import os from pickle import STOP from tracemalloc import stop from turtle import update import subprocess from unittest import skip from pathlib import Path import os.path from datetime import datetime import pydub import shutil #MDX-Net #---------------------------------------- import soundfile as sf import torch import numpy as np from demucs.model import Demucs from demucs.utils import apply_model from models import get_models, spec_effects import onnxruntime as ort import time import os from tqdm import tqdm import warnings import sys import librosa import psutil #---------------------------------------- from lib_v5 import spec_utils from lib_v5.model_param_init import ModelParameters import torch # Command line text parsing and widget manipulation import tkinter as tk import traceback # Error Message Recent Calls import time # Timer class Predictor(): def __init__(self): pass def prediction_setup(self, demucs_name, channels=64): if data['demucsmodel']: self.demucs = Demucs(sources=["drums", "bass", "other", "vocals"], channels=channels) widget_text.write(base_text + 'Loading Demucs model... ') update_progress(**progress_kwargs, step=0.05) self.demucs.to(device) self.demucs.load_state_dict(torch.load(demucs_name)) widget_text.write('Done!\n') self.demucs.eval() self.onnx_models = {} c = 0 self.models = get_models('tdf_extra', load=False, device=cpu, stems='vocals') widget_text.write(base_text + 'Loading ONNX model... ') update_progress(**progress_kwargs, step=0.1) c+=1 if data['gpu'] >= 0: if torch.cuda.is_available(): run_type = ['CUDAExecutionProvider'] else: data['gpu'] = -1 widget_text.write("\n" + base_text + "No NVIDIA GPU detected. Switching to CPU... ") run_type = ['CPUExecutionProvider'] else: run_type = ['CPUExecutionProvider'] self.onnx_models[c] = ort.InferenceSession(os.path.join('models/MDX_Net_Models', model_set), providers=run_type) widget_text.write('Done!\n') def prediction(self, m): #mix, rate = sf.read(m) mix, rate = librosa.load(m, mono=False, sr=44100) if mix.ndim == 1: mix = np.asfortranarray([mix,mix]) mix = mix.T sources = self.demix(mix.T) widget_text.write(base_text + 'Inferences complete!\n') c = -1 #Main Save Path save_path = os.path.dirname(_basename) #Vocal Path vocal_name = '(Vocals)' if data['modelFolder']: vocal_path = '{save_path}/{file_name}.wav'.format( save_path=save_path, file_name = f'{os.path.basename(_basename)}_{vocal_name}_{model_set_name}',) vocal_path_mp3 = '{save_path}/{file_name}.mp3'.format( save_path=save_path, file_name = f'{os.path.basename(_basename)}_{vocal_name}_{model_set_name}',) vocal_path_flac = '{save_path}/{file_name}.flac'.format( save_path=save_path, file_name = f'{os.path.basename(_basename)}_{vocal_name}_{model_set_name}',) else: vocal_path = '{save_path}/{file_name}.wav'.format( save_path=save_path, file_name = f'{os.path.basename(_basename)}_{vocal_name}',) vocal_path_mp3 = '{save_path}/{file_name}.mp3'.format( save_path=save_path, file_name = f'{os.path.basename(_basename)}_{vocal_name}',) vocal_path_flac = '{save_path}/{file_name}.flac'.format( save_path=save_path, file_name = f'{os.path.basename(_basename)}_{vocal_name}',) #Instrumental Path Instrumental_name = '(Instrumental)' if data['modelFolder']: Instrumental_path = '{save_path}/{file_name}.wav'.format( save_path=save_path, file_name = f'{os.path.basename(_basename)}_{Instrumental_name}_{model_set_name}',) Instrumental_path_mp3 = '{save_path}/{file_name}.mp3'.format( save_path=save_path, file_name = f'{os.path.basename(_basename)}_{Instrumental_name}_{model_set_name}',) Instrumental_path_flac = '{save_path}/{file_name}.flac'.format( save_path=save_path, file_name = f'{os.path.basename(_basename)}_{Instrumental_name}_{model_set_name}',) else: Instrumental_path = '{save_path}/{file_name}.wav'.format( save_path=save_path, file_name = f'{os.path.basename(_basename)}_{Instrumental_name}',) Instrumental_path_mp3 = '{save_path}/{file_name}.mp3'.format( save_path=save_path, file_name = f'{os.path.basename(_basename)}_{Instrumental_name}',) Instrumental_path_flac = '{save_path}/{file_name}.flac'.format( save_path=save_path, file_name = f'{os.path.basename(_basename)}_{Instrumental_name}',) #Non-Reduced Vocal Path vocal_name = '(Vocals)' if data['modelFolder']: non_reduced_vocal_path = '{save_path}/{file_name}.wav'.format( save_path=save_path, file_name = f'{os.path.basename(_basename)}_{vocal_name}_{model_set_name}_No_Reduction',) non_reduced_vocal_path_mp3 = '{save_path}/{file_name}.mp3'.format( save_path=save_path, file_name = f'{os.path.basename(_basename)}_{vocal_name}_{model_set_name}_No_Reduction',) non_reduced_vocal_path_flac = '{save_path}/{file_name}.flac'.format( save_path=save_path, file_name = f'{os.path.basename(_basename)}_{vocal_name}_{model_set_name}_No_Reduction',) else: non_reduced_vocal_path = '{save_path}/{file_name}.wav'.format( save_path=save_path, file_name = f'{os.path.basename(_basename)}_{vocal_name}_No_Reduction',) non_reduced_vocal_path_mp3 = '{save_path}/{file_name}.mp3'.format( save_path=save_path, file_name = f'{os.path.basename(_basename)}_{vocal_name}_No_Reduction',) non_reduced_vocal_path_flac = '{save_path}/{file_name}.flac'.format( save_path=save_path, file_name = f'{os.path.basename(_basename)}_{vocal_name}_No_Reduction',) if os.path.isfile(non_reduced_vocal_path): file_exists_n = 'there' else: file_exists_n = 'not_there' if os.path.isfile(vocal_path): file_exists_v = 'there' else: file_exists_v = 'not_there' if os.path.isfile(Instrumental_path): file_exists_i = 'there' else: file_exists_i = 'not_there' print('Is there already a voc file there? ', file_exists_v) if not data['noisereduc_s'] == 'None': c += 1 if not data['demucsmodel']: if data['inst_only']: widget_text.write(base_text + 'Preparing to save Instrumental...') else: widget_text.write(base_text + 'Saving vocals... ') sf.write(non_reduced_vocal_path, sources[c].T, rate) update_progress(**progress_kwargs, step=(0.9)) widget_text.write('Done!\n') widget_text.write(base_text + 'Performing Noise Reduction... ') reduction_sen = float(int(data['noisereduc_s'])/10) subprocess.call("lib_v5\\sox\\sox.exe" + ' "' + f"{str(non_reduced_vocal_path)}" + '" "' + f"{str(vocal_path)}" + '" ' + "noisered lib_v5\\sox\\mdxnetnoisereduc.prof " + f"{reduction_sen}", shell=True, stdout=subprocess.PIPE, stdin=subprocess.PIPE, stderr=subprocess.PIPE) widget_text.write('Done!\n') update_progress(**progress_kwargs, step=(0.95)) else: if data['inst_only']: widget_text.write(base_text + 'Preparing Instrumental...') else: widget_text.write(base_text + 'Saving Vocals... ') sf.write(non_reduced_vocal_path, sources[3].T, rate) update_progress(**progress_kwargs, step=(0.9)) widget_text.write('Done!\n') widget_text.write(base_text + 'Performing Noise Reduction... ') reduction_sen = float(int(data['noisereduc_s'])/10) subprocess.call("lib_v5\\sox\\sox.exe" + ' "' + f"{str(non_reduced_vocal_path)}" + '" "' + f"{str(vocal_path)}" + '" ' + "noisered lib_v5\\sox\\mdxnetnoisereduc.prof " + f"{reduction_sen}", shell=True, stdout=subprocess.PIPE, stdin=subprocess.PIPE, stderr=subprocess.PIPE) update_progress(**progress_kwargs, step=(0.95)) widget_text.write('Done!\n') else: c += 1 if not data['demucsmodel']: if data['inst_only']: widget_text.write(base_text + 'Preparing Instrumental...') else: widget_text.write(base_text + 'Saving Vocals... ') sf.write(vocal_path, sources[c].T, rate) update_progress(**progress_kwargs, step=(0.9)) widget_text.write('Done!\n') else: if data['inst_only']: widget_text.write(base_text + 'Preparing Instrumental...') else: widget_text.write(base_text + 'Saving Vocals... ') sf.write(vocal_path, sources[3].T, rate) update_progress(**progress_kwargs, step=(0.9)) widget_text.write('Done!\n') if data['voc_only'] and not data['inst_only']: pass else: finalfiles = [ { 'model_params':'lib_v5/modelparams/1band_sr44100_hl512.json', 'files':[str(music_file), vocal_path], } ] widget_text.write(base_text + 'Saving Instrumental... ') for i, e in tqdm(enumerate(finalfiles)): wave, specs = {}, {} mp = ModelParameters(e['model_params']) for i in range(len(e['files'])): spec = {} for d in range(len(mp.param['band']), 0, -1): bp = mp.param['band'][d] if d == len(mp.param['band']): # high-end band wave[d], _ = librosa.load( e['files'][i], bp['sr'], False, dtype=np.float32, res_type=bp['res_type']) if len(wave[d].shape) == 1: # mono to stereo wave[d] = np.array([wave[d], wave[d]]) else: # lower bands wave[d] = librosa.resample(wave[d+1], mp.param['band'][d+1]['sr'], bp['sr'], res_type=bp['res_type']) spec[d] = spec_utils.wave_to_spectrogram(wave[d], bp['hl'], bp['n_fft'], mp.param['mid_side'], mp.param['mid_side_b2'], mp.param['reverse']) specs[i] = spec_utils.combine_spectrograms(spec, mp) del wave ln = min([specs[0].shape[2], specs[1].shape[2]]) specs[0] = specs[0][:,:,:ln] specs[1] = specs[1][:,:,:ln] X_mag = np.abs(specs[0]) y_mag = np.abs(specs[1]) max_mag = np.where(X_mag >= y_mag, X_mag, y_mag) v_spec = specs[1] - max_mag * np.exp(1.j * np.angle(specs[0])) update_progress(**progress_kwargs, step=(1)) sf.write(Instrumental_path, spec_utils.cmb_spectrogram_to_wave(-v_spec, mp), mp.param['sr']) if data['inst_only']: if file_exists_v == 'there': pass else: try: os.remove(vocal_path) except: pass widget_text.write('Done!