ultimatevocalremovergui/demucs/hdemucs.py
2023-10-17 01:02:16 -05:00

796 lines
30 KiB
Python

# Copyright (c) Facebook, Inc. and its affiliates.
# All rights reserved.
#
# This source code is licensed under the license found in the
# LICENSE file in the root directory of this source tree.
"""
This code contains the spectrogram and Hybrid version of Demucs.
"""
from copy import deepcopy
import math
import typing as tp
import torch
from torch import nn
from torch.nn import functional as F
from .filtering import wiener
from .demucs import DConv, rescale_module
from .states import capture_init
from .spec import spectro, ispectro
def pad1d(x: torch.Tensor, paddings: tp.Tuple[int, int], mode: str = 'constant', value: float = 0.):
"""Tiny wrapper around F.pad, just to allow for reflect padding on small input.
If this is the case, we insert extra 0 padding to the right before the reflection happen."""
x0 = x
length = x.shape[-1]
padding_left, padding_right = paddings
if mode == 'reflect':
max_pad = max(padding_left, padding_right)
if length <= max_pad:
extra_pad = max_pad - length + 1
extra_pad_right = min(padding_right, extra_pad)
extra_pad_left = extra_pad - extra_pad_right
paddings = (padding_left - extra_pad_left, padding_right - extra_pad_right)
x = F.pad(x, (extra_pad_left, extra_pad_right))
out = F.pad(x, paddings, mode, value)
assert out.shape[-1] == length + padding_left + padding_right
assert (out[..., padding_left: padding_left + length] == x0).all()
return out
class ScaledEmbedding(nn.Module):
"""
Boost learning rate for embeddings (with `scale`).
Also, can make embeddings continuous with `smooth`.
"""
def __init__(self, num_embeddings: int, embedding_dim: int,
scale: float = 10., smooth=False):
super().__init__()
self.embedding = nn.Embedding(num_embeddings, embedding_dim)
if smooth:
weight = torch.cumsum(self.embedding.weight.data, dim=0)
# when summing gaussian, overscale raises as sqrt(n), so we nornalize by that.
weight = weight / torch.arange(1, num_embeddings + 1).to(weight).sqrt()[:, None]
self.embedding.weight.data[:] = weight
self.embedding.weight.data /= scale
self.scale = scale
@property
def weight(self):
return self.embedding.weight * self.scale
def forward(self, x):
out = self.embedding(x) * self.scale
return out
class HEncLayer(nn.Module):
def __init__(self, chin, chout, kernel_size=8, stride=4, norm_groups=1, empty=False,
freq=True, dconv=True, norm=True, context=0, dconv_kw={}, pad=True,
rewrite=True):
"""Encoder layer. This used both by the time and the frequency branch.
Args:
chin: number of input channels.
chout: number of output channels.
norm_groups: number of groups for group norm.
empty: used to make a layer with just the first conv. this is used
before merging the time and freq. branches.
freq: this is acting on frequencies.
dconv: insert DConv residual branches.
norm: use GroupNorm.
context: context size for the 1x1 conv.
dconv_kw: list of kwargs for the DConv class.
pad: pad the input. Padding is done so that the output size is
always the input size / stride.
rewrite: add 1x1 conv at the end of the layer.
"""
super().__init__()
norm_fn = lambda d: nn.Identity() # noqa
if norm:
norm_fn = lambda d: nn.GroupNorm(norm_groups, d) # noqa
if pad:
pad = kernel_size // 4
else:
pad = 0
klass = nn.Conv1d
self.freq = freq
self.kernel_size = kernel_size
self.stride = stride
self.empty = empty
self.norm = norm
self.pad = pad
if freq:
kernel_size = [kernel_size, 1]
stride = [stride, 1]
pad = [pad, 0]
klass = nn.Conv2d
self.conv = klass(chin, chout, kernel_size, stride, pad)
if self.empty:
return
self.norm1 = norm_fn(chout)
self.rewrite = None
if rewrite:
self.rewrite = klass(chout, 2 * chout, 1 + 2 * context, 1, context)
self.norm2 = norm_fn(2 * chout)
self.dconv = None
if dconv:
self.dconv = DConv(chout, **dconv_kw)
def forward(self, x, inject=None):
"""
`inject` is used to inject the result from the time branch into the frequency branch,
when both have the same stride.
