Delete lib_v2 directory

This commit is contained in:
Anjok07 2022-04-07 02:32:12 -05:00 committed by GitHub
parent 6549e3d0fb
commit b1a04b2d48
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23
4 changed files with 0 additions and 458 deletions

View File

@ -1,119 +0,0 @@
import os
import numpy as np
import torch
from tqdm import tqdm
from lib_v2 import spec_utils
class VocalRemoverValidationSet(torch.utils.data.Dataset):
def __init__(self, filelist):
self.filelist = filelist
def __len__(self):
return len(self.filelist)
def __getitem__(self, idx):
path = self.filelist[idx]
data = np.load(path)
return data['X'], data['y']
def mixup_generator(X, y, rate, alpha):
perm = np.random.permutation(len(X))[:int(len(X) * rate)]
for i in range(len(perm) - 1):
lam = np.random.beta(alpha, alpha)
X[perm[i]] = lam * X[perm[i]] + (1 - lam) * X[perm[i + 1]]
y[perm[i]] = lam * y[perm[i]] + (1 - lam) * y[perm[i + 1]]
return X, y
def get_oracle_data(X, y, instance_loss, oracle_rate, oracle_drop_rate):
k = int(len(X) * oracle_rate * (1 / (1 - oracle_drop_rate)))
n = int(len(X) * oracle_rate)
idx = np.argsort(instance_loss)[::-1][:k]
idx = np.random.choice(idx, n, replace=False)
oracle_X = X[idx].copy()
oracle_y = y[idx].copy()
return oracle_X, oracle_y, idx
def make_padding(width, cropsize, offset):
left = offset
roi_size = cropsize - left * 2
if roi_size == 0:
roi_size = cropsize
right = roi_size - (width % roi_size) + left
return left, right, roi_size
def make_training_set(filelist, cropsize, patches, sr, hop_length, offset):
len_dataset = patches * len(filelist)
X_dataset = np.zeros(
(len_dataset, 2, hop_length, cropsize), dtype=np.float32)
y_dataset = np.zeros(
(len_dataset, 2, hop_length, cropsize), dtype=np.float32)
for i, (X_path, y_path) in enumerate(tqdm(filelist)):
p = np.random.uniform()
if p < 0.1:
X_path.replace(os.path.splitext(X_path)[1], '_pitch-1.wav')
y_path.replace(os.path.splitext(y_path)[1], '_pitch-1.wav')
elif p < 0.2:
X_path.replace(os.path.splitext(X_path)[1], '_pitch1.wav')
y_path.replace(os.path.splitext(y_path)[1], '_pitch1.wav')
X, y = spec_utils.cache_or_load(X_path, y_path, sr, hop_length)
coeff = np.max([X.max(), y.max()])
X, y = X / coeff, y / coeff
l, r, roi_size = make_padding(X.shape[2], cropsize, offset)
X_pad = np.pad(X, ((0, 0), (0, 0), (l, r)), mode='constant')
y_pad = np.pad(y, ((0, 0), (0, 0), (l, r)), mode='constant')
starts = np.random.randint(0, X_pad.shape[2] - cropsize, patches)
ends = starts + cropsize
for j in range(patches):
idx = i * patches + j
X_dataset[idx] = X_pad[:, :, starts[j]:ends[j]]
y_dataset[idx] = y_pad[:, :, starts[j]:ends[j]]
if np.random.uniform() < 0.5:
# swap channel
X_dataset[idx] = X_dataset[idx, ::-1]
y_dataset[idx] = y_dataset[idx, ::-1]
return X_dataset, y_dataset
def make_validation_set(filelist, cropsize, sr, hop_length, offset):
patch_list = []
outdir = 'cs{}_sr{}_hl{}_of{}'.format(cropsize, sr, hop_length, offset)
os.makedirs(outdir, exist_ok=True)
for i, (X_path, y_path) in enumerate(tqdm(filelist)):
basename = os.path.splitext(os.path.basename(X_path))[0]
X, y = spec_utils.cache_or_load(X_path, y_path, sr, hop_length)
coeff = np.max([X.max(), y.max()])
X, y = X / coeff, y / coeff
l, r, roi_size = make_padding(X.shape[2], cropsize, offset)
X_pad = np.pad(X, ((0, 0), (0, 0), (l, r)), mode='constant')
y_pad = np.pad(y, ((0, 0), (0, 0), (l, r)), mode='constant')
len_dataset = int(np.ceil(X.shape[2] / roi_size))
for j in range(len_dataset):
outpath = os.path.join(outdir, '{}_p{}.npz'.format(basename, j))
start = j * roi_size
if not os.path.exists(outpath):
np.savez(
outpath,
X=X_pad[:, :, start:start + cropsize],
y=y_pad[:, :, start:start + cropsize])
patch_list.append(outpath)
return VocalRemoverValidationSet(patch_list)

