# Copyright (c) Facebook, Inc. and its affiliates. # All rights reserved. # # This source code is licensed under the license found in the # LICENSE file in the root directory of this source tree. # Inspired from https://github.com/rwightman/pytorch-image-models from contextlib import contextmanager import torch from .states import swap_state class ModelEMA: """ Perform EMA on a model. You can switch to the EMA weights temporarily with the `swap` method. ema = ModelEMA(model) with ema.swap(): # compute valid metrics with averaged model. """ def __init__(self, model, decay=0.9999, unbias=True, device='cpu'): self.decay = decay self.model = model self.state = {} self.count = 0 self.device = device self.unbias = unbias self._init() def _init(self): for key, val in self.model.state_dict().items(): if val.dtype != torch.float32: continue device = self.device or val.device if key not in self.state: self.state[key] = val.detach().to(device, copy=True) def update(self): if self.unbias: self.count = self.count * self.decay + 1 w = 1 / self.count else: w = 1 - self.decay for key, val in self.model.state_dict().items(): if val.dtype != torch.float32: continue device = self.device or val.device self.state[key].mul_(1 - w) self.state[key].add_(val.detach().to(device), alpha=w) @contextmanager def swap(self): with swap_state(self.model, self.state): yield def state_dict(self): return {'state': self.state, 'count': self.count} def load_state_dict(self, state): self.count = state['count'] for k, v in state['state'].items(): self.state[k].copy_(v)