"""
if not self.freq and x.dim() == 4:
B, C, Fr, T = x.shape
x = x.view(B, -1, T)
if not self.freq:
le = x.shape[-1]
if not le % self.stride == 0:
x = F.pad(x, (0, self.stride - (le % self.stride)))
y = self.conv(x)
if self.empty:
return y
if inject is not None:
assert inject.shape[-1] == y.shape[-1], (inject.shape, y.shape)
if inject.dim() == 3 and y.dim() == 4:
inject = inject[:, :, None]
y = y + inject
y = F.gelu(self.norm1(y))
if self.dconv:
if self.freq:
B, C, Fr, T = y.shape
y = y.permute(0, 2, 1, 3).reshape(-1, C, T)
y = self.dconv(y)
if self.freq:
y = y.view(B, Fr, C, T).permute(0, 2, 1, 3)
if self.rewrite:
z = self.norm2(self.rewrite(y))
z = F.glu(z, dim=1)
else:
z = y
return z
class MultiWrap(nn.Module):
"""
Takes one layer and replicate it N times. each replica will act
on a frequency band. All is done so that if the N replica have the same weights,
then this is exactly equivalent to applying the original module on all frequencies.
This is a bit over-engineered to avoid edge artifacts when splitting
the frequency bands, but it is possible the naive implementation would work as well...
"""
def __init__(self, layer, split_ratios):
"""
Args:
layer: module to clone, must be either HEncLayer or HDecLayer.
split_ratios: list of float indicating which ratio to keep for each band.
"""
super().__init__()
self.split_ratios = split_ratios
self.layers = nn.ModuleList()
self.conv = isinstance(layer, HEncLayer)
assert not layer.norm
assert layer.freq
assert layer.pad
if not self.conv:
assert not layer.context_freq
for k in range(len(split_ratios) + 1):
lay = deepcopy(layer)
if self.conv:
lay.conv.padding = (0, 0)
else:
lay.pad = False
for m in lay.modules():
if hasattr(m, 'reset_parameters'):
m.reset_parameters()
self.layers.append(lay)
def forward(self, x, skip=None, length=None):
B, C, Fr, T = x.shape
ratios = list(self.split_ratios) + [1]
start = 0
outs = []
for ratio, layer in zip(ratios, self.layers):
if self.conv:
pad = layer.kernel_size // 4
if ratio == 1:
limit = Fr
frames = -1
else:
limit = int(round(Fr * ratio))
le = limit - start
if start == 0:
le += pad
frames = round((le - layer.kernel_size) / layer.stride + 1)
limit = start + (frames - 1) * layer.stride + layer.kernel_size
if start == 0:
limit -= pad
assert limit - start > 0, (limit, start)
assert limit <= Fr, (limit, Fr)
y = x[:, :, start:limit, :]
if start == 0:
y = F.pad(y, (0, 0, pad, 0))
if ratio == 1:
y = F.pad(y, (0, 0, 0, pad))
outs.append(layer(y))
start = limit - layer.kernel_size + layer.stride
else:
if ratio == 1:
limit = Fr
else:
limit = int(round(Fr * ratio))
last = layer.last
layer.last = True
y = x[:, :, start:limit]
s = skip[:, :, start:limit]
out, _ = layer(y, s, None)
if outs:
outs[-1][:, :, -layer.stride:] += (
out[:, :, :layer.stride] - layer.conv_tr.bias.view(1, -1, 1, 1))
out = out[:, :, layer.stride:]
if ratio == 1:
out = out[:, :, :-layer.stride // 2, :]
if start == 0:
out = out[:, :, layer.stride // 2:, :]
outs.append(out)
layer.last = last
start = limit
out = torch.cat(outs, dim=2)
if not self.conv and not last:
out = F.gelu(out)
if self.conv:
return out
else:
return out, None
class HDecLayer(nn.Module):
def __init__(self, chin, chout, last=False, kernel_size=8, stride=4, norm_groups=1, empty=False,
freq=True, dconv=True, norm=True, context=1, dconv_kw={}, pad=True,
context_freq=True, rewrite=True):
"""
Same as HEncLayer but for decoder. See `HEncLayer` for documentation.
