import os import librosa import numpy as np import soundfile as sf import math import json import hashlib from tqdm import tqdm def crop_center(h1, h2): h1_shape = h1.size() h2_shape = h2.size() if h1_shape[3] == h2_shape[3]: return h1 elif h1_shape[3] < h2_shape[3]: raise ValueError('h1_shape[3] must be greater than h2_shape[3]') # s_freq = (h2_shape[2] - h1_shape[2]) // 2 # e_freq = s_freq + h1_shape[2] s_time = (h1_shape[3] - h2_shape[3]) // 2 e_time = s_time + h2_shape[3] h1 = h1[:, :, :, s_time:e_time] return h1 def wave_to_spectrogram(wave, hop_length, n_fft, mid_side=False, reverse=False): if reverse: wave_left = np.flip(np.asfortranarray(wave[0])) wave_right = np.flip(np.asfortranarray(wave[1])) elif mid_side: wave_left = np.asfortranarray(np.add(wave[0], wave[1]) / 2) wave_right = np.asfortranarray(np.subtract(wave[0], wave[1])) else: wave_left = np.asfortranarray(wave[0]) wave_right = np.asfortranarray(wave[1]) spec_left = librosa.stft(wave_left, n_fft, hop_length=hop_length) spec_right = librosa.stft(wave_right, n_fft, hop_length=hop_length) spec = np.asfortranarray([spec_left, spec_right]) return spec def wave_to_spectrogram_mt(wave, hop_length, n_fft, mid_side=False, reverse=False): import threading if reverse: wave_left = np.flip(np.asfortranarray(wave[0])) wave_right = np.flip(np.asfortranarray(wave[1])) elif mid_side: wave_left = np.asfortranarray(np.add(wave[0], wave[1]) / 2) wave_right = np.asfortranarray(np.subtract(wave[0], wave[1])) else: wave_left = np.asfortranarray(wave[0]) wave_right = np.asfortranarray(wave[1]) def run_thread(**kwargs): global spec_left spec_left = librosa.stft(**kwargs) thread = threading.Thread(target=run_thread, kwargs={'y': wave_left, 'n_fft': n_fft, 'hop_length': hop_length}) thread.start() spec_right = librosa.stft(wave_right, n_fft, hop_length=hop_length) thread.join() spec = np.asfortranarray([spec_left, spec_right]) return spec def combine_spectrograms(specs, mp): l = min([specs[i].shape[2] for i in specs]) spec_c = np.zeros(shape=(2, mp.param['bins'] + 1, l), dtype=np.complex64) offset = 0 bands_n = len(mp.param['band']) for d in range(1, bands_n + 1): h = mp.param['band'][d]['crop_stop'] - mp.param['band'][d]['crop_start'] spec_c[:, offset:offset+h, :l] = specs[d][:, mp.param['band'][d]['crop_start']:mp.param['band'][d]['crop_stop'], :l] offset += h if offset > mp.param['bins']: raise ValueError('Too much bins') # lowpass fiter if mp.param['pre_filter_start'] > 0: # and mp.param['band'][bands_n]['res_type'] in ['scipy', 'polyphase']: if bands_n == 1: spec_c = fft_lp_filter(spec_c, mp.param['pre_filter_start'], mp.param['pre_filter_stop']) else: gp = 1 for b in range(mp.param['pre_filter_start'] + 1, mp.param['pre_filter_stop']): g = math.pow(10, -(b - mp.param['pre_filter_start']) * (3.5 - gp) / 20.0) gp = g spec_c[:, b, :] *= g return np.asfortranarray(spec_c) def spectrogram_to_image(spec, mode='magnitude'): if mode == 'magnitude': if np.iscomplexobj(spec): y = np.abs(spec) else: y = spec y = np.log10(y ** 2 + 1e-8) elif mode == 'phase': if np.iscomplexobj(spec): y = np.angle(spec) else: y = spec y -= y.min() y *= 255 / y.max() img = np.uint8(y) if y.ndim == 3: img = img.transpose(1, 2, 0) img = np.concatenate([ np.max(img, axis=2, keepdims=True), img ], axis=2) return img def