mirror of
https://github.com/Anjok07/ultimatevocalremovergui.git
synced 2025-02-17 19:19:15 +01:00
Delete lib_v2 directory
This commit is contained in:
parent
6549e3d0fb
commit
b1a04b2d48
@ -1,119 +0,0 @@
|
||||
import os
|
||||
|
||||
import numpy as np
|
||||
import torch
|
||||
from tqdm import tqdm
|
||||
|
||||
from lib_v2 import spec_utils
|
||||
|
||||
|
||||
class VocalRemoverValidationSet(torch.utils.data.Dataset):
|
||||
|
||||
def __init__(self, filelist):
|
||||
self.filelist = filelist
|
||||
|
||||
def __len__(self):
|
||||
return len(self.filelist)
|
||||
|
||||
def __getitem__(self, idx):
|
||||
path = self.filelist[idx]
|
||||
data = np.load(path)
|
||||
|
||||
return data['X'], data['y']
|
||||
|
||||
|
||||
def mixup_generator(X, y, rate, alpha):
|
||||
perm = np.random.permutation(len(X))[:int(len(X) * rate)]
|
||||
for i in range(len(perm) - 1):
|
||||
lam = np.random.beta(alpha, alpha)
|
||||
X[perm[i]] = lam * X[perm[i]] + (1 - lam) * X[perm[i + 1]]
|
||||
y[perm[i]] = lam * y[perm[i]] + (1 - lam) * y[perm[i + 1]]
|
||||
|
||||
return X, y
|
||||
|
||||
|
||||
def get_oracle_data(X, y, instance_loss, oracle_rate, oracle_drop_rate):
|
||||
k = int(len(X) * oracle_rate * (1 / (1 - oracle_drop_rate)))
|
||||
n = int(len(X) * oracle_rate)
|
||||
idx = np.argsort(instance_loss)[::-1][:k]
|
||||
idx = np.random.choice(idx, n, replace=False)
|
||||
oracle_X = X[idx].copy()
|
||||
oracle_y = y[idx].copy()
|
||||
|
||||
return oracle_X, oracle_y, idx
|
||||
|
||||
|
||||
def make_padding(width, cropsize, offset):
|
||||
left = offset
|
||||
roi_size = cropsize - left * 2
|
||||
if roi_size == 0:
|
||||
roi_size = cropsize
|
||||
right = roi_size - (width % roi_size) + left
|
||||
|
||||
return left, right, roi_size
|
||||
|
||||
|
||||
def make_training_set(filelist, cropsize, patches, sr, hop_length, offset):
|
||||
len_dataset = patches * len(filelist)
|
||||
X_dataset = np.zeros(
|
||||
(len_dataset, 2, hop_length, cropsize), dtype=np.float32)
|
||||
y_dataset = np.zeros(
|
||||
(len_dataset, 2, hop_length, cropsize), dtype=np.float32)
|
||||
for i, (X_path, y_path) in enumerate(tqdm(filelist)):
|
||||
p = np.random.uniform()
|
||||
if p < 0.1:
|
||||
X_path.replace(os.path.splitext(X_path)[1], '_pitch-1.wav')
|
||||
y_path.replace(os.path.splitext(y_path)[1], '_pitch-1.wav')
|
||||
elif p < 0.2:
|
||||
X_path.replace(os.path.splitext(X_path)[1], '_pitch1.wav')
|
||||
y_path.replace(os.path.splitext(y_path)[1], '_pitch1.wav')
|
||||
|
||||
X, y = spec_utils.cache_or_load(X_path, y_path, sr, hop_length)
|
||||
coeff = np.max([X.max(), y.max()])
|
||||
X, y = X / coeff, y / coeff
|
||||
|
||||
l, r, roi_size = make_padding(X.shape[2], cropsize, offset)
|
||||
X_pad = np.pad(X, ((0, 0), (0, 0), (l, r)), mode='constant')
|
||||
y_pad = np.pad(y, ((0, 0), (0, 0), (l, r)), mode='constant')
|
||||
|
||||
starts = np.random.randint(0, X_pad.shape[2] - cropsize, patches)
|
||||
ends = starts + cropsize
|
||||
for j in range(patches):
|
||||
idx = i * patches + j
|
||||
X_dataset[idx] = X_pad[:, :, starts[j]:ends[j]]