\n') if data['saveFormat'] == 'Mp3': try: if data['inst_only'] == True: pass else: musfile = pydub.AudioSegment.from_wav(vocal_path) musfile.export(vocal_path_mp3, format="mp3", bitrate="320k") if file_exists_v == 'there': pass else: try: os.remove(vocal_path) except: pass if data['voc_only'] == True: pass else: musfile = pydub.AudioSegment.from_wav(Instrumental_path) musfile.export(Instrumental_path_mp3, format="mp3", bitrate="320k") if file_exists_i == 'there': pass else: try: os.remove(Instrumental_path) except: pass if data['non_red'] == True: musfile = pydub.AudioSegment.from_wav(non_reduced_vocal_path) musfile.export(non_reduced_vocal_path_mp3, format="mp3", bitrate="320k") if file_exists_n == 'there': pass else: try: os.remove(non_reduced_vocal_path) except: pass except Exception as e: traceback_text = ''.join(traceback.format_tb(e.__traceback__)) errmessage = f'Traceback Error: "{traceback_text}"\n{type(e).__name__}: "{e}"\n' if "ffmpeg" in errmessage: widget_text.write(base_text + 'Failed to save output(s) as Mp3(s).\n') widget_text.write(base_text + 'FFmpeg might be missing or corrupted, please check error log.\n') widget_text.write(base_text + 'Moving on...\n') else: widget_text.write(base_text + 'Failed to save output(s) as Mp3(s).\n') widget_text.write(base_text + 'Please check error log.\n') widget_text.write(base_text + 'Moving on...\n') try: with open('errorlog.txt', 'w') as f: f.write(f'Last Error Received:\n\n' + f'Error Received while attempting to save file as mp3 "{os.path.basename(music_file)}":\n\n' + f'Process Method: MDX-Net\n\n' + f'FFmpeg might be missing or corrupted.\n\n' + f'If this error persists, please contact the developers.\n\n' + f'Raw error details:\n\n' + errmessage + f'\nError Time Stamp: [{datetime.now().strftime("%Y-%m-%d %H:%M:%S")}]\n') except: pass if data['saveFormat'] == 'Flac': try: if data['inst_only'] == True: pass else: musfile = pydub.AudioSegment.from_wav(vocal_path) musfile.export(vocal_path_flac, format="flac") if file_exists_v == 'there': pass else: try: os.remove(vocal_path) except: pass if data['voc_only'] == True: pass else: musfile = pydub.AudioSegment.from_wav(Instrumental_path) musfile.export(Instrumental_path_flac, format="flac") if file_exists_i == 'there': pass else: try: os.remove(Instrumental_path) except: pass if data['non_red'] == True: musfile = pydub.AudioSegment.from_wav(non_reduced_vocal_path) musfile.export(non_reduced_vocal_path_flac, format="flac") if file_exists_n == 'there': pass else: try: os.remove(non_reduced_vocal_path) except: pass except Exception as e: traceback_text = ''.join(traceback.format_tb(e.__traceback__)) errmessage = f'Traceback Error: "{traceback_text}"\n{type(e).__name__}: "{e}"\n' if "ffmpeg" in errmessage: widget_text.write(base_text + 'Failed to save output(s) as Flac(s).\n') widget_text.write(base_text + 'FFmpeg might be missing or corrupted, please check error log.\n') widget_text.write(base_text + 'Moving on...\n') else: widget_text.write(base_text + 'Failed to save output(s) as Flac(s).\n') widget_text.write(base_text + 'Please check error log.\n') widget_text.write(base_text + 'Moving on...\n') try: with open('errorlog.txt', 'w') as f: f.write(f'Last Error Received:\n\n' + f'Error Received while attempting to save file as flac "{os.path.basename(music_file)}":\n\n' + f'Process Method: MDX-Net\n\n' + f'FFmpeg might be missing or corrupted.\n\n' + f'If this error persists, please contact the developers.