reduce_vocal_aggressively(X, y, softmask): v = X - y y_mag_tmp = np.abs(y) v_mag_tmp = np.abs(v) v_mask = v_mag_tmp > y_mag_tmp y_mag = np.clip(y_mag_tmp - v_mag_tmp * v_mask * softmask, 0, np.inf) return y_mag * np.exp(1.j * np.angle(y)) def mask_silence(mag, ref, thres=0.2, min_range=64, fade_size=32): if min_range < fade_size * 2: raise ValueError('min_range must be >= fade_area * 2') mag = mag.copy() idx = np.where(ref.mean(axis=(0, 1)) < thres)[0] starts = np.insert(idx[np.where(np.diff(idx) != 1)[0] + 1], 0, idx[0]) ends = np.append(idx[np.where(np.diff(idx) != 1)[0]], idx[-1]) uninformative = np.where(ends - starts > min_range)[0] if len(uninformative) > 0: starts = starts[uninformative] ends = ends[uninformative] old_e = None for s, e in zip(starts, ends): if old_e is not None and s - old_e < fade_size: s = old_e - fade_size * 2 if s != 0: weight = np.linspace(0, 1, fade_size) mag[:, :, s:s + fade_size] += weight * ref[:, :, s:s + fade_size] else: s -= fade_size if e != mag.shape[2]: weight = np.linspace(1, 0, fade_size) mag[:, :, e - fade_size:e] += weight * ref[:, :, e - fade_size:e] else: e += fade_size mag[:, :, s + fade_size:e - fade_size] += ref[:, :, s + fade_size:e - fade_size] old_e = e return mag def align_wave_head_and_tail(a, b): l = min([a[0].size, b[0].size]) return a[:l,:l], b[:l,:l] def cache_or_load(mix_path, inst_path, mp): mix_basename = os.path.splitext(os.path.basename(mix_path))[0] inst_basename = os.path.splitext(os.path.basename(inst_path))[0] cache_dir = 'mph{}'.format(hashlib.sha1(json.dumps(mp.param, sort_keys=True).encode('utf-8')).hexdigest()) mix_cache_dir = os.path.join('cache', cache_dir) inst_cache_dir = os.path.join('cache', cache_dir) os.makedirs(mix_cache_dir, exist_ok=True) os.makedirs(inst_cache_dir, exist_ok=True) mix_cache_path = os.path.join(mix_cache_dir, mix_basename + '.npy') inst_cache_path = os.path.join(inst_cache_dir, inst_basename + '.npy') if os.path.exists(mix_cache_path) and os.path.exists(inst_cache_path): X_spec_m = np.load(mix_cache_path) y_spec_m = np.load(inst_cache_path) else: X_wave, y_wave, X_spec_s, y_spec_s = {}, {}, {}, {} for d in range(len(mp.param['band']), 0, -1): bp = mp.param['band'][d] if d == len(mp.param['band']): # high-end band X_wave[d], _ = librosa.load( mix_path, bp['sr'], False, dtype=np.float32, res_type=bp['res_type']) y_wave[d], _ = librosa.load( inst_path, bp['sr'], False, dtype=np.float32, res_type=bp['res_type']) else: # lower bands X_wave[d] = librosa.resample(X_wave[d+1], mp.param['band'][d+1]['sr'], bp['sr'], res_type=bp['res_type']) y_wave[d] = librosa.resample(y_wave[d+1], mp.param['band'][d+1]['sr'], bp['sr'], res_type=bp['res_type']) X_wave[d], y_wave[d] = align_wave_head_and_tail(X_wave[d], y_wave[d]) X_spec_s[d] = wave_to_spectrogram(X_wave[d], bp['hl'], bp['n_fft'], mp.param['mid_side'], mp.param['reverse']) y_spec_s[d] = wave_to_spectrogram(y_wave[d], bp['hl'], bp['n_fft'], mp.param['mid_side'], mp.param['reverse']) del X_wave, y_wave X_spec_m = combine_spectrograms(X_spec_s, mp) y_spec_m = combine_spectrograms(y_spec_s, mp) if X_spec_m.shape != y_spec_m.shape: raise ValueError('The combined spectrograms are different: ' + mix_path) _, ext = os.path.splitext(mix_path) np.save(mix_cache_path, X_spec_m) np.save(inst_cache_path, y_spec_m) return