import torch from torch import nn import torch.nn.functional as F from lib import spec_utils class Conv2DBNActiv(nn.Module): def __init__(self, nin, nout, ksize=3, stride=1, pad=1, dilation=1, activ=nn.ReLU): super(Conv2DBNActiv, self).__init__() self.conv = nn.Sequential( nn.Conv2d( nin, nout, kernel_size=ksize, stride=stride, padding=pad, dilation=dilation, bias=False), nn.BatchNorm2d(nout), activ() ) def __call__(self, x): return self.conv(x) class SeperableConv2DBNActiv(nn.Module): def __init__(self, nin, nout, ksize=3, stride=1, pad=1, dilation=1, activ=nn.ReLU): super(SeperableConv2DBNActiv, self).__init__() self.conv = nn.Sequential( nn.Conv2d( nin, nin, kernel_size=ksize, stride=stride, padding=pad, dilation=dilation, groups=nin, bias=False), nn.Conv2d( nin, nout, kernel_size=1, bias=False), nn.BatchNorm2d(nout), activ() ) def __call__(self, x): return self.conv(x) class Encoder(nn.Module): def __init__(self, nin, nout, ksize=3, stride=1, pad=1, activ=nn.LeakyReLU): super(Encoder, self).__init__() self.conv1 = Conv2DBNActiv(nin, nout, ksize, 1, pad, activ=activ) self.conv2 = Conv2DBNActiv(nout, nout, ksize, stride, pad, activ=activ) def __call__(self, x): skip = self.conv1(x) h = self.conv2(skip) return h, skip class Decoder(nn.Module): def __init__(self, nin, nout, ksize=3, stride=1, pad=1, activ=nn.ReLU, dropout=False): super(Decoder, self).__init__() self.conv = Conv2DBNActiv(nin, nout, ksize, 1, pad, activ=activ) self.dropout = nn.Dropout2d(0.1) if dropout else None def __call__(self, x, skip=None): x = F.interpolate(x, scale_factor=2, mode='bilinear', align_corners=True) if skip is not None: skip = spec_utils.crop_center(skip, x) x = torch.cat([x, skip], dim=1) h = self.conv(x) if self.dropout is not None: h = self.dropout(h) return h class ASPPModule(nn.Module): def __init__(self, nin, nout, dilations=(4, 8, 16, 32), activ=nn.ReLU): super(ASPPModule, self).__init__() self.conv1 = nn.Sequential( nn.AdaptiveAvgPool2d((1, None)), Conv2DBNActiv(nin, nin, 1, 1, 0, activ=activ) ) self.conv2 = Conv2DBNActiv(nin, nin, 1, 1, 0, activ=activ) self.conv3 = SeperableConv2DBNActiv( nin, nin, 3, 1, dilations[0], dilations[0], activ=activ) self.conv4 = SeperableConv2DBNActiv( nin, nin, 3, 1, dilations[1], dilations[1], activ=activ) self.conv5 = SeperableConv2DBNActiv( nin, nin, 3, 1, dilations[2], dilations[2], activ=activ) self.conv6 = SeperableConv2DBNActiv( nin, nin, 3, 1, dilations[2], dilations[2], activ=activ) self.bottleneck = nn.Sequential( Conv2DBNActiv(nin * 6, nout, 1, 1, 0, activ=activ), nn.Dropout2d(0.1) ) def forward(self, x): _, _, h, w = x.size() feat1 = F.interpolate(self.conv1(x), size=(h, w), mode='bilinear', align_corners=True) feat2 = self.conv2(x) feat3 = self.conv3(x) feat4 = self.conv4(x) feat5 = self.conv5(x) feat6 = self.conv6(x) out = torch.cat((feat1, feat2, feat3, feat4, feat5, feat6), dim=1) bottle = self.bottleneck(out) return bottle