\n\n' + f'Raw error details:\n\n' + errmessage + f'\nError Time Stamp: [{datetime.now().strftime("%Y-%m-%d %H:%M:%S")}]\n') except: pass try: print('Is there already a voc file there? ', file_exists_v) print('Is there already a non_voc file there? ', file_exists_n) except: pass if data['noisereduc_s'] == 'None': pass elif data['non_red'] == True: pass elif data['inst_only']: if file_exists_n == 'there': pass else: try: os.remove(non_reduced_vocal_path) except: pass else: try: os.remove(non_reduced_vocal_path) except: pass widget_text.write(base_text + 'Completed Seperation!\n') def demix(self, mix): # 1 = demucs only # 0 = onnx only if data['chunks'] == 'Full': chunk_set = 0 else: chunk_set = data['chunks'] if data['chunks'] == 'Auto': if data['gpu'] == 0: try: gpu_mem = round(torch.cuda.get_device_properties(0).total_memory/1.074e+9) except: widget_text.write(base_text + 'NVIDIA GPU Required for conversion!\n') if int(gpu_mem) <= int(5): chunk_set = int(5) widget_text.write(base_text + 'Chunk size auto-set to 5... \n') if gpu_mem in [6, 7]: chunk_set = int(30) widget_text.write(base_text + 'Chunk size auto-set to 30... \n') if gpu_mem in [8, 9, 10, 11, 12, 13, 14, 15]: chunk_set = int(40) widget_text.write(base_text + 'Chunk size auto-set to 40... \n') if int(gpu_mem) >= int(16): chunk_set = int(60) widget_text.write(base_text + 'Chunk size auto-set to 60... \n') if data['gpu'] == -1: sys_mem = psutil.virtual_memory().total >> 30 if int(sys_mem) <= int(4): chunk_set = int(1) widget_text.write(base_text + 'Chunk size auto-set to 1... \n') if sys_mem in [5, 6, 7, 8]: chunk_set = int(10) widget_text.write(base_text + 'Chunk size auto-set to 10... \n') if sys_mem in [9, 10, 11, 12, 13, 14, 15, 16]: chunk_set = int(25) widget_text.write(base_text + 'Chunk size auto-set to 25... \n') if int(sys_mem) >= int(17): chunk_set = int(60) widget_text.write(base_text + 'Chunk size auto-set to 60... \n') elif data['chunks'] == 'Full': chunk_set = 0 widget_text.write(base_text + "Chunk size set to full... \n") else: chunk_set = int(data['chunks']) widget_text.write(base_text + "Chunk size user-set to "f"{chunk_set}... \n") samples = mix.shape[-1] margin = margin_set chunk_size = chunk_set*44100 assert not margin == 0, 'margin cannot be zero!' if margin > chunk_size: margin = chunk_size b = np.array([[[0.5]], [[0.5]], [[0.7]], [[0.9]]]) segmented_mix = {} if chunk_set == 0 or samples < chunk_size: chunk_size = samples counter = -1 for skip in range(0, samples, chunk_size): counter+=1 s_margin = 0 if counter == 0 else margin end = min(skip+chunk_size+margin, samples) start = skip-s_margin segmented_mix[skip] = mix[:,start:end].copy() if end == samples: break if not data['demucsmodel']: sources = self.demix_base(segmented_mix, margin_size=margin) else: # both, apply spec effects base_out = self.demix_base(segmented_mix, margin_size=margin) demucs_out = self.demix_demucs(segmented_mix, margin_size=margin) nan_count = np.count_nonzero(np.isnan(demucs_out)) + np.count_nonzero(np.isnan(base_out)) if nan_count > 0: print('Warning: there are {} nan values in the array(s).'.format(nan_count)) demucs_out, base_out = np.nan_to_num(demucs_out), np.nan_to_num(base_out) sources = {} sources[3] = (spec_effects(wave=[demucs_out[3],base_out[0]], algorithm='default', value=b[3])*1.03597672895) # compensation return sources def demix_base(self, mixes, margin_size): chunked_sources = [] onnxitera = len(mixes) onnxitera_calc = onnxitera * 2 gui_progress_bar_onnx = 0 widget_text.write(base_text + "Running ONNX Inference...\n") widget_text.write(base_text + "Processing "f"{onnxitera} slices... ") print(' Running ONNX Inference...') for mix in mixes: gui_progress_bar_onnx += 1 if data['demucsmodel']: update_progress(**progress_kwargs, step=(0.1 + (0.5/onnxitera_calc * gui_progress_bar_onnx))) else: update_progress(**progress_kwargs, step=(0.1 + (0.9/onnxitera * gui_progress_bar_onnx))) cmix = mixes[mix] sources = [] n_sample = cmix.shape[1] mod = 0 for model in self.models: mod += 1 trim = model.n_fft//2 gen_size = model.chunk_size-2*trim pad = gen_size - n_sample%gen_size mix_p = np.concatenate((np.zeros((2,trim)), cmix, np.zeros((2,pad)), np.zeros((2,trim))), 1) mix_waves = [] i = 0 while i < n_sample + pad: waves = np.array(mix_p[:, i:i+model.chunk_size]) mix_waves.append(waves) i += gen_size mix_waves = torch.tensor(mix_waves, dtype=torch.float32).to(cpu) with torch.no_grad(): _ort = self.onnx_models[mod] spek = model.stft(mix_waves) tar_waves = model.istft(torch.tensor(_ort.run(None, {'input': spek.cpu().numpy()})[0]))#.cpu() tar_signal = tar_waves[:,:,trim:-trim].transpose(0,1).reshape(2, -1).numpy()[:, :-pad] start = 0 if mix == 0 else margin_size end = None if mix == list(mixes.keys())[::-1][0] else -margin_size if margin_size == 0: end = None sources.append(tar_signal[:,start:end]) chunked_sources.append(sources) _sources = np.concatenate(chunked_sources, axis=-1) del self.onnx_models widget_text.write('Done!