import torch from torch._C import has_mkl import torch.nn as nn import numpy as np import librosa dim_c = 4 model_path = 'model' #n_fft_scale = {'vocals-one':6144, 'vocals-two':7680,'*':2} class Conv_TDF_net_trim(nn.Module): def __init__(self, device, n_fft_scale, dim_f, load, model_name, target_name, L, dim_t, hop=1024): super(Conv_TDF_net_trim, self).__init__() self.dim_f, self.dim_t = dim_f, 2**dim_t self.n_fft = n_fft_scale self.hop = hop self.n_bins = self.n_fft//2+1 self.chunk_size = hop * (self.dim_t-1) self.window = torch.hann_window(window_length=self.n_fft, periodic=True).to(device) self.target_name = target_name print(n_fft_scale) out_c = dim_c*4 if target_name=='*' else dim_c self.freq_pad = torch.zeros([1, out_c, self.n_bins-self.dim_f, self.dim_t]).to(device) def stft(self, x): x = x.reshape([-1, self.chunk_size]) x = torch.stft(x, n_fft=self.n_fft, hop_length=self.hop, window=self.window, center=True) x = x.permute([0,3,1,2]) x = x.reshape([-1,2,2,self.n_bins,self.dim_t]).reshape([-1,dim_c,self.n_bins,self.dim_t]) return x[:,:,:self.dim_f] def istft(self, x, freq_pad=None): freq_pad = self.freq_pad.repeat([x.shape[0],1,1,1]) if freq_pad is None else freq_pad x = torch.cat([x, freq_pad], -2) c = 4*2 if self.target_name=='*' else 2 x = x.reshape([-1,c,2,self.n_bins,self.dim_t]).reshape([-1,2,self.n_bins,self.dim_t]) x = x.permute([0,2,3,1]) x = torch.istft(x, n_fft=self.n_fft, hop_length=self.hop, window=self.window, center=True) return x.reshape([-1,c,self.chunk_size]) def stft(wave, nfft, hl): wave_left = np.asfortranarray(wave[0]) wave_right = np.asfortranarray(wave[1]) spec_left = librosa.stft(wave_left, nfft, hop_length=hl) spec_right = librosa.stft(wave_right, nfft, hop_length=hl) spec = np.asfortranarray([spec_left, spec_right]) return spec def istft(spec, hl): spec_left = np.asfortranarray(spec[0]) spec_right = np.asfortranarray(spec[1]) wave_left = librosa.istft(spec_left, hop_length=hl) wave_right = librosa.istft(spec_right, hop_length=hl) wave = np.asfortranarray([wave_left, wave_right]) return wave def spec_effects(wave, algorithm='Default', value=None): spec = [stft(wave[0],2048,1024),stft(wave[1],2048,1024)] if algorithm == 'Min_Mag': v_spec_m = np.where(np.abs(spec[1]) <= np.abs(spec[0]), spec[1], spec[0]) wave = istft(v_spec_m,1024) elif algorithm == 'Max_Mag': v_spec_m = np.where(np.abs(spec[1]) >= np.abs(spec[0]), spec[1], spec[0]) wave = istft(v_spec_m,1024) elif algorithm == 'Default': #wave = [istft(spec[0],1024),istft(spec[1],1024)] wave = (wave[1] * value) + (wave[0] * (1-value)) elif algorithm == 'Invert_p': X_mag = np.abs(spec[0]) y_mag = np.abs(spec[1]) max_mag = np.where(X_mag >= y_mag, X_mag, y_mag) v_spec = spec[1] - max_mag * np.exp(1.j * np.angle(spec[0])) wave = istft(v_spec,1024) return wave def get_models(name, device, n_fft_scale, dim_f, load=True, stems='bdov'): if name=='tdf_extra': models = [] if 'b' in stems: models.append( Conv_TDF_net_trim( device=device, load=load, n_fft_scale=n_fft_scale, model_name='Conv-TDF', target_name='bass', L=11, dim_f=dim_f, dim_t=8 ) ) if 'd' in stems: models.append( Conv_TDF_net_trim( device=device, load=load, n_fft_scale=n_fft_scale, model_name='Conv-TDF', target_name='drums', L=9, dim_f=dim_f, dim_t=7 ) ) if 'o' in stems: models.append( Conv_TDF_net_trim( device=device, load=load, n_fft_scale=n_fft_scale, model_name='Conv-TDF', target_name='other', L=11, dim_f=dim_f, dim_t=8 ) ) if 'v' in stems: models.append( Conv_TDF_net_trim( device=device, load=load, n_fft_scale=n_fft_scale, model_name='Conv-TDF', target_name='vocals', L=11, dim_f=dim_f, dim_t=8 ) ) return models else: print('Model undefined') return None