View File

@ -1,117 +0,0 @@
import torch
from torch import nn
import torch.nn.functional as F
from lib_v2 import spec_utils
class Conv2DBNActiv(nn.Module):
def __init__(self, nin, nout, ksize=3, stride=1, pad=1, dilation=1, activ=nn.ReLU):
super(Conv2DBNActiv, self).__init__()
self.conv = nn.Sequential(
nn.Conv2d(
nin, nout,
kernel_size=ksize,
stride=stride,
padding=pad,
dilation=dilation,
bias=False),
nn.BatchNorm2d(nout),
activ()
)
def __call__(self, x):
return self.conv(x)
class SeperableConv2DBNActiv(nn.Module):
def __init__(self, nin, nout, ksize=3, stride=1, pad=1, dilation=1, activ=nn.ReLU):
super(SeperableConv2DBNActiv, self).__init__()
self.conv = nn.Sequential(
nn.Conv2d(
nin, nin,
kernel_size=ksize,
stride=stride,
padding=pad,
dilation=dilation,
groups=nin,
bias=False),
nn.Conv2d(
nin, nout,
kernel_size=1,
bias=False),
nn.BatchNorm2d(nout),
activ()
)
def __call__(self, x):
return self.conv(x)
class Encoder(nn.Module):
def __init__(self, nin, nout, ksize=3, stride=1, pad=1, activ=nn.LeakyReLU):
super(Encoder, self).__init__()
self.conv1 = Conv2DBNActiv(
nin, nout, ksize, 1, pad, activ=activ)
self.conv2 = Conv2DBNActiv(
nout, nout, ksize, stride, pad, activ=activ)
def __call__(self, x):
skip = self.conv1(x)
h = self.conv2(skip)
return h, skip
class Decoder(nn.Module):
def __init__(self, nin, nout, ksize=3, stride=1, pad=1, dropout=False):
super(Decoder, self).__init__()
self.conv = Conv2DBNActiv(nin, nout, ksize, 1, pad)
self.dropout = nn.Dropout2d(0.1) if dropout else None
def __call__(self, x, skip=None):
x = F.interpolate(x, scale_factor=2, mode='bilinear', align_corners=True)
if skip is not None:
x = spec_utils.crop_center(x, skip)
h = self.conv(x)
if self.dropout is not None:
h = self.dropout(h)
return h
class ASPPModule(nn.Module):
def __init__(self, nin, nout, dilations=(4, 8, 16)):
super(ASPPModule, self).__init__()
self.conv1 = nn.Sequential(
nn.AdaptiveAvgPool2d((1, None)),
Conv2DBNActiv(nin, nin, 1, 1, 0)
)
self.conv2 = Conv2DBNActiv(nin, nin, 1, 1, 0)
self.conv3 = SeperableConv2DBNActiv(
nin, nin, 3, 1, dilations[0], dilations[0])
self.conv4 = SeperableConv2DBNActiv(
nin, nin, 3, 1, dilations[1], dilations[1])
self.conv5 = SeperableConv2DBNActiv(
nin, nin, 3, 1, dilations[2], dilations[2])
self.bottleneck = nn.Sequential(
Conv2DBNActiv(nin * 5, nout, 1, 1, 0),
nn.Dropout2d(0.1)
)
def forward(self, x):
_, _, h, w = x.size()
feat1 = F.interpolate(self.conv1(x), size=(h, w), mode='bilinear', align_corners=True)
feat2 = self.conv2(x)
feat3 = self.conv3(x)
feat4 = self.conv4(x)
feat5 = self.conv5(x)
out = torch.cat((feat1, feat2, feat3, feat4, feat5), dim=1)
bottle = self.bottleneck(out)
return bottle