\n') return _sources def demix_demucs(self, mix, margin_size): processed = {} demucsitera = len(mix) demucsitera_calc = demucsitera * 2 gui_progress_bar_demucs = 0 widget_text.write(base_text + "Running Demucs Inference...\n") widget_text.write(base_text + "Processing "f"{len(mix)} slices... ") print(' Running Demucs Inference...') for nmix in mix: gui_progress_bar_demucs += 1 update_progress(**progress_kwargs, step=(0.35 + (1.05/demucsitera_calc * gui_progress_bar_demucs))) cmix = mix[nmix] cmix = torch.tensor(cmix, dtype=torch.float32) ref = cmix.mean(0) cmix = (cmix - ref.mean()) / ref.std() shift_set = 0 with torch.no_grad(): sources = apply_model(self.demucs, cmix.to(device), split=True, overlap=overlap_set, shifts=shift_set) sources = (sources * ref.std() + ref.mean()).cpu().numpy() sources[[0,1]] = sources[[1,0]] start = 0 if nmix == 0 else margin_size end = None if nmix == list(mix.keys())[::-1][0] else -margin_size if margin_size == 0: end = None processed[nmix] = sources[:,:,start:end].copy() sources = list(processed.values()) sources = np.concatenate(sources, axis=-1) widget_text.write('Done!\n') return sources data = { # Paths 'input_paths': None, 'export_path': None, 'saveFormat': 'Wav', # Processing Options 'demucsmodel': True, 'gpu': -1, 'chunks': 10, 'non_red': False, 'noisereduc_s': 3, 'mixing': 'default', 'modelFolder': False, 'voc_only': False, 'inst_only': False, 'break': False, # Choose Model 'mdxnetModel': 'UVR-MDX-NET 1', 'high_end_process': 'mirroring', } default_chunks = data['chunks'] default_noisereduc_s = data['noisereduc_s'] def update_progress(progress_var, total_files, file_num, step: float = 1): """Calculate the progress for the progress widget in the GUI""" base = (100 / total_files) progress = base * (file_num - 1) progress += base * step progress_var.set(progress) def get_baseText(total_files, file_num): """Create the base text for the command widget""" text = 'File {file_num}/{total_files} '.format(file_num=file_num, total_files=total_files) return text warnings.filterwarnings("ignore") cpu = torch.device('cpu') device = torch.device('cuda:0' if torch.cuda.is_available() else 'cpu') def hide_opt(): with open(os.devnull, "w") as devnull: old_stdout = sys.stdout sys.stdout = devnull try: yield finally: sys.stdout = old_stdout def main(window: tk.Wm, text_widget: tk.Text, button_widget: tk.Button, progress_var: tk.Variable, **kwargs: dict): global widget_text global gui_progress_bar global music_file global channel_set global margin_set global overlap_set global default_chunks global default_noisereduc_s global _basename global _mixture global progress_kwargs global base_text global model_set global model_set_name # Update default settings default_chunks = data['chunks'] default_noisereduc_s = data['noisereduc_s'] channel_set = int(64) margin_set = int(44100) overlap_set = float(0.5) widget_text = text_widget gui_progress_bar = progress_var #Error Handling onnxmissing = "[ONNXRuntimeError] : 3 : NO_SUCHFILE" runtimeerr = "CUDNN error executing cudnnSetTensorNdDescriptor" cuda_err = "CUDA out of memory" mod_err = "ModuleNotFoundError" file_err = "FileNotFoundError" ffmp_err = """audioread\__init__.py", line 116, in audio_open""" sf_write_err = "sf.write" try: with open('errorlog.txt', 'w') as f: f.write(f'No errors to report at this time.' + f'\n\nLast Process Method Used: MDX-Net' + f'\nLast Conversion Time Stamp: [{datetime.now().strftime("%Y-%m-%d %H:%M:%S")}]\n') except: pass data.update(kwargs) if data['mdxnetModel'] == 'UVR-MDX-NET 1': model_set = 'UVR_MDXNET_9703.onnx' model_set_name = 'UVR_MDXNET_9703' if data['mdxnetModel'] == 'UVR-MDX-NET 2': model_set = 'UVR_MDXNET_9682.onnx' model_set_name = 'UVR_MDXNET_9682' if data['mdxnetModel'] == 'UVR-MDX-NET 3': model_set = 'UVR_MDXNET_9662.onnx' model_set_name = 'UVR_MDXNET_9662' if data['mdxnetModel'] == 'UVR-MDX-NET Karaoke': model_set = 'UVR_MDXNET_KARA.onnx' model_set_name = 'UVR_MDXNET_Karaoke' stime = time.perf_counter() progress_var.set(0) text_widget.clear() button_widget.configure(state=tk.DISABLED) # Disable Button try: #Load File(s) for file_num, music_file in tqdm(enumerate(data['input_paths'], start=1)): _mixture = f'{data["input_paths"]}' _basename = f'{data["export_path"]}/{file_num}_{os.path.splitext(os.path.basename(music_file))[0]}' # -Get text and update progress- base_text = get_baseText(total_files=len(data['input_paths']), file_num=file_num) progress_kwargs = {'progress_var': progress_var, 'total_files': len(data['input_paths']), 'file_num': file_num} try: total, used, free = shutil.disk_usage("/") total_space = int(total/1.074e+9) used_space = int(used/1.074e+9) free_space = int(free/1.074e+9) if int(free/1.074e+9) <= int(2): text_widget.write('Error: Not enough storage on main drive to continue. Your main drive must have \nat least 3 GB\'s of storage in order for this application function properly. \n\nPlease ensure your main drive has at least 3 GB\'s of storage and try again.\n\n') text_widget.write('Detected Total Space: ' + str(total_space) + ' GB' + '\n') text_widget.write('Detected Used Space: ' + str(used_space) + ' GB' + '\n') text_widget.write('Detected Free Space: ' + str(free_space) + ' GB' + '\n') progress_var.set(0) button_widget.configure(state=tk.NORMAL) # Enable Button return if int(free/1.074e+9) in [3, 4, 5, 6, 7, 8]: text_widget.write('Warning: Your main drive is running low on storage. Your main drive must have \nat least 3 GB\'s of storage in order for this application function properly.\n\n') text_widget.write('Detected Total Space: ' + str(total_space) + ' GB' + '\n') text_widget.write('Detected Used Space: ' + str(used_space) + ' GB' + '\n') text_widget.write('Detected Free Space: ' + str(free_space) + ' GB' + '\n\n') except: pass if data['noisereduc_s'] == 'None': pass else: if not os.path.isfile("lib_v5\sox\sox.exe"): data['noisereduc_s'] = 'None' data['non_red'] = False widget_text.write(base_text + 'SoX is missing and required for noise reduction.\n') widget_text.write(base_text + 'See the \"More Info\" tab in the Help Guide.\n') widget_text.write(base_text + 'Noise Reduction will be disabled until SoX is available.\n\n') update_progress(**progress_kwargs, step=0) e = os.path.join(data["export_path"]) demucsmodel = 'models/Demucs_Model/demucs_extra-3646af93_org.th' pred = Predictor() pred.prediction_setup(demucs_name=demucsmodel, channels=channel_set) # split pred.prediction( m=music_file, ) except Exception as e: traceback_text = ''.join(traceback.format_tb(e.__traceback__)) message = f'Traceback Error: "{traceback_text}"\n{type(e).__name__}: "{e}"\n' if runtimeerr in message: text_widget.write("\n" + base_text + f'Separation failed for the following audio file:\n') text_widget.write(base_text + f'"{os.path.basename(music_file)}"\n') text_widget.write(f'\nError Received:\n\n') text_widget.write(f'Your PC cannot process this audio file with the chunk size selected.\nPlease lower the chunk size and try again.\n\n') text_widget.write(f'If this error persists, please contact the developers.\n\n') text_widget.write(f'Time Elapsed: {time.strftime("%H:%M:%S", time.gmtime(int(time.perf_counter() - stime)))}') try: with open('errorlog.txt', 'w') as f: f.write(f'Last Error Received:\n\n' + f'Error Received while processing "{os.path.basename(music_file)}":\n' + f'Process Method: MDX-Net\n\n' + f'Your PC cannot process this audio file with the chunk size selected.\nPlease lower the chunk size and try again.\n\n' + f'If this error persists, please contact the developers.\n\n' + f'Raw error details:\n\n' + message + f'\nError Time Stamp: [{datetime.now().strftime("%Y-%m-%d %H:%M:%S")}]\n') except: pass torch.cuda.empty_cache() progress_var.set(0) button_widget.configure(state=tk.NORMAL) # Enable Button return if cuda_err in message: text_widget.write("\n" + base_text + f'Separation failed for the following audio file:\n') text_widget.write(base_text + f'"{os.path.basename(music_file)}"\n') text_widget.write(f'\nError Received:\n\n') text_widget.write(f'The application was unable to allocate enough GPU memory to use this model.\n') text_widget.write(f'Please close any GPU intensive applications and try again.\n') text_widget.write(f'If the error persists, your GPU might not be supported.