"""
super().__init__()
norm_fn = lambda d: nn.Identity() # noqa
if norm:
norm_fn = lambda d: nn.GroupNorm(norm_groups, d) # noqa
if pad:
pad = kernel_size // 4
else:
pad = 0
self.pad = pad
self.last = last
self.freq = freq
self.chin = chin
self.empty = empty
self.stride = stride
self.kernel_size = kernel_size
self.norm = norm
self.context_freq = context_freq
klass = nn.Conv1d
klass_tr = nn.ConvTranspose1d
if freq:
kernel_size = [kernel_size, 1]
stride = [stride, 1]
klass = nn.Conv2d
klass_tr = nn.ConvTranspose2d
self.conv_tr = klass_tr(chin, chout, kernel_size, stride)
self.norm2 = norm_fn(chout)
if self.empty:
return
self.rewrite = None
if rewrite:
if context_freq:
self.rewrite = klass(chin, 2 * chin, 1 + 2 * context, 1, context)
else:
self.rewrite = klass(chin, 2 * chin, [1, 1 + 2 * context], 1,
[0, context])
self.norm1 = norm_fn(2 * chin)
self.dconv = None
if dconv:
self.dconv = DConv(chin, **dconv_kw)
def forward(self, x, skip, length):
if self.freq and x.dim() == 3:
B, C, T = x.shape
x = x.view(B, self.chin, -1, T)
if not self.empty:
x = x + skip
if self.rewrite:
y = F.glu(self.norm1(self.rewrite(x)), dim=1)
else:
y = x
if self.dconv:
if self.freq:
B, C, Fr, T = y.shape
y = y.permute(0, 2, 1, 3).reshape(-1, C, T)
y = self.dconv(y)
if self.freq:
y = y.view(B, Fr, C, T).permute(0, 2, 1, 3)
else:
y = x
assert skip is None
z = self.norm2(self.conv_tr(y))
if self.freq:
if self.pad:
z = z[..., self.pad:-self.pad, :]
else:
z = z[..., self.pad:self.pad + length]
assert z.shape[-1] == length, (z.shape[-1], length)
if not self.last:
z = F.gelu(z)
return z, y
class HDemucs(nn.Module):
"""
Spectrogram and hybrid Demucs model.
The spectrogram model has the same structure as Demucs, except the first few layers are over the
frequency axis, until there is only 1 frequency, and then it moves to time convolutions.
Frequency layers can still access information across time steps thanks to the DConv residual.
Hybrid model have a parallel time branch. At some layer, the time branch has the same stride
as the frequency branch and then the two are combined. The opposite happens in the decoder.
Models can either use naive iSTFT from masking, Wiener filtering ([Ulhih et al. 2017]),
or complex as channels (CaC) [Choi et al. 2020]. Wiener filtering is based on
Open Unmix implementation [Stoter et al. 2019].
The loss is always on the temporal domain, by backpropagating through the above
output methods and iSTFT. This allows to define hybrid models nicely. However, this breaks
a bit Wiener filtering, as doing more iteration at test time will change the spectrogram
contribution, without changing the one from the waveform, which will lead to worse performance.
I tried using the residual option in OpenUnmix Wiener implementation, but it didn't improve.
CaC on the other hand provides similar performance for hybrid, and works naturally with
hybrid models.
This model also uses frequency embeddings are used to improve efficiency on convolutions
over the freq. axis, following [Isik et al. 2020] (https://arxiv.org/pdf/2008.04470.pdf).
Unlike classic Demucs, there is no resampling here, and normalization is always applied.
"""
@capture_init
def __init__(self,
sources,
# Channels
audio_channels=2,
channels=48,
channels_time=None,
growth=2,
# STFT
nfft=4096,
wiener_iters=0,
end_iters=0,
wiener_residual=False,
cac=True,
# Main structure
depth=6,
rewrite=True,
hybrid=True,
hybrid_old=False,
# Frequency branch
multi_freqs=None,
multi_freqs_depth=2,
freq_emb=0.2,
emb_scale=10,
emb_smooth=True,
# Convolutions
kernel_size=8,
time_stride=2,
stride=4,
context=1,
context_enc=0,
# Normalization
norm_starts=4,
norm_groups=4,
# DConv residual branch
dconv_mode=1,
dconv_depth=2,
dconv_comp=4,
dconv_attn=4,
dconv_lstm=4,
dconv_init=1e-4,
# Weight init
rescale=0.1,
# Metadata
samplerate=44100,
segment=4 * 10):
"""
Args:
sources (list[str]): list of source names.