View File

@ -1,86 +0,0 @@
import torch
from torch import nn
from lib_v2 import layers
class BaseASPPNet(nn.Module):
def __init__(self, nin, ch, dilations=(4, 8, 16)):
super(BaseASPPNet, self).__init__()
self.enc1 = layers.Encoder(nin, ch, 3, 2, 1)
self.enc2 = layers.Encoder(ch, ch * 2, 3, 2, 1)
self.enc3 = layers.Encoder(ch * 2, ch * 4, 3, 2, 1)
self.enc4 = layers.Encoder(ch * 4, ch * 8, 3, 2, 1)
self.aspp = layers.ASPPModule(ch * 8, ch * 16, dilations)
self.dec4 = layers.Decoder(ch * (8 + 16), ch * 8, 3, 1, 1)
self.dec3 = layers.Decoder(ch * (4 + 8), ch * 4, 3, 1, 1)
self.dec2 = layers.Decoder(ch * (2 + 4), ch * 2, 3, 1, 1)
self.dec1 = layers.Decoder(ch * (1 + 2), ch, 3, 1, 1)
def __call__(self, x):
h, e1 = self.enc1(x)
h, e2 = self.enc2(h)
h, e3 = self.enc3(h)
h, e4 = self.enc4(h)
h = self.aspp(h)
h = self.dec4(h, e4)
h = self.dec3(h, e3)
h = self.dec2(h, e2)
h = self.dec1(h, e1)
return h
class CascadedASPPNet(nn.Module):
def __init__(self):
super(CascadedASPPNet, self).__init__()
self.low_band_net = BaseASPPNet(2, 32, ((2, 4), (4, 8), (8, 16)))
self.high_band_net = BaseASPPNet(2, 32, ((2, 4), (4, 8), (8, 16)))
self.bridge = layers.Conv2DBNActiv(34, 16, 1, 1, 0)
self.full_band_net = BaseASPPNet(16, 32)
self.out = nn.Sequential(
layers.Conv2DBNActiv(32, 16, 3, 1, 1),
nn.Conv2d(16, 2, 1, bias=False))
self.aux_out = nn.Conv2d(32, 2, 1, bias=False)
self.offset = 128
def __call__(self, x):
bandw = x.size()[2] // 2
aux = torch.cat([
self.low_band_net(x[:, :, :bandw]),
self.high_band_net(x[:, :, bandw:])
], dim=2)
h = torch.cat([x, aux], dim=1)
h = self.full_band_net(self.bridge(h))
h = torch.sigmoid(self.out(h))
aux = torch.sigmoid(self.aux_out(aux))
return h, aux
def predict(self, x):
bandw = x.size()[2] // 2
aux = torch.cat([
self.low_band_net(x[:, :, :bandw]),
self.high_band_net(x[:, :, bandw:])
], dim=2)
h = torch.cat([x, aux], dim=1)
h = self.full_band_net(self.bridge(h))
h = torch.sigmoid(self.out(h))
if self.offset > 0:
h = h[:, :, :, self.offset:-self.offset]
assert h.size()[3] > 0
return h