\n\n') text_widget.write(f'Time Elapsed: {time.strftime("%H:%M:%S", time.gmtime(int(time.perf_counter() - stime)))}') try: with open('errorlog.txt', 'w') as f: f.write(f'Last Error Received:\n\n' + f'Error Received while processing "{os.path.basename(music_file)}":\n' + f'Process Method: MDX-Net\n\n' + f'The application was unable to allocate enough GPU memory to use this model.\n' + f'Please close any GPU intensive applications and try again.\n' + f'If the error persists, your GPU might not be supported.\n\n' + f'Raw error details:\n\n' + message + f'\nError Time Stamp [{datetime.now().strftime("%Y-%m-%d %H:%M:%S")}]\n') except: pass torch.cuda.empty_cache() progress_var.set(0) button_widget.configure(state=tk.NORMAL) # Enable Button return if mod_err in message: text_widget.write("\n" + base_text + f'Separation failed for the following audio file:\n') text_widget.write(base_text + f'"{os.path.basename(music_file)}"\n') text_widget.write(f'\nError Received:\n\n') text_widget.write(f'Application files(s) are missing.\n') text_widget.write("\n" + f'{type(e).__name__} - "{e}"' + "\n\n") text_widget.write(f'Please check for missing files/scripts in the app directory and try again.\n') text_widget.write(f'If the error persists, please reinstall application or contact the developers.\n\n') text_widget.write(f'Time Elapsed: {time.strftime("%H:%M:%S", time.gmtime(int(time.perf_counter() - stime)))}') try: with open('errorlog.txt', 'w') as f: f.write(f'Last Error Received:\n\n' + f'Error Received while processing "{os.path.basename(music_file)}":\n' + f'Process Method: MDX-Net\n\n' + f'Application files(s) are missing.\n' + f'Please check for missing files/scripts in the app directory and try again.\n' + f'If the error persists, please reinstall application or contact the developers.\n\n' + message + f'\nError Time Stamp [{datetime.now().strftime("%Y-%m-%d %H:%M:%S")}]\n') except: pass torch.cuda.empty_cache() progress_var.set(0) button_widget.configure(state=tk.NORMAL) # Enable Button return if file_err in message: text_widget.write("\n" + base_text + f'Separation failed for the following audio file:\n') text_widget.write(base_text + f'"{os.path.basename(music_file)}"\n') text_widget.write(f'\nError Received:\n\n') text_widget.write(f'Missing file error raised.\n') text_widget.write("\n" + f'{type(e).__name__} - "{e}"' + "\n\n") text_widget.write("\n" + f'Please address the error and try again.' + "\n") text_widget.write(f'If this error persists, please contact the developers.\n\n') text_widget.write(f'Time Elapsed: {time.strftime("%H:%M:%S", time.gmtime(int(time.perf_counter() - stime)))}') torch.cuda.empty_cache() try: with open('errorlog.txt', 'w') as f: f.write(f'Last Error Received:\n\n' + f'Error Received while processing "{os.path.basename(music_file)}":\n' + f'Process Method: MDX-Net\n\n' + f'Missing file error raised.\n' + "\n" + f'Please address the error and try again.' + "\n" + f'If this error persists, please contact the developers.\n\n' + message + f'\nError Time Stamp [{datetime.now().strftime("%Y-%m-%d %H:%M:%S")}]\n') except: pass progress_var.set(0) button_widget.configure(state=tk.NORMAL) # Enable Button return if ffmp_err in message: text_widget.write("\n" + base_text + f'Separation failed for the following audio file:\n') text_widget.write(base_text + f'"{os.path.basename(music_file)}"\n') text_widget.write(f'\nError Received:\n\n') text_widget.write(f'FFmpeg is missing or corrupt.\n') text_widget.write(f'You will only be able to process .wav files until FFmpeg is available on this system.\n') text_widget.write(f'See the \"More Info\" tab in the Help Guide.\n\n') text_widget.write(f'If this error persists, please contact the developers.\n\n') text_widget.write(f'Time Elapsed: {time.strftime("%H:%M:%S", time.gmtime(int(time.perf_counter() - stime)))}') torch.cuda.empty_cache() try: with open('errorlog.txt', 'w') as f: f.write(f'Last Error Received:\n\n' + f'Error Received while processing "{os.path.basename(music_file)}":\n' + f'Process Method: MDX-Net\n\n' + f'FFmpeg is missing or corrupt.\n' + f'You will only be able to process .wav files until FFmpeg is available on this system.\n' + f'See the \"More Info\" tab in the Help Guide.\n\n' + f'If this error persists, please contact the developers.