# Copyright (c) Facebook, Inc. and its affiliates. # All rights reserved. # # This source code is licensed under the license found in the # LICENSE file in the root directory of this source tree. """Loading pretrained models. """ import logging from pathlib import Path import typing as tp from dora.log import fatal import logging from diffq import DiffQuantizer import torch.hub from .model import Demucs from .tasnet_v2 import ConvTasNet from .utils import set_state from .hdemucs import HDemucs from .repo import RemoteRepo, LocalRepo, ModelOnlyRepo, BagOnlyRepo, AnyModelRepo, ModelLoadingError # noqa logger = logging.getLogger(__name__) ROOT_URL = "https://dl.fbaipublicfiles.com/demucs/mdx_final/" REMOTE_ROOT = Path(__file__).parent / 'remote' SOURCES = ["drums", "bass", "other", "vocals"] def demucs_unittest(): model = HDemucs(channels=4, sources=SOURCES) return model def add_model_flags(parser): group = parser.add_mutually_exclusive_group(required=False) group.add_argument("-s", "--sig", help="Locally trained XP signature.") group.add_argument("-n", "--name", default="mdx_extra_q", help="Pretrained model name or signature. Default is mdx_extra_q.") parser.add_argument("--repo", type=Path, help="Folder containing all pre-trained models for use with -n.") def get_model(name: str, repo: tp.Optional[Path] = None): """`name` must be a bag of models name or a pretrained signature from the remote AWS model repo or the specified local repo if `repo` is not None. """ if name == 'demucs_unittest': return demucs_unittest() model_repo: ModelOnlyRepo if repo is None: remote_files = [line.strip() for line in (REMOTE_ROOT / 'files.txt').read_text().split('\n') if line.strip()] model_repo = RemoteRepo(ROOT_URL, remote_files) bag_repo = BagOnlyRepo(REMOTE_ROOT, model_repo) else: if not repo.is_dir(): fatal(f"{repo} must exist and be a directory.") model_repo = LocalRepo(repo) bag_repo = BagOnlyRepo(repo, model_repo) any_repo = AnyModelRepo(model_repo, bag_repo) return any_repo.get_model(name) def get_model_from_args(args): """ Load local model package or pre-trained model. """ return get_model(name=args.name, repo=args.repo) logger = logging.getLogger(__name__) ROOT = "https://dl.fbaipublicfiles.com/demucs/v3.0/" PRETRAINED_MODELS = { 'demucs': 'e07c671f', 'demucs48_hq': '28a1282c', 'demucs_extra': '3646af93', 'demucs_quantized': '07afea75', 'tasnet': 'beb46fac', 'tasnet_extra': 'df3777b2', 'demucs_unittest': '09ebc15f', } SOURCES = ["drums", "bass", "other", "vocals"] def get_url(name): sig = PRETRAINED_MODELS[name] return ROOT + name + "-" + sig[:8] + ".th" def is_pretrained(name): return name in PRETRAINED_MODELS def load_pretrained(name): if name == "demucs": return demucs(pretrained=True) elif name == "demucs48_hq": return demucs(pretrained=True, hq=True, channels=48) elif name == "demucs_extra": return demucs(pretrained=True, extra=True) elif name == "demucs_quantized": return demucs(pretrained=True, quantized=True) elif name == "demucs_unittest": return demucs_unittest(pretrained=True) elif name == "tasnet": return tasnet(pretrained=True) elif name == "tasnet_extra": return tasnet(pretrained=True, extra=True) else: raise ValueError(f"Invalid pretrained name {name}") def _load_state(name, model, quantizer=None): url = get_url(name) state = torch.hub.load_state_dict_from_url(url, map_location='cpu', check_hash=True) set_state(model, quantizer, state) if quantizer: quantizer.detach() def demucs_unittest(pretrained=True): model = Demucs(channels=4, sources=SOURCES) if pretrained: _load_state('demucs_unittest', model) return model def demucs(pretrained=True, extra=False, quantized=False, hq=False, channels=64): if not pretrained and (extra or quantized or hq): raise ValueError("if extra or quantized is True, pretrained must be True.") model = Demucs(sources=SOURCES, channels=channels) if pretrained: name = 'demucs' if channels != 64: name += str(channels) quantizer = None if sum([extra, quantized, hq]) > 1: raise ValueError("Only one of extra, quantized, hq, can be True.") if quantized: quantizer = DiffQuantizer(model, group_size=8, min_size=1) name += '_quantized' if extra: name += '_extra' if hq: name += '_hq' _load_state(name, model, quantizer) return model def tasnet(pretrained=True, extra=False): if not pretrained and extra: raise ValueError("if extra is True, pretrained must be True.") model = ConvTasNet(X=10, sources=SOURCES) if pretrained: name = 'tasnet' if extra: name = 'tasnet_extra' _load_state(name, model) return model