|
||||
y_dataset[idx] = y_pad[:, :, starts[j]:ends[j]]
|
||||
if np.random.uniform() < 0.5:
|
||||
# swap channel
|
||||
X_dataset[idx] = X_dataset[idx, ::-1]
|
||||
y_dataset[idx] = y_dataset[idx, ::-1]
|
||||
|
||||
return X_dataset, y_dataset
|
||||
|
||||
|
||||
def make_validation_set(filelist, cropsize, sr, hop_length, offset):
|
||||
patch_list = []
|
||||
outdir = 'cs{}_sr{}_hl{}_of{}'.format(cropsize, sr, hop_length, offset)
|
||||
os.makedirs(outdir, exist_ok=True)
|
||||
for i, (X_path, y_path) in enumerate(tqdm(filelist)):
|
||||
basename = os.path.splitext(os.path.basename(X_path))[0]
|
||||
|
||||
X, y = spec_utils.cache_or_load(X_path, y_path, sr, hop_length)
|
||||
coeff = np.max([X.max(), y.max()])
|
||||
X, y = X / coeff, y / coeff
|
||||
|
||||
l, r, roi_size = make_padding(X.shape[2], cropsize, offset)
|
||||
X_pad = np.pad(X, ((0, 0), (0, 0), (l, r)), mode='constant')
|
||||
y_pad = np.pad(y, ((0, 0), (0, 0), (l, r)), mode='constant')
|
||||
|
||||
len_dataset = int(np.ceil(X.shape[2] / roi_size))
|
||||
for j in range(len_dataset):
|
||||
outpath = os.path.join(outdir, '{}_p{}.npz'.format(basename, j))
|
||||
start = j * roi_size
|
||||
if not os.path.exists(outpath):
|
||||
np.savez(
|
||||
outpath,
|
||||
X=X_pad[:, :, start:start + cropsize],
|
||||
y=y_pad[:, :, start:start + cropsize])
|
||||
patch_list.append(outpath)
|
||||
|
||||
return VocalRemoverValidationSet(patch_list)
|
117
lib_v2/layers.py
117
lib_v2/layers.py
@ -1,117 +0,0 @@
|
||||
import torch
|
||||
from torch import nn
|
||||
import torch.nn.functional as F
|
||||
|
||||
from lib_v2 import spec_utils
|
||||
|
||||
|
||||
class Conv2DBNActiv(nn.Module):
|
||||
|
||||
def __init__(self, nin, nout, ksize=3, stride=1, pad=1, dilation=1, activ=nn.ReLU):
|
||||
super(Conv2DBNActiv, self).__init__()
|
||||
self.conv = nn.Sequential(
|
||||
nn.Conv2d(
|
||||
nin, nout,
|
||||
kernel_size=ksize,
|
||||
stride=stride,
|
||||
padding=pad,
|
||||
dilation=dilation,
|
||||
bias=False),
|
||||
nn.BatchNorm2d(nout),
|
||||
activ()
|
||||
)
|
||||
|
||||
def __call__(self, x):
|
||||
return self.conv(x)
|
||||
|
||||
|
||||
class SeperableConv2DBNActiv(nn.Module):
|
||||
|
||||
def __init__(self, nin, nout, ksize=3, stride=1, pad=1, dilation=1, activ=nn.ReLU):
|
||||
super(SeperableConv2DBNActiv, self).__init__()
|
||||
self.conv = nn.Sequential(
|
||||
nn.Conv2d(
|
||||
nin, nin,
|
||||
kernel_size=ksize,
|
||||
stride=stride,
|
||||
padding=pad,
|
||||
dilation=dilation,
|
||||
groups=nin,
|
||||
bias=False),
|
||||
nn.Conv2d(
|
||||
nin, nout,
|
||||
kernel_size=1,
|
||||
bias=False),
|
||||
nn.BatchNorm2d(nout),
|
||||
activ()
|
||||
)
|
||||
|
||||
def __call__(self, x):
|
||||
return self.conv(x)
|
||||
|
||||
|
||||
class Encoder(nn.Module):
|
||||
|
||||
def __init__(self, nin, nout, ksize=3, stride=1, pad=1, activ=nn.LeakyReLU):
|
||||
super(Encoder, self).__init__()
|
||||
self.conv1 = Conv2DBNActiv(
|
||||
nin, nout, ksize, 1, pad, activ=activ)
|
||||
self.conv2 = Conv2DBNActiv(
|
||||
nout, nout, ksize, stride, pad, activ=activ)
|
||||