\n\n' + message + f'\nError Time Stamp [{datetime.now().strftime("%Y-%m-%d %H:%M:%S")}]\n') except: pass progress_var.set(0) button_widget.configure(state=tk.NORMAL) # Enable Button return if onnxmissing in message: text_widget.write("\n" + base_text + f'Separation failed for the following audio file:\n') text_widget.write(base_text + f'"{os.path.basename(music_file)}"\n') text_widget.write(f'\nError Received:\n\n') text_widget.write(f'The application could not detect this MDX-Net model on your system.\n') text_widget.write(f'Please make sure all the models are present in the correct directory.\n') text_widget.write(f'If the error persists, please reinstall application or contact the developers.\n\n') text_widget.write(f'Time Elapsed: {time.strftime("%H:%M:%S", time.gmtime(int(time.perf_counter() - stime)))}') try: with open('errorlog.txt', 'w') as f: f.write(f'Last Error Received:\n\n' + f'Error Received while processing "{os.path.basename(music_file)}":\n' + f'Process Method: MDX-Net\n\n' + f'The application could not detect this MDX-Net model on your system.\n' + f'Please make sure all the models are present in the correct directory.\n' + f'If the error persists, please reinstall application or contact the developers.\n\n' + message + f'\nError Time Stamp [{datetime.now().strftime("%Y-%m-%d %H:%M:%S")}]\n') except: pass torch.cuda.empty_cache() progress_var.set(0) button_widget.configure(state=tk.NORMAL) # Enable Button return if sf_write_err in message: text_widget.write("\n" + base_text + f'Separation failed for the following audio file:\n') text_widget.write(base_text + f'"{os.path.basename(music_file)}"\n') text_widget.write(f'\nError Received:\n\n') text_widget.write(f'Could not write audio file.\n') text_widget.write(f'This could be due to low storage on target device or a system permissions issue.\n') text_widget.write(f"\nFor raw error details, go to the Error Log tab in the Help Guide.\n") text_widget.write(f'\nIf the error persists, please contact the developers.\n\n') text_widget.write(f'Time Elapsed: {time.strftime("%H:%M:%S", time.gmtime(int(time.perf_counter() - stime)))}') try: with open('errorlog.txt', 'w') as f: f.write(f'Last Error Received:\n\n' + f'Error Received while processing "{os.path.basename(music_file)}":\n' + f'Process Method: Ensemble Mode\n\n' + f'Could not write audio file.\n' + f'This could be due to low storage on target device or a system permissions issue.\n' + f'If the error persists, please contact the developers.\n\n' + message + f'\nError Time Stamp [{datetime.now().strftime("%Y-%m-%d %H:%M:%S")}]\n') except: pass torch.cuda.empty_cache() progress_var.set(0) button_widget.configure(state=tk.NORMAL) # Enable Button return print(traceback_text) print(type(e).__name__, e) print(message) try: with open('errorlog.txt', 'w') as f: f.write(f'Last Error Received:\n\n' + f'Error Received while processing "{os.path.basename(music_file)}":\n' + f'Process Method: MDX-Net\n\n' + f'If this error persists, please contact the developers with the error details.\n\n' + message + f'\nError Time Stamp [{datetime.now().strftime("%Y-%m-%d %H:%M:%S")}]\n') except: tk.messagebox.showerror(master=window, title='Error Details', message=message) progress_var.set(0) text_widget.write("\n" + base_text + f'Separation failed for the following audio file:\n') text_widget.write(base_text + f'"{os.path.basename(music_file)}"\n') text_widget.write(f'\nError Received:\n') text_widget.write("\nFor raw error details, go to the Error Log tab in the Help Guide.\n") text_widget.write("\n" + f'Please address the error and try again.' + "\n") text_widget.write(f'If this error persists, please contact the developers with the error details.\n\n') text_widget.write(f'Time Elapsed: {time.strftime("%H:%M:%S", time.gmtime(int(time.perf_counter() - stime)))}') torch.cuda.empty_cache() button_widget.configure(state=tk.NORMAL) # Enable Button return progress_var.set(0) text_widget.write(f'\nConversion(s) Completed!\n') text_widget.write(f'Time Elapsed: {time.strftime("%H:%M:%S", time.gmtime(int(time.perf_counter() - stime)))}') # nopep8 torch.cuda.empty_cache() button_widget.configure(state=tk.NORMAL) # Enable Button if __name__ == '__main__': start_time = time.time() main() print("Successfully completed music demixing.");print('Total time: {0:.{1}f}s'.format(time.time() - start_time, 1))