mirror of
https://github.com/Anjok07/ultimatevocalremovergui.git
synced 2024-11-24 07:20:10 +01:00
75 lines
2.0 KiB
Python
75 lines
2.0 KiB
Python
import torch
|
|
import torch.nn as nn
|
|
|
|
|
|
class TFC(nn.Module):
|
|
def __init__(self, c, l, k, norm):
|
|
super(TFC, self).__init__()
|
|
|
|
self.H = nn.ModuleList()
|
|
for i in range(l):
|
|
self.H.append(
|
|
nn.Sequential(
|
|
nn.Conv2d(in_channels=c, out_channels=c, kernel_size=k, stride=1, padding=k // 2),
|
|
norm(c),
|
|
nn.ReLU(),
|
|
)
|
|
)
|
|
|
|
def forward(self, x):
|
|
for h in self.H:
|
|
x = h(x)
|
|
return x
|
|
|
|
|
|
class DenseTFC(nn.Module):
|
|
def __init__(self, c, l, k, norm):
|
|
super(DenseTFC, self).__init__()
|
|
|
|
self.conv = nn.ModuleList()
|
|
for i in range(l):
|
|
self.conv.append(
|
|
nn.Sequential(
|
|
nn.Conv2d(in_channels=c, out_channels=c, kernel_size=k, stride=1, padding=k // 2),
|
|
norm(c),
|
|
nn.ReLU(),
|
|
)
|
|
)
|
|
|
|
def forward(self, x):
|
|
for layer in self.conv[:-1]:
|
|
x = torch.cat([layer(x), x], 1)
|
|
return self.conv[-1](x)
|
|
|
|
|
|
class TFC_TDF(nn.Module):
|
|
def __init__(self, c, l, f, k, bn, dense=False, bias=True, norm=nn.BatchNorm2d):
|
|
|
|
super(TFC_TDF, self).__init__()
|
|
|
|
self.use_tdf = bn is not None
|
|
|
|
self.tfc = DenseTFC(c, l, k, norm) if dense else TFC(c, l, k, norm)
|
|
|
|
if self.use_tdf:
|
|
if bn == 0:
|
|
self.tdf = nn.Sequential(
|
|
nn.Linear(f, f, bias=bias),
|
|
norm(c),
|
|
nn.ReLU()
|
|
)
|
|
else:
|
|
self.tdf = nn.Sequential(
|
|
nn.Linear(f, f // bn, bias=bias),
|
|
norm(c),
|
|
nn.ReLU(),
|
|
nn.Linear(f // bn, f, bias=bias),
|
|
norm(c),
|
|
nn.ReLU()
|
|
)
|
|
|
|
def forward(self, x):
|
|
x = self.tfc(x)
|
|
return x + self.tdf(x) if self.use_tdf else x
|
|
|