import torch from torch import nn from lib import layers class BaseASPPNet(nn.Module): def __init__(self, nin, ch, dilations=(4, 8, 16)): super(BaseASPPNet, self).__init__() self.enc1 = layers.Encoder(nin, ch, 3, 2, 1) self.enc2 = layers.Encoder(ch, ch * 2, 3, 2, 1) self.enc3 = layers.Encoder(ch * 2, ch * 4, 3, 2, 1) self.enc4 = layers.Encoder(ch * 4, ch * 8, 3, 2, 1) self.aspp = layers.ASPPModule(ch * 8, ch * 16, dilations) self.dec4 = layers.Decoder(ch * (8 + 16), ch * 8, 3, 1, 1) self.dec3 = layers.Decoder(ch * (4 + 8), ch * 4, 3, 1, 1) self.dec2 = layers.Decoder(ch * (2 + 4), ch * 2, 3, 1, 1) self.dec1 = layers.Decoder(ch * (1 + 2), ch, 3, 1, 1) def __call__(self, x): h, e1 = self.enc1(x) h, e2 = self.enc2(h) h, e3 = self.enc3(h) h, e4 = self.enc4(h) h = self.aspp(h) h = self.dec4(h, e4) h = self.dec3(h, e3) h = self.dec2(h, e2) h = self.dec1(h, e1) return h class CascadedASPPNet(nn.Module): def __init__(self): super(CascadedASPPNet, self).__init__() self.low_band_net = BaseASPPNet(2, 32, ((2, 4), (4, 8), (8, 16))) self.high_band_net = BaseASPPNet(2, 32, ((2, 4), (4, 8), (8, 16))) self.bridge = layers.Conv2DBNActiv(34, 16, 1, 1, 0) self.full_band_net = BaseASPPNet(16, 32) self.out = nn.Sequential( layers.Conv2DBNActiv(32, 16, 3, 1, 1), nn.Conv2d(16, 2, 1, bias=False)) self.aux_out = nn.Conv2d(32, 2, 1, bias=False) self.offset = 128 def __call__(self, x): bandw = x.size()[2] // 2 aux = torch.cat([ self.low_band_net(x[:, :, :bandw]), self.high_band_net(x[:, :, bandw:]) ], dim=2) h = torch.cat([x, aux], dim=1) h = self.full_band_net(self.bridge(h)) h = torch.sigmoid(self.out(h)) aux = torch.sigmoid(self.aux_out(aux)) return h, aux def predict(self, x): bandw = x.size()[2] // 2 aux = torch.cat([ self.low_band_net(x[:, :, :bandw]), self.high_band_net(x[:, :, bandw:]) ], dim=2) h = torch.cat([x, aux], dim=1) h = self.full_band_net(self.bridge(h)) h = torch.sigmoid(self.out(h)) if self.offset > 0: h = h[:, :, :, self.offset:-self.offset] assert h.size()[3] > 0 return h