audio_channels (int): input/output audio channels.
channels (int): initial number of hidden channels.
channels_time: if not None, use a different `channels` value for the time branch.
growth: increase the number of hidden channels by this factor at each layer.
nfft: number of fft bins. Note that changing this require careful computation of
various shape parameters and will not work out of the box for hybrid models.
wiener_iters: when using Wiener filtering, number of iterations at test time.
end_iters: same but at train time. For a hybrid model, must be equal to `wiener_iters`.
wiener_residual: add residual source before wiener filtering.
cac: uses complex as channels, i.e. complex numbers are 2 channels each
in input and output. no further processing is done before ISTFT.
depth (int): number of layers in the encoder and in the decoder.
rewrite (bool): add 1x1 convolution to each layer.
hybrid (bool): make a hybrid time/frequency domain, otherwise frequency only.
hybrid_old: some models trained for MDX had a padding bug. This replicates
this bug to avoid retraining them.
multi_freqs: list of frequency ratios for splitting frequency bands with `MultiWrap`.
multi_freqs_depth: how many layers to wrap with `MultiWrap`. Only the outermost
layers will be wrapped.
freq_emb: add frequency embedding after the first frequency layer if > 0,
the actual value controls the weight of the embedding.
emb_scale: equivalent to scaling the embedding learning rate
emb_smooth: initialize the embedding with a smooth one (with respect to frequencies).
kernel_size: kernel_size for encoder and decoder layers.
stride: stride for encoder and decoder layers.
time_stride: stride for the final time layer, after the merge.
context: context for 1x1 conv in the decoder.
context_enc: context for 1x1 conv in the encoder.
norm_starts: layer at which group norm starts being used.
decoder layers are numbered in reverse order.
norm_groups: number of groups for group norm.
dconv_mode: if 1: dconv in encoder only, 2: decoder only, 3: both.
dconv_depth: depth of residual DConv branch.
dconv_comp: compression of DConv branch.
dconv_attn: adds attention layers in DConv branch starting at this layer.
dconv_lstm: adds a LSTM layer in DConv branch starting at this layer.
dconv_init: initial scale for the DConv branch LayerScale.
rescale: weight recaling trick
"""
super().__init__()
self.cac = cac
self.wiener_residual = wiener_residual
self.audio_channels = audio_channels
self.sources = sources
self.kernel_size = kernel_size
self.context = context
self.stride = stride
self.depth = depth
self.channels = channels
self.samplerate = samplerate
self.segment = segment
self.nfft = nfft
self.hop_length = nfft // 4
self.wiener_iters = wiener_iters
self.end_iters = end_iters
self.freq_emb = None
self.hybrid = hybrid
self.hybrid_old = hybrid_old
if hybrid_old:
assert hybrid, "hybrid_old must come with hybrid=True"
if hybrid:
assert wiener_iters == end_iters
self.encoder = nn.ModuleList()
self.decoder = nn.ModuleList()
if hybrid:
self.tencoder = nn.ModuleList()
self.tdecoder = nn.ModuleList()
chin = audio_channels
chin_z = chin # number of channels for the freq branch
if self.cac:
chin_z *= 2
chout = channels_time or channels
chout_z = channels
freqs = nfft // 2
for index in range(depth):
lstm = index >= dconv_lstm
attn = index >= dconv_attn
norm = index >= norm_starts
freq = freqs > 1
stri = stride
ker = kernel_size
if not freq:
assert freqs == 1
ker = time_stride * 2
stri = time_stride
pad = True
last_freq = False
if freq and freqs <= kernel_size:
ker = freqs
pad = False
last_freq = True
kw = {
'kernel_size': ker,
'stride': stri,
'freq': freq,
'pad': pad,
'norm': norm,
