mirror of
https://github.com/Anjok07/ultimatevocalremovergui.git
synced 2025-02-25 22:28:07 +01:00
Add files via upload
This commit is contained in:
parent
14a82e5e9f
commit
6f73242179
1008
4Band_ens_inference.py
Normal file
1008
4Band_ens_inference.py
Normal file
File diff suppressed because it is too large
Load Diff
1866
allmodels_ens_inference.py
Normal file
1866
allmodels_ens_inference.py
Normal file
File diff suppressed because it is too large
Load Diff
86
inference.py
86
inference.py
@ -100,10 +100,11 @@ def main():
|
|||||||
p.add_argument('--model_params', '-m', type=str, default='')
|
p.add_argument('--model_params', '-m', type=str, default='')
|
||||||
p.add_argument('--window_size', '-w', type=int, default=512)
|
p.add_argument('--window_size', '-w', type=int, default=512)
|
||||||
p.add_argument('--output_image', '-I', action='store_true')
|
p.add_argument('--output_image', '-I', action='store_true')
|
||||||
|
p.add_argument('--deepextraction', '-D', action='store_true')
|
||||||
p.add_argument('--postprocess', '-p', action='store_true')
|
p.add_argument('--postprocess', '-p', action='store_true')
|
||||||
p.add_argument('--tta', '-t', action='store_true')
|
p.add_argument('--tta', '-t', action='store_true')
|
||||||
p.add_argument('--high_end_process', '-H', type=str, choices=['none', 'bypass', 'correlation'], default='none')
|
p.add_argument('--high_end_process', '-H', type=str, choices=['none', 'bypass', 'correlation'], default='none')
|
||||||
p.add_argument('--aggressiveness', '-A', type=float, default=0.09)
|
p.add_argument('--aggressiveness', '-A', type=float, default=0.07)
|
||||||
args = p.parse_args()
|
args = p.parse_args()
|
||||||
|
|
||||||
if args.nn_architecture == 'default':
|
if args.nn_architecture == 'default':
|
||||||
@ -114,6 +115,10 @@ def main():
|
|||||||
from lib import nets_123821KB as nets
|
from lib import nets_123821KB as nets
|
||||||
if args.nn_architecture == '129605KB':
|
if args.nn_architecture == '129605KB':
|
||||||
from lib import nets_129605KB as nets
|
from lib import nets_129605KB as nets
|
||||||
|
|
||||||
|
dir = 'ensembled/temp'
|
||||||
|
for file in os.scandir(dir):
|
||||||
|
os.remove(file.path)
|
||||||
|
|
||||||
#if '' == args.model_params:
|
#if '' == args.model_params:
|
||||||
# mp = ModelParameters(args.pretrained_model)
|
# mp = ModelParameters(args.pretrained_model)
|
||||||
@ -201,28 +206,69 @@ def main():
|
|||||||
else:
|
else:
|
||||||
wave = spec_utils.cmb_spectrogram_to_wave(y_spec_m, mp)
|
wave = spec_utils.cmb_spectrogram_to_wave(y_spec_m, mp)
|
||||||
|
|
||||||
print('done')
|
if args.deepextraction:
|
||||||
model_name = os.path.splitext(os.path.basename(args.pretrained_model))[0]
|
|
||||||
sf.write(os.path.join('separated', '{}_{}_{}.wav'.format(basename, model_name, stems['inst'])), wave, mp.param['sr'])
|
|
||||||
|
|
||||||
if True:
|
|
||||||
print('inverse stft of {}...'.format(stems['vocals']), end=' ')
|
|
||||||
#v_spec_m = X_spec_m - y_spec_m
|
|
||||||
wave = spec_utils.cmb_spectrogram_to_wave(v_spec_m, mp)
|
|
||||||
print('done')
|
print('done')
|
||||||
sf.write(os.path.join('separated', '{}_{}_{}.wav'.format(basename, model_name, stems['vocals'])), wave, mp.param['sr'])
|
model_name = os.path.splitext(os.path.basename(args.pretrained_model))[0]
|
||||||
|
sf.write(os.path.join('separated', '{}_{}_{}.wav'.format(basename, model_name, stems['inst'])), wave, mp.param['sr'])
|
||||||
|
sf.write(os.path.join('ensembled/temp', 'tempI.wav'.format(basename, model_name, stems['inst'])), wave, mp.param['sr'])
|
||||||
|
|
||||||
if args.output_image:
|
if True:
|
||||||
with open('{}_{}.jpg'.format(basename, stems['inst']), mode='wb') as f:
