import torch from torch import nn import torch.nn.functional as F from . import layers class BaseASPPNet(nn.Module): def __init__(self, nn_architecture, nin, ch, dilations=(4, 8, 16)): super(BaseASPPNet, self).__init__() self.nn_architecture = nn_architecture self.enc1 = layers.Encoder(nin, ch, 3, 2, 1) self.enc2 = layers.Encoder(ch, ch * 2, 3, 2, 1) self.enc3 = layers.Encoder(ch * 2, ch * 4, 3, 2, 1) self.enc4 = layers.Encoder(ch * 4, ch * 8, 3, 2, 1) if self.nn_architecture == 129605: self.enc5 = layers.Encoder(ch * 8, ch * 16, 3, 2, 1) self.aspp = layers.ASPPModule(nn_architecture, ch * 16, ch * 32, dilations) self.dec5 = layers.Decoder(ch * (16 + 32), ch * 16, 3, 1, 1) else: self.aspp = layers.ASPPModule(nn_architecture, ch * 8, ch * 16, dilations) self.dec4 = layers.Decoder(ch * (8 + 16), ch * 8, 3, 1, 1) self.dec3 = layers.Decoder(ch * (4 + 8), ch * 4, 3, 1, 1) self.dec2 = layers.Decoder(ch * (2 + 4), ch * 2, 3, 1, 1) self.dec1 = layers.Decoder(ch * (1 + 2), ch, 3, 1, 1) def __call__(self, x): h, e1 = self.enc1(x) h, e2 = self.enc2(h) h, e3 = self.enc3(h) h, e4 = self.enc4(h) if self.nn_architecture == 129605: h, e5 = self.enc5(h) h = self.aspp(h) h = self.dec5(h, e5) else: h = self.aspp(h) h = self.dec4(h, e4) h = self.dec3(h, e3) h = self.dec2(h, e2) h = self.dec1(h, e1) return h def determine_model_capacity(n_fft_bins, nn_architecture): sp_model_arch = [31191, 33966, 129605] hp_model_arch = [123821, 123812] hp2_model_arch = [537238, 537227] if nn_architecture in sp_model_arch: model_capacity_data = [ (2, 16), (2, 16), (18, 8, 1, 1, 0), (8, 16), (34, 16, 1, 1, 0), (16, 32), (32, 2, 1), (16, 2, 1), (16, 2, 1), ] if nn_architecture in hp_model_arch: model_capacity_data = [ (2, 32), (2, 32), (34, 16, 1, 1, 0), (16, 32), (66, 32, 1, 1, 0), (32, 64), (64, 2, 1), (32, 2, 1), (32, 2, 1), ] if nn_architecture in hp2_model_arch: model_capacity_data = [ (2, 64), (2, 64), (66, 32, 1, 1, 0), (32, 64), (130, 64, 1, 1, 0), (64, 128), (128, 2, 1), (64, 2, 1), (64, 2, 1), ] cascaded = CascadedASPPNet model = cascaded(n_fft_bins, model_capacity_data, nn_architecture) return model class CascadedASPPNet(nn.Module): def __init__(self, n_fft, model_capacity_data, nn_architecture): super(CascadedASPPNet, self).__init__() self.stg1_low_band_net = BaseASPPNet(nn_architecture, *model_capacity_data[0]) self.stg1_high_band_net = BaseASPPNet(nn_architecture, *model_capacity_data[1]) self.stg2_bridge = layers.Conv2DBNActiv(*model_capacity_data[2]) self.stg2_full_band_net = BaseASPPNet(nn_architecture, *model_capacity_data[3]) self.stg3_bridge = layers.Conv2DBNActiv(*model_capacity_data[4]) self.stg3_full_band_net = BaseASPPNet(nn_architecture, *model_capacity_data[5]) self.out = nn.Conv2d(*model_capacity_data[6], bias=False) self.aux1_out = nn.Conv2d(*model_capacity_data[7], bias=False) self.aux2_out = nn.Conv2d(*model_capacity_data[8], bias=False) self.max_bin = n_fft // 2 self.output_bin = n_fft // 2 + 1 self.offset = 128 def forward(self, x, aggressiveness=None): mix = x.detach() x = x.clone() x = x[:, :, :self.max_bin] bandw = x.size()[2] // 2 aux1 = torch.cat([ self.stg1_low_band_net(x[:, :, :bandw]), self.stg1_high_band_net(x[:, :, bandw:]) ], dim=2) h = torch.cat([x, aux1], dim=1) aux2 = self.stg2_full_band_net(self.stg2_bridge(h)) h = torch.cat([x, aux1, aux2], dim=1) h = self.stg3_full_band_net(self.stg3_bridge(h)) mask = torch.sigmoid(self.out(h)) mask = F.pad( input=mask, pad=(0, 0, 0, self.output_bin - mask.size()[2]), mode='replicate') if self.training: aux1 = torch.sigmoid(self.aux1_out(aux1)) aux1 = F.pad( input=aux1, pad=(0, 0, 0, self.output_bin - aux1.size()[2]), mode='replicate') aux2 = torch.sigmoid(self.aux2_out(aux2)) aux2 = F.pad( input=aux2, pad=(0, 0, 0, self.output_bin - aux2.size()[2]), mode='replicate') return mask * mix, aux1 * mix, aux2 * mix else: if aggressiveness: mask[:, :, :aggressiveness['split_bin']] = torch.pow(mask[:, :, :aggressiveness['split_bin']], 1 + aggressiveness['value'] / 3) mask[:, :, aggressiveness['split_bin']:] = torch.pow(mask[:, :, aggressiveness['split_bin']:], 1 + aggressiveness['value']) return mask * mix def predict(self, x_mag, aggressiveness=None): h = self.forward(x_mag, aggressiveness) if self.offset > 0: h = h[:, :, :, self.offset:-self.offset] assert h.size()[3] > 0 return h