|
||||
def __call__(self, x):
|
||||
skip = self.conv1(x)
|
||||
h = self.conv2(skip)
|
||||
|
||||
return h, skip
|
||||
|
||||
|
||||
class Decoder(nn.Module):
|
||||
|
||||
def __init__(self, nin, nout, ksize=3, stride=1, pad=1, dropout=False):
|
||||
super(Decoder, self).__init__()
|
||||
self.conv = Conv2DBNActiv(nin, nout, ksize, 1, pad)
|
||||
self.dropout = nn.Dropout2d(0.1) if dropout else None
|
||||
|
||||
def __call__(self, x, skip=None):
|
||||
x = F.interpolate(x, scale_factor=2, mode='bilinear', align_corners=True)
|
||||
if skip is not None:
|
||||
x = spec_utils.crop_center(x, skip)
|
||||
h = self.conv(x)
|
||||
|
||||
if self.dropout is not None:
|
||||
h = self.dropout(h)
|
||||
|
||||
return h
|
||||
|
||||
|
||||
class ASPPModule(nn.Module):
|
||||
|
||||
def __init__(self, nin, nout, dilations=(4, 8, 16)):
|
||||
super(ASPPModule, self).__init__()
|
||||
self.conv1 = nn.Sequential(
|
||||
nn.AdaptiveAvgPool2d((1, None)),
|
||||
Conv2DBNActiv(nin, nin, 1, 1, 0)
|
||||
)
|
||||
self.conv2 = Conv2DBNActiv(nin, nin, 1, 1, 0)
|
||||
self.conv3 = SeperableConv2DBNActiv(
|
||||
nin, nin, 3, 1, dilations[0], dilations[0])
|
||||
self.conv4 = SeperableConv2DBNActiv(
|
||||
nin, nin, 3, 1, dilations[1], dilations[1])
|
||||
self.conv5 = SeperableConv2DBNActiv(
|
||||
nin, nin, 3, 1, dilations[2], dilations[2])
|
||||
self.bottleneck = nn.Sequential(
|
||||
Conv2DBNActiv(nin * 5, nout, 1, 1, 0),
|
||||
nn.Dropout2d(0.1)
|
||||
)
|
||||
|
||||
def forward(self, x):
|
||||
_, _, h, w = x.size()
|
||||
feat1 = F.interpolate(self.conv1(x), size=(h, w), mode='bilinear', align_corners=True)
|
||||
feat2 = self.conv2(x)
|
||||
feat3 = self.conv3(x)
|
||||
feat4 = self.conv4(x)
|
||||
feat5 = self.conv5(x)
|
||||
out = torch.cat((feat1, feat2, feat3, feat4, feat5), dim=1)
|
||||
bottle = self.bottleneck(out)
|
||||
return bottle
|
@ -1,86 +0,0 @@
|
||||
import torch
|
||||
from torch import nn
|
||||
|
||||
from lib_v2 import layers
|
||||
|
||||
|
||||
class BaseASPPNet(nn.Module):
|
||||
|
||||
def __init__(self, nin, ch, dilations=(4, 8, 16)):
|
||||
super(BaseASPPNet, self).__init__()
|
||||
self.enc1 = layers.Encoder(nin, ch, 3, 2, 1)
|
||||
self.enc2 = layers.Encoder(ch, ch * 2, 3, 2, 1)
|
||||
self.enc3 = layers.Encoder(ch * 2, ch * 4, 3, 2, 1)
|
||||
self.enc4 = layers.Encoder(ch * 4, ch * 8, 3, 2, 1)
|
||||
|
||||
self.aspp = layers.ASPPModule(ch * 8, ch * 16, dilations)
|
||||
|
||||
self.dec4 = layers.Decoder(ch * (8 + 16), ch * 8, 3, 1, 1)
|
||||
self.dec3 = layers.Decoder(ch * (4 + 8), ch * 4, 3, 1, 1)
|
||||
self.dec2 = layers.Decoder(ch * (2 + 4), ch * 2, 3, 1, 1)
|
||||
self.dec1 = layers.Decoder(ch * (1 + 2), ch, 3, 1, 1)
|
||||
|
||||
def __call__(self, x):
|
||||
h, e1 = self.enc1(x)
|
||||
h, e2 = self.enc2(h)
|
||||
h, e3 = self.enc3(h)
|
||||
h, e4 = self.enc4(h)
|
||||
|
||||
h = self.aspp(h)
|
||||
|
||||
h = self.dec4(h, e4)
|
||||
h = self.dec3(h, e3)
|
||||
h = self.dec2(h, e2)
|
||||
h = self.dec1(h, e1)
|
||||
|
||||
return h
|
||||
|
||||
|
||||
class CascadedASPPNet(nn.Module):
|
||||
|