View File

@ -1,136 +0,0 @@
import os
import librosa
import numpy as np
import soundfile as sf
import torch
def crop_center(h1, h2, concat=True):
# s_freq = (h2.shape[2] - h1.shape[2]) // 2
# e_freq = s_freq + h1.shape[2]
h1_shape = h1.size()
h2_shape = h2.size()
if h2_shape[3] < h1_shape[3]:
raise ValueError('h2_shape[3] must be greater than h1_shape[3]')
s_time = (h2_shape[3] - h1_shape[3]) // 2
e_time = s_time + h1_shape[3]
h2 = h2[:, :, :, s_time:e_time]
if concat:
return torch.cat([h1, h2], dim=1)
else:
return h2
def calc_spec(X, hop_length):
n_fft = (hop_length - 1) * 2
audio_left = np.asfortranarray(X[0])
audio_right = np.asfortranarray(X[1])
spec_left = librosa.stft(audio_left, n_fft, hop_length=hop_length)
spec_right = librosa.stft(audio_right, n_fft, hop_length=hop_length)
spec = np.asfortranarray([spec_left, spec_right])
return spec
def mask_uninformative(mask, ref, thres=0.3, min_range=64, fade_area=32):
if min_range < fade_area * 2:
raise ValueError('min_range must be >= fade_area * 2')
idx = np.where(ref.mean(axis=(0, 1)) < thres)[0]
starts = np.insert(idx[np.where(np.diff(idx) != 1)[0] + 1], 0, idx[0])
ends = np.append(idx[np.where(np.diff(idx) != 1)[0]], idx[-1])
uninformative = np.where(ends - starts > min_range)[0]
if len(uninformative) > 0:
starts = starts[uninformative]
ends = ends[uninformative]
old_e = None
for s, e in zip(starts, ends):
if old_e is not None and s - old_e < fade_area:
s = old_e - fade_area * 2
elif s != 0:
start_mask = mask[:, :, s:s + fade_area]
np.clip(
start_mask + np.linspace(0, 1, fade_area), 0, 1,
out=start_mask)
if e != mask.shape[2]:
end_mask = mask[:, :, e - fade_area:e]
np.clip(
end_mask + np.linspace(1, 0, fade_area), 0, 1,
out=end_mask)
mask[:, :, s + fade_area:e - fade_area] = 1
old_e = e
return mask
def align_wave_head_and_tail(a, b, sr):
a_mono = a[:, :sr * 4].sum(axis=0)
b_mono = b[:, :sr * 4].sum(axis=0)
a_mono -= a_mono.mean()
b_mono -= b_mono.mean()
offset = len(a_mono) - 1
delay = np.argmax(np.correlate(a_mono, b_mono, 'full')) - offset
if delay > 0:
a = a[:, delay:]
else:
b = b[:, np.abs(delay):]
if a.shape[1] < b.shape[1]:
b = b[:, :a.shape[1]]
else:
a = a[:, :b.shape[1]]
return a, b
def cache_or_load(mix_path, inst_path, sr, hop_length):
_, mix_ext = os.path.splitext(mix_path)
_, inst_ext = os.path.splitext(inst_path)
spec_mix_path = mix_path.replace(mix_ext, '.npy')
spec_inst_path = inst_path.replace(inst_ext, '.npy')
if os.path.exists(spec_mix_path) and os.path.exists(spec_inst_path):
X = np.load(spec_mix_path)
y = np.load(spec_inst_path)
else:
X, _ = librosa.load(
mix_path, sr, False, dtype=np.float32, res_type='kaiser_fast')
y, _ = librosa.load(
inst_path, sr, False, dtype=np.float32, res_type='kaiser_fast')
X, _ = librosa.effects.trim(X)
y, _ = librosa.effects.trim(y)
X, y = align_wave_head_and_tail(X, y, sr)
X = np.abs(calc_spec(X, hop_length))
y = np.abs(calc_spec(y, hop_length))
_, ext = os.path.splitext(mix_path)
np.save(spec_mix_path, X)
np.save(spec_inst_path, y)
return X, y
def spec_to_wav(mag, phase, hop_length):
spec = mag * phase
spec_left = np.asfortranarray(spec[0])
spec_right = np.asfortranarray(spec[1])
wav_left = librosa.istft(spec_left, hop_length=hop_length)
wav_right = librosa.istft(spec_right, hop_length=hop_length)
wav = np.asfortranarray([wav_left, wav_right])
return wav
if __name__ == "__main__":
import sys
X, _ = librosa.load(
sys.argv[1], 44100, False, dtype=np.float32, res_type='kaiser_fast')
y, _ = librosa.load(
sys.argv[2], 44100, False, dtype=np.float32, res_type='kaiser_fast')
X, _ = librosa.effects.trim(X)
y, _ = librosa.effects.trim(y)
X, y = align_wave_head_and_tail(X, y, 44100)
sf.write('test_i.wav', y.T, 44100)
sf.write('test_m.wav', X.T, 44100)
sf.write('test_v.wav', (X - y).T, 44100)