X_spec_m, y_spec_m def spectrogram_to_wave(spec, hop_length, mid_side, reverse): spec_left = np.asfortranarray(spec[0]) spec_right = np.asfortranarray(spec[1]) wave_left = librosa.istft(spec_left, hop_length=hop_length) wave_right = librosa.istft(spec_right, hop_length=hop_length) if reverse: return np.asfortranarray([np.flip(wave_left), np.flip(wave_right)]) elif mid_side: return np.asfortranarray([np.add(wave_left, wave_right / 2), np.subtract(wave_left, wave_right / 2)]) else: return np.asfortranarray([wave_left, wave_right]) def spectrogram_to_wave_mt(spec, hop_length, mid_side, reverse): import threading spec_left = np.asfortranarray(spec[0]) spec_right = np.asfortranarray(spec[1]) def run_thread(**kwargs): global wave_left wave_left = librosa.istft(**kwargs) thread = threading.Thread(target=run_thread, kwargs={'stft_matrix': spec_left, 'hop_length': hop_length}) thread.start() wave_right = librosa.istft(spec_right, hop_length=hop_length) thread.join() if reverse: return np.asfortranarray([np.flip(wave_left), np.flip(wave_right)]) elif mid_side: return np.asfortranarray([np.add(wave_left, wave_right / 2), np.subtract(wave_left, wave_right / 2)]) else: return np.asfortranarray([wave_left, wave_right]) def cmb_spectrogram_to_wave(spec_m, mp, extra_bins_h=None, extra_bins=None): wave_band = {} bands_n = len(mp.param['band']) offset = 0 for d in range(1, bands_n + 1): bp = mp.param['band'][d] spec_s = np.ndarray(shape=(2, bp['n_fft'] // 2 + 1, spec_m.shape[2]), dtype=complex) h = bp['crop_stop'] - bp['crop_start'] spec_s[:, bp['crop_start']:bp['crop_stop'], :] = spec_m[:, offset:offset+h, :] offset += h if d == bands_n: # higher if extra_bins_h: # if --high_end_process bypass max_bin = bp['n_fft'] // 2 spec_s[:, max_bin-extra_bins_h:max_bin, :] = extra_bins[:, :extra_bins_h, :] if bp['hpf_start'] > 0: spec_s = fft_hp_filter(spec_s, bp['hpf_start'], bp['hpf_stop'] - 1) if bands_n == 1: wave = spectrogram_to_wave(spec_s, bp['hl'], mp.param['mid_side'], mp.param['reverse']) else: wave = np.add(wave, spectrogram_to_wave(spec_s, bp['hl'], mp.param['mid_side'], mp.param['reverse'])) else: sr = mp.param['band'][d+1]['sr'] if d == 1: # lower spec_s = fft_lp_filter(spec_s, bp['lpf_start'], bp['lpf_stop']) wave = librosa.resample(spectrogram_to_wave(spec_s, bp['hl'], mp.param['mid_side'], mp.param['reverse']), bp['sr'], sr, res_type="sinc_fastest") else: # mid spec_s = fft_hp_filter(spec_s, bp['hpf_start'], bp['hpf_stop'] - 1) spec_s = fft_lp_filter(spec_s, bp['lpf_start'], bp['lpf_stop']) wave2 = np.add(wave, spectrogram_to_wave(spec_s, bp['hl'], mp.param['mid_side'], mp.param['reverse'])) wave = librosa.resample(wave2, bp['sr'], sr, res_type="sinc_fastest") return wave.T def fft_lp_filter(spec, bin_start, bin_stop): g = 1.0 for b in range(bin_start, bin_stop): g -= 1 / (bin_stop - bin_start) spec[:, b, :] = g * spec[:, b, :] spec[:, bin_stop:, :] *= 0 return spec def fft_hp_filter(spec, bin_start, bin_stop): g = 1.0 for b in range(bin_start, bin_stop, -1): g -= 1 / (bin_start - bin_stop) spec[:, b, :] = g * spec[:, b, :] spec[:, 0:bin_stop+1, :] *= 0 return spec def mirroring(a, spec_m, input_high_end, mp): if 'mirroring' == a: mirror = np.flip(np.abs(spec_m[:, mp.param['pre_filter_start']-10-input_high_end.shape[1]:mp.param['pre_filter_start']-10, :]), 