|
print('inverse stft of {}...'.format(stems['vocals']), end=' ')
|
||||||
image = spec_utils.spectrogram_to_image(y_spec_m)
|
#v_spec_m = X_spec_m - y_spec_m
|
||||||
_, bin_image = cv2.imencode('.jpg', image)
|
wave = spec_utils.cmb_spectrogram_to_wave(v_spec_m, mp)
|
||||||
bin_image.tofile(f)
|
print('done')
|
||||||
with open('{}_{}.jpg'.format(basename, stems['vocals']), mode='wb') as f:
|
sf.write(os.path.join('separated', '{}_{}_{}.wav'.format(basename, model_name, stems['vocals'])), wave, mp.param['sr'])
|
||||||
image = spec_utils.spectrogram_to_image(v_spec_m)
|
sf.write(os.path.join('ensembled/temp', 'tempV.wav'.format(basename, model_name, stems['vocals'])), wave, mp.param['sr'])
|
||||||
_, bin_image = cv2.imencode('.jpg', image)
|
|
||||||
bin_image.tofile(f)
|
if args.output_image:
|
||||||
|
with open('{}_{}.jpg'.format(basename, stems['inst']), mode='wb') as f:
|
||||||
|
image = spec_utils.spectrogram_to_image(y_spec_m)
|
||||||
|
_, bin_image = cv2.imencode('.jpg', image)
|
||||||
|
bin_image.tofile(f)
|
||||||
|
with open('{}_{}.jpg'.format(basename, stems['vocals']), mode='wb') as f:
|
||||||
|
image = spec_utils.spectrogram_to_image(v_spec_m)
|
||||||
|
_, bin_image = cv2.imencode('.jpg', image)
|
||||||
|
bin_image.tofile(f)
|
||||||
|
|
||||||
|
print('Performing Deep Extraction...')
|
||||||
|
os.system("python lib/spec_utils.py -a min_mag -m modelparams/1band_sr44100_hl512.json ensembled/temp/tempI.wav ensembled/temp/tempV.wav -o ensembled/temp/difftemp")
|
||||||
|
os.system("python lib/diffext.py ensembled/temp/tempI.wav ensembled/temp/difftemp_v.wav ensembled/temp/aligned-difftemp_v.wav ensembled/temp/subtracted-difftemp_v.wav")
|
||||||
|
os.rename('ensembled/temp/subtracted-difftemp_v.wav', 'separated/{}_{}_DeepExtraction_Instruments.wav'.format(basename, model_name))
|
||||||
|
print('Complete!')
|
||||||
|
print('Total time: {0:.{1}f}s'.format(time.time() - start_time, 1))
|
||||||
|
|
||||||
|
dir = 'ensembled/temp'
|
||||||
|
for file in os.scandir(dir):
|
||||||
|
os.remove(file.path)
|
||||||
|
else:
|
||||||
|
print('done')
|
||||||
|
model_name = os.path.splitext(os.path.basename(args.pretrained_model))[0]
|
||||||
|
sf.write(os.path.join('separated', '{}_{}_{}.wav'.format(basename, model_name, stems['inst'])), wave, mp.param['sr'])
|
||||||
|
|
||||||
|
if True:
|
||||||
|
print('inverse stft of {}...'.format(stems['vocals']), end=' ')
|
||||||
|
#v_spec_m = X_spec_m - y_spec_m
|
||||||
|
wave = spec_utils.cmb_spectrogram_to_wave(v_spec_m, mp)
|
||||||
|
print('done')
|
||||||
|
sf.write(os.path.join('separated', '{}_{}_{}.wav'.format(basename, model_name, stems['vocals'])), wave, mp.param['sr'])
|
||||||
|
|
||||||
|
if args.output_image:
|
||||||
|
with open('{}_{}.jpg'.format(basename, stems['inst']), mode='wb') as f:
|
||||||
|
image = spec_utils.spectrogram_to_image(y_spec_m)
|
||||||
|
_, bin_image = cv2.imencode('.jpg', image)
|
||||||
|
bin_image.tofile(f)
|
||||||
|
with open('{}_{}.jpg'.format(basename, stems['vocals']), mode='wb') as f:
|
||||||
|
image = spec_utils.spectrogram_to_image(v_spec_m)
|
||||||
|
_, bin_image = cv2.imencode('.jpg', image)
|
||||||
|
bin_image.tofile(f)
|
||||||
|
|
||||||
|
dir = 'ensembled/temp'
|
||||||
|
for file in os.scandir(dir):
|
||||||
|
os.remove(file.path)
|
||||||
|
|
||||||
|
print('Total time: {0:.{1}f}s'.format(time.time() - start_time, 1))
|
||||||
|
|
||||||
print('Total time: {0:.{1}f}s'.format(time.time() - start_time, 1))
|
|
||||||
|
|
||||||
if __name__ == '__main__':
|
if __name__ == '__main__':
|
||||||
main()
|
main()
|
||||||
|
|
||||||
|
Loading…
x
Reference in New Issue
Block a user