import os import numpy as np import torch from tqdm import tqdm from lib import spec_utils class VocalRemoverValidationSet(torch.utils.data.Dataset): def __init__(self, filelist): self.filelist = filelist def __len__(self): return len(self.filelist) def __getitem__(self, idx): path = self.filelist[idx] data = np.load(path) return data['X'], data['y'] def mixup_generator(X, y, rate, alpha): perm = np.random.permutation(len(X))[:int(len(X) * rate)] for i in range(len(perm) - 1): lam = np.random.beta(alpha, alpha) X[perm[i]] = lam * X[perm[i]] + (1 - lam) * X[perm[i + 1]] y[perm[i]] = lam * y[perm[i]] + (1 - lam) * y[perm[i + 1]] return X, y def get_oracle_data(X, y, instance_loss, oracle_rate, oracle_drop_rate): k = int(len(X) * oracle_rate * (1 / (1 - oracle_drop_rate))) n = int(len(X) * oracle_rate) idx = np.argsort(instance_loss)[::-1][:k] idx = np.random.choice(idx, n, replace=False) oracle_X = X[idx].copy() oracle_y = y[idx].copy() return oracle_X, oracle_y, idx def make_padding(width, cropsize, offset): left = offset roi_size = cropsize - left * 2 if roi_size == 0: roi_size = cropsize right = roi_size - (width % roi_size) + left return left, right, roi_size def make_training_set(filelist, cropsize, patches, sr, hop_length, offset): len_dataset = patches * len(filelist) X_dataset = np.zeros( (len_dataset, 2, hop_length, cropsize), dtype=np.float32) y_dataset = np.zeros( (len_dataset, 2, hop_length, cropsize), dtype=np.float32) for i, (X_path, y_path) in enumerate(tqdm(filelist)): p = np.random.uniform() if p < 0.1: X_path.replace(os.path.splitext(X_path)[1], '_pitch-1.wav') y_path.replace(os.path.splitext(y_path)[1], '_pitch-1.wav') elif p < 0.2: X_path.replace(os.path.splitext(X_path)[1], '_pitch1.wav') y_path.replace(os.path.splitext(y_path)[1], '_pitch1.wav') X, y = spec_utils.cache_or_load(X_path, y_path, sr, hop_length) coeff = np.max([X.max(), y.max()]) X, y = X / coeff, y / coeff l, r, roi_size = make_padding(X.shape[2], cropsize, offset) X_pad = np.pad(X, ((0, 0), (0, 0), (l, r)), mode='constant') y_pad = np.pad(y, ((0, 0), (0, 0), (l, r)), mode='constant') starts = np.random.randint(0, X_pad.shape[2] - cropsize, patches) ends = starts + cropsize for j in range(patches): idx = i * patches + j X_dataset[idx] = X_pad[:, :, starts[j]:ends[j]] y_dataset[idx] = y_pad[:, :, starts[j]:ends[j]] if np.random.uniform() < 0.5: # swap channel X_dataset[idx] = X_dataset[idx, ::-1] y_dataset[idx] = y_dataset[idx, ::-1] return X_dataset, y_dataset def make_validation_set(filelist, cropsize, sr, hop_length, offset): patch_list = [] outdir = 'cs{}_sr{}_hl{}_of{}'.format(cropsize, sr, hop_length, offset) os.makedirs(outdir, exist_ok=True) for i, (X_path, y_path) in enumerate(tqdm(filelist)): basename = os.path.splitext(os.path.basename(X_path))[0] X, y = spec_utils.cache_or_load(X_path, y_path, sr, hop_length) coeff = np.max([X.max(), y.max()]) X, y = X / coeff, y / coeff l, r, roi_size = make_padding(X.shape[2], cropsize, offset) X_pad = np.pad(X, ((0, 0), (0, 0), (l, r)), mode='constant') y_pad = np.pad(y, ((0, 0), (0, 0), (l, r)), mode='constant') len_dataset = int(np.ceil(X.shape[2] / roi_size)) for j in range(len_dataset): outpath = os.path.join(outdir, '{}_p{}.npz'.format(basename, j)) start = j * roi_size if not os.path.exists(outpath): np.savez( outpath, X=X_pad[:, :, start:start + cropsize], y=y_pad[:, :, start:start + cropsize]) patch_list.append(outpath) return VocalRemoverValidationSet(patch_list)