1) mirror = mirror * np.exp(1.j * np.angle(input_high_end)) return np.where(np.abs(input_high_end) <= np.abs(mirror), input_high_end, mirror) if 'mirroring2' == a: mirror = np.flip(np.abs(spec_m[:, mp.param['pre_filter_start']-10-input_high_end.shape[1]:mp.param['pre_filter_start']-10, :]), 1) mi = np.multiply(mirror, input_high_end) return np.where(np.abs(input_high_end) <= np.abs(mi), input_high_end, mi) def ensembling(a, specs): for i in range(1, len(specs)): if i == 1: spec = specs[i-1] ln = min([spec.shape[2], specs[i].shape[2]]) spec = spec[:,:,:ln] specs[i] = specs[i][:,:,:ln] if 'min_mag' == a: spec = np.where(np.abs(specs[i]) <= np.abs(spec), specs[i], spec) if 'max_mag' == a: spec = np.where(np.abs(specs[i]) >= np.abs(spec), specs[i], spec) return spec if __name__ == "__main__": import cv2 import sys import time import argparse from model_param_init import ModelParameters p = argparse.ArgumentParser() p.add_argument('--algorithm', '-a', type=str, choices=['invert', 'min_mag', 'max_mag'], default='min_mag') p.add_argument('--model_params', '-m', type=str, default=os.path.join('modelparams', '1band_sr44100_hl512.json')) p.add_argument('--output_name', '-o', type=str, default='output') p.add_argument('--vocals_only', '-v', action='store_true') p.add_argument('input', nargs='+') args = p.parse_args() start_time = time.time() if args.algorithm == 'invert' and len(args.input) != 2: raise ValueError('There should be two input files.') if args.algorithm != 'invert' and len(args.input) < 2: raise ValueError('There must be at least two input files.') wave, specs = {}, {} mp = ModelParameters(args.model_params) for i in range(len(args.input)): for d in range(len(mp.param['band']), 0, -1): bp = mp.param['band'][d] spec = {} if d == len(mp.param['band']): # high-end band wave[d], _ = librosa.load( args.input[i], bp['sr'], False, dtype=np.float32, res_type=bp['res_type']) if len(wave[d].shape) == 1: # mono to stereo wave[d] = np.array([wave[d], wave[d]]) else: # lower bands wave[d] = librosa.resample(wave[d+1], mp.param['band'][d+1]['sr'], bp['sr'], res_type=bp['res_type']) spec[d] = wave_to_spectrogram(wave[d], bp['hl'], bp['n_fft'], mp.param['mid_side'], mp.param['reverse']) specs[i] = combine_spectrograms(spec, mp) del wave if args.algorithm == 'invert': specs[1] = reduce_vocal_aggressively(specs[0], specs[1], 0.2) v_spec = specs[0] - specs[1] if not args.vocals_only: X_mag = np.abs(specs[0]) y_mag = np.abs(specs[1]) v_mag = np.abs(v_spec) X_image = spectrogram_to_image(X_mag) y_image = spectrogram_to_image(y_mag) v_image = spectrogram_to_image(v_mag) cv2.imwrite('{}_X.png'.format(args.output_name), X_image) cv2.imwrite('{}_y.png'.format(args.output_name), y_image) cv2.imwrite('{}_v.png'.format(args.output_name), v_image) sf.write('{}_X.wav'.format(args.output_name), cmb_spectrogram_to_wave(specs[0], mp), mp.param['sr']) sf.write('{}_y.wav'.format(args.output_name), cmb_spectrogram_to_wave(specs[1], mp), mp.param['sr']) sf.write('{}_v.wav'.format(args.output_name), cmb_spectrogram_to_wave(v_spec, mp), mp.param['sr']) else: sf.write(os.path.join('ensembled','{}.wav'.format(args.output_name)), cmb_spectrogram_to_wave(ensembling(args.algorithm, specs), mp), mp.param['sr']) #print('Total time: {0:.{1}f}s'.format(time.time() - start_time, 1))