||||
def __init__(self):
|
||||
super(CascadedASPPNet, self).__init__()
|
||||
self.low_band_net = BaseASPPNet(2, 32, ((2, 4), (4, 8), (8, 16)))
|
||||
self.high_band_net = BaseASPPNet(2, 32, ((2, 4), (4, 8), (8, 16)))
|
||||
|
||||
self.bridge = layers.Conv2DBNActiv(34, 16, 1, 1, 0)
|
||||
self.full_band_net = BaseASPPNet(16, 32)
|
||||
|
||||
self.out = nn.Sequential(
|
||||
layers.Conv2DBNActiv(32, 16, 3, 1, 1),
|
||||
nn.Conv2d(16, 2, 1, bias=False))
|
||||
self.aux_out = nn.Conv2d(32, 2, 1, bias=False)
|
||||
|
||||
self.offset = 128
|
||||
|
||||
def __call__(self, x):
|
||||
bandw = x.size()[2] // 2
|
||||
aux = torch.cat([
|
||||
self.low_band_net(x[:, :, :bandw]),
|
||||
self.high_band_net(x[:, :, bandw:])
|
||||
], dim=2)
|
||||
|
||||
h = torch.cat([x, aux], dim=1)
|
||||
h = self.full_band_net(self.bridge(h))
|
||||
|
||||
h = torch.sigmoid(self.out(h))
|
||||
aux = torch.sigmoid(self.aux_out(aux))
|
||||
|
||||
return h, aux
|
||||
|
||||
def predict(self, x):
|
||||
bandw = x.size()[2] // 2
|
||||
aux = torch.cat([
|
||||
self.low_band_net(x[:, :, :bandw]),
|
||||
self.high_band_net(x[:, :, bandw:])
|
||||
], dim=2)
|
||||
|
||||
h = torch.cat([x, aux], dim=1)
|
||||
h = self.full_band_net(self.bridge(h))
|
||||
|
||||
h = torch.sigmoid(self.out(h))
|
||||
if self.offset > 0:
|
||||
h = h[:, :, :, self.offset:-self.offset]
|
||||
assert h.size()[3] > 0
|
||||
|
||||
return h
|
@ -1,136 +0,0 @@
|
||||
import os
|
||||
|
||||
import librosa
|
||||
import numpy as np
|
||||
import soundfile as sf
|
||||
import torch
|
||||
|
||||
|
||||
def crop_center(h1, h2, concat=True):
|
||||
# s_freq = (h2.shape[2] - h1.shape[2]) // 2
|
||||
# e_freq = s_freq + h1.shape[2]
|
||||
h1_shape = h1.size()
|
||||
h2_shape = h2.size()
|
||||
if h2_shape[3] < h1_shape[3]:
|
||||
raise ValueError('h2_shape[3] must be greater than h1_shape[3]')
|
||||
s_time = (h2_shape[3] - h1_shape[3]) // 2
|
||||
e_time = s_time + h1_shape[3]
|
||||
h2 = h2[:, :, :, s_time:e_time]
|
||||
if concat:
|
||||
return torch.cat([h1, h2], dim=1)
|
||||
else:
|
||||
return h2
|
||||
|
||||
|
||||
def calc_spec(X, hop_length):
|
||||
n_fft = (hop_length - 1) * 2
|
||||
audio_left = np.asfortranarray(X[0])
|
||||
audio_right = np.asfortranarray(X[1])
|
||||
spec_left = librosa.stft(audio_left, n_fft, hop_length=hop_length)
|
||||
spec_right = librosa.stft(audio_right, n_fft, hop_length=hop_length)
|
||||
spec = np.asfortranarray([spec_left, spec_right])
|
||||
|
||||
return spec
|
||||
|
||||
|
||||
def mask_uninformative(mask, ref, thres=0.3, min_range=64, fade_area=32):
|
||||
if min_range < fade_area * 2:
|
||||
raise ValueError('min_range must be >= fade_area * 2')
|
||||
idx = np.where(ref.mean(axis=(0, 1)) < thres)[0]
|
||||
starts = np.insert(idx[np.where(np.diff(idx) != 1)[0] + 1], 0, idx[0])
|
||||
ends = np.append(idx[np.where(np.diff(idx) != 1)[0]], idx[-1])
|
||||
uninformative = np.where(ends - starts > min_range)[0]
|
||||
if len(uninformative) > 0:
|
||||
starts = starts[uninformative]
|
||||
ends = ends[uninformative]
|
||||
old_e = None
|