'rewrite': rewrite,
'norm_groups': norm_groups,
'dconv_kw': {
'lstm': lstm,
'attn': attn,
'depth': dconv_depth,
'compress': dconv_comp,
'init': dconv_init,
'gelu': True,
}
}
kwt = dict(kw)
kwt['freq'] = 0
kwt['kernel_size'] = kernel_size
kwt['stride'] = stride
kwt['pad'] = True
kw_dec = dict(kw)
multi = False
if multi_freqs and index < multi_freqs_depth:
multi = True
kw_dec['context_freq'] = False
if last_freq:
chout_z = max(chout, chout_z)
chout = chout_z
enc = HEncLayer(chin_z, chout_z,
dconv=dconv_mode & 1, context=context_enc, **kw)
if hybrid and freq:
tenc = HEncLayer(chin, chout, dconv=dconv_mode & 1, context=context_enc,
empty=last_freq, **kwt)
self.tencoder.append(tenc)
if multi:
enc = MultiWrap(enc, multi_freqs)
self.encoder.append(enc)
if index == 0:
chin = self.audio_channels * len(self.sources)
chin_z = chin
if self.cac:
chin_z *= 2
dec = HDecLayer(chout_z, chin_z, dconv=dconv_mode & 2,
last=index == 0, context=context, **kw_dec)
if multi:
dec = MultiWrap(dec, multi_freqs)
if hybrid and freq:
tdec = HDecLayer(chout, chin, dconv=dconv_mode & 2, empty=last_freq,
last=index == 0, context=context, **kwt)
self.tdecoder.insert(0, tdec)
self.decoder.insert(0, dec)
chin = chout
chin_z = chout_z
chout = int(growth * chout)
chout_z = int(growth * chout_z)
if freq:
if freqs <= kernel_size:
freqs = 1
else:
freqs //= stride
if index == 0 and freq_emb:
self.freq_emb = ScaledEmbedding(
freqs, chin_z, smooth=emb_smooth, scale=emb_scale)
self.freq_emb_scale = freq_emb
if rescale:
rescale_module(self, reference=rescale)
def _spec(self, x):
hl = self.hop_length
nfft = self.nfft
x0 = x # noqa
if self.hybrid:
# We re-pad the signal in order to keep the property
# that the size of the output is exactly the size of the input
# divided by the stride (here hop_length), when divisible.
# This is achieved by padding by 1/4th of the kernel size (here nfft).
# which is not supported by torch.stft.
# Having all convolution operations follow this convention allow to easily
# align the time and frequency branches later on.
assert hl == nfft // 4
le = int(math.ceil(x.shape[-1] / hl))
pad = hl // 2 * 3
if not self.hybrid_old:
x = pad1d(x, (pad, pad + le * hl - x.shape[-1]), mode='reflect')
else:
x = pad1d(x, (pad, pad + le * hl - x.shape[-1]))
z = spectro(x, nfft, hl)[..., :-1, :]
if self.hybrid:
assert z.shape[-1] == le + 4, (z.shape, x.shape, le)
z = z[..., 2:2+le]
return z
def _ispec(self, z, length=None, scale=0):
hl = self.hop_length // (4 ** scale)
z = F.pad(z, (0, 0, 0, 1))
if self.hybrid:
z = F.pad(z, (2, 2))
pad = hl // 2 * 3
if not self.hybrid_old:
le = hl * int(math.ceil(length / hl)) + 2 * pad
else:
le = hl * int(math.ceil(length / hl))
x = ispectro(z, hl, length=le)
if not self.hybrid_old:
x = x[..., pad:pad + length]
else:
x = x[..., :length]
else:
x = ispectro(z, hl, length)
return x
def _magnitude(self, z):
# return the magnitude of the spectrogram, except when cac is True,
# in which case we just move the complex dimension to the channel one.
if self.cac:
B, C, Fr, T = z.shape
m = torch.view_as_real(z).permute(0, 1, 4, 2, 3)
m = m.reshape(B, C * 2, Fr, T)
else:
m = z.abs()
return m
def _mask(self, z, m):
# Apply masking given the mixture spectrogram `z` and the estimated mask `m`.
# If `cac` is True, `m` is actually a full spectrogram and `z` is ignored.
niters = self.wiener_iters
if self.cac:
B, S, C, Fr, T = m.shape
out = m.view(B, S, -1, 2, Fr, T).permute(0, 1, 2, 4, 5, 3)
out = torch.view_as_complex(out.contiguous())
return out
if self.training:
niters = self.end_iters
if niters < 0:
z = z[:, None]
return z / (1e-8 + z.abs()) * m
else:
return self._wiener(m, z, niters)
def _wiener(self, mag_out, mix_stft, niters):
