
|
||||
sys.argv[2], 44100, False, dtype=np.float32, res_type='kaiser_fast')
|
||||
X, _ = librosa.effects.trim(X)
|
||||
y, _ = librosa.effects.trim(y)
|
||||
X, y = align_wave_head_and_tail(X, y, 44100)
|
||||
sf.write('test_i.wav', y.T, 44100)
|
||||
sf.write('test_m.wav', X.T, 44100)
|
||||
sf.write('test_v.wav', (X - y).T, 44100)
|
Loading…
Reference in New Issue
Block a user