||||
for s, e in zip(starts, ends):
|
||||
if old_e is not None and s - old_e < fade_area:
|
||||
s = old_e - fade_area * 2
|
||||
elif s != 0:
|
||||
start_mask = mask[:, :, s:s + fade_area]
|
||||
np.clip(
|
||||
start_mask + np.linspace(0, 1, fade_area), 0, 1,
|
||||
out=start_mask)
|
||||
if e != mask.shape[2]:
|
||||
end_mask = mask[:, :, e - fade_area:e]
|
||||
np.clip(
|
||||
end_mask + np.linspace(1, 0, fade_area), 0, 1,
|
||||
out=end_mask)
|
||||
mask[:, :, s + fade_area:e - fade_area] = 1
|
||||
old_e = e
|
||||
|
||||
return mask
|
||||
|
||||
|
||||
def align_wave_head_and_tail(a, b, sr):
|
||||
a_mono = a[:, :sr * 4].sum(axis=0)
|
||||
b_mono = b[:, :sr * 4].sum(axis=0)
|
||||
a_mono -= a_mono.mean()
|
||||
b_mono -= b_mono.mean()
|
||||
offset = len(a_mono) - 1
|
||||
delay = np.argmax(np.correlate(a_mono, b_mono, 'full')) - offset
|
||||
|
||||
if delay > 0:
|
||||
a = a[:, delay:]
|
||||
else:
|
||||
b = b[:, np.abs(delay):]
|
||||
if a.shape[1] < b.shape[1]:
|
||||
b = b[:, :a.shape[1]]
|
||||
else:
|
||||
a = a[:, :b.shape[1]]
|
||||
|
||||
return a, b
|
||||
|
||||
|
||||
def cache_or_load(mix_path, inst_path, sr, hop_length):
|
||||
_, mix_ext = os.path.splitext(mix_path)
|
||||
_, inst_ext = os.path.splitext(inst_path)
|
||||
spec_mix_path = mix_path.replace(mix_ext, '.npy')
|
||||
spec_inst_path = inst_path.replace(inst_ext, '.npy')
|
||||
|
||||
if os.path.exists(spec_mix_path) and os.path.exists(spec_inst_path):
|
||||
X = np.load(spec_mix_path)
|
||||
y = np.load(spec_inst_path)
|
||||
else:
|
||||
X, _ = librosa.load(
|
||||
mix_path, sr, False, dtype=np.float32, res_type='kaiser_fast')
|
||||
y, _ = librosa.load(
|
||||
inst_path, sr, False, dtype=np.float32, res_type='kaiser_fast')
|
||||
X, _ = librosa.effects.trim(X)
|
||||
y, _ = librosa.effects.trim(y)
|
||||
X, y = align_wave_head_and_tail(X, y, sr)
|
||||
|
||||
X = np.abs(calc_spec(X, hop_length))
|
||||
y = np.abs(calc_spec(y, hop_length))
|
||||
|
||||
_, ext = os.path.splitext(mix_path)
|
||||
np.save(spec_mix_path, X)
|
||||
np.save(spec_inst_path, y)
|
||||
|
||||
return X, y
|
||||
|
||||
|
||||
def spec_to_wav(mag, phase, hop_length):
|
||||
spec = mag * phase
|
||||
spec_left = np.asfortranarray(spec[0])
|
||||
spec_right = np.asfortranarray(spec[1])
|
||||
wav_left = librosa.istft(spec_left, hop_length=hop_length)
|
||||
wav_right = librosa.istft(spec_right, hop_length=hop_length)
|
||||
wav = np.asfortranarray([wav_left, wav_right])
|
||||
|
||||
return wav
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
import sys
|
||||
X, _ = librosa.load(
|
||||
sys.argv[1], 44100, False, dtype=np.float32, res_type='kaiser_fast')
|
||||
y, _ = librosa.load(
|
||||
sys.argv[2], 44100, False, dtype=np.float32, res_type='kaiser_fast')
|
||||
X, _ = librosa.effects.trim(X)
|
||||
y, _ = librosa.effects.trim(y)
|
||||
X, y = align_wave_head_and_tail(X, y, 44100)
|
||||
sf.write('test_i.wav', y.T, 44100)
|
||||
sf.write('test_m.wav', X.T, 44100)
|
||||
sf.write('test_v.wav', (X - y).T, 44100)
|
Loading…
x
Reference in New Issue
Block a user