# apply wiener filtering from OpenUnmix.
init = mix_stft.dtype
wiener_win_len = 300
residual = self.wiener_residual
B, S, C, Fq, T = mag_out.shape
mag_out = mag_out.permute(0, 4, 3, 2, 1)
mix_stft = torch.view_as_real(mix_stft.permute(0, 3, 2, 1))
outs = []
for sample in range(B):
pos = 0
out = []
for pos in range(0, T, wiener_win_len):
frame = slice(pos, pos + wiener_win_len)
z_out = wiener(
mag_out[sample, frame], mix_stft[sample, frame], niters,
residual=residual)
out.append(z_out.transpose(-1, -2))
outs.append(torch.cat(out, dim=0))
out = torch.view_as_complex(torch.stack(outs, 0))
out = out.permute(0, 4, 3, 2, 1).contiguous()
if residual:
out = out[:, :-1]
assert list(out.shape) == [B, S, C, Fq, T]
return out.to(init)
def forward(self, mix):
x = mix
length = x.shape[-1]
z = self._spec(mix)
mag = self._magnitude(z).to(mix.device)
x = mag
B, C, Fq, T = x.shape
# unlike previous Demucs, we always normalize because it is easier.
mean = x.mean(dim=(1, 2, 3), keepdim=True)
std = x.std(dim=(1, 2, 3), keepdim=True)
x = (x - mean) / (1e-5 + std)
# x will be the freq. branch input.
if self.hybrid:
# Prepare the time branch input.
xt = mix
meant = xt.mean(dim=(1, 2), keepdim=True)
stdt = xt.std(dim=(1, 2), keepdim=True)
xt = (xt - meant) / (1e-5 + stdt)
# okay, this is a giant mess I know...
saved = [] # skip connections, freq.
saved_t = [] # skip connections, time.
lengths = [] # saved lengths to properly remove padding, freq branch.
lengths_t = [] # saved lengths for time branch.
for idx, encode in enumerate(self.encoder):
lengths.append(x.shape[-1])
inject = None
if self.hybrid and idx < len(self.tencoder):
# we have not yet merged branches.
lengths_t.append(xt.shape[-1])
tenc = self.tencoder[idx]
xt = tenc(xt)
if not tenc.empty:
# save for skip connection
saved_t.append(xt)
else:
# tenc contains just the first conv., so that now time and freq.
# branches have the same shape and can be merged.
inject = xt
x = encode(x, inject)
if idx == 0 and self.freq_emb is not None:
# add frequency embedding to allow for non equivariant convolutions
# over the frequency axis.
frs = torch.arange(x.shape[-2], device=x.device)
emb = self.freq_emb(frs).t()[None, :, :, None].expand_as(x)
x = x + self.freq_emb_scale * emb
saved.append(x)
x = torch.zeros_like(x)
if self.hybrid:
xt = torch.zeros_like(x)
# initialize everything to zero (signal will go through u-net skips).
for idx, decode in enumerate(self.decoder):
skip = saved.pop(-1)
x, pre = decode(x, skip, lengths.pop(-1))
# `pre` contains the output just before final transposed convolution,
# which is used when the freq. and time branch separate.
if self.hybrid:
offset = self.depth - len(self.tdecoder)
if self.hybrid and idx >= offset:
tdec = self.tdecoder[idx - offset]
length_t = lengths_t.pop(-1)
if tdec.empty:
assert pre.shape[2] == 1, pre.shape
pre = pre[:, :, 0]
xt, _ = tdec(pre, None, length_t)
else:
skip = saved_t.pop(-1)
xt, _ = tdec(xt, skip, length_t)
# Let's make sure we used all stored skip connections.
assert len(saved) == 0
assert len(lengths_t) == 0
assert len(saved_t) == 0
S = len(self.sources)
x = x.view(B, S, -1, Fq, T)
x = x * std[:, None] + mean[:, None]
# to cpu as non-cuda GPUs don't support complex numbers
# demucs issue #435 ##432
# NOTE: in this case z already is on cpu
# TODO: remove this when mps supports complex numbers
device_type = x.device.type
device_load = f"{device_type}:{x.device.index}" if not device_type == 'mps' else device_type
x_is_other_gpu = not device_type in ["cuda", "cpu"]
if x_is_other_gpu:
x = x.cpu()
zout = self._mask(z, x)
x = self._ispec(zout, length)
# back to other device
if x_is_other_gpu:
x = x.to(device_load)
if self.hybrid:
xt = xt.view(B, S, -1, length)
xt = xt * stdt[:, None] + meant[:, None]
x = xt + x
return x