ultimatevocalremovergui/inference_MDX.py
2022-07-03 18:47:33 -05:00

1602 lines
76 KiB
Python

import os
import subprocess
from unittest import skip
from pathlib import Path
import os.path
from datetime import datetime
import pydub
import shutil
import hashlib
#MDX-Net
#----------------------------------------
import soundfile as sf
import torch
import numpy as np
from demucs.pretrained import get_model as _gm
from demucs.hdemucs import HDemucs
from demucs.apply import BagOfModels, apply_model
from demucs.audio import AudioFile
import pathlib
from models import get_models, spec_effects
import onnxruntime as ort
import time
import os
from tqdm import tqdm
import warnings
import sys
import librosa
import psutil
#----------------------------------------
from lib_v5 import spec_utils
from lib_v5.model_param_init import ModelParameters
import torch
# Command line text parsing and widget manipulation
import tkinter as tk
import traceback # Error Message Recent Calls
import time # Timer
from typing import Literal
class Predictor():
def __init__(self):
pass
def prediction_setup(self):
global device
print('Print the gpu setting: ', data['gpu'])
if data['gpu'] >= 0:
device = torch.device('cuda:0' if torch.cuda.is_available() else 'cpu')
if data['gpu'] == -1:
device = torch.device('cpu')
if data['demucsmodel']:
if 'UVR' in demucs_model_set:
self.demucs = HDemucs(sources=["other", "vocals"])
else:
self.demucs = HDemucs(sources=["drums", "bass", "other", "vocals"])
widget_text.write(base_text + 'Loading Demucs model...')
update_progress(**progress_kwargs,
step=0.05)
path_d = Path('models/Demucs_Models')
self.demucs = _gm(name=demucs_model_set, repo=path_d)
self.demucs.to(device)
self.demucs.eval()
widget_text.write('Done!\n')
if isinstance(self.demucs, BagOfModels):
widget_text.write(base_text + f"Selected Demucs model is a bag of {len(self.demucs.models)} model(s).\n")
self.onnx_models = {}
c = 0
self.models = get_models('tdf_extra', load=False, device=cpu, stems=modeltype, n_fft_scale=n_fft_scale_set, dim_f=dim_f_set)
if not data['demucs_only']:
widget_text.write(base_text + 'Loading ONNX model... ')
update_progress(**progress_kwargs,
step=0.1)
c+=1
if data['gpu'] >= 0:
if torch.cuda.is_available():
run_type = ['CUDAExecutionProvider']
else:
data['gpu'] = -1
widget_text.write("\n" + base_text + "No NVIDIA GPU detected. Switching to CPU... ")
run_type = ['CPUExecutionProvider']
elif data['gpu'] == -1:
run_type = ['CPUExecutionProvider']
print('Selected Model: ', model_set)
self.onnx_models[c] = ort.InferenceSession(os.path.join('models/MDX_Net_Models', str(model_set) + '.onnx'), providers=run_type)
if not data['demucs_only']:
widget_text.write('Done!\n')
def prediction(self, m):
mix, samplerate = librosa.load(m, mono=False, sr=44100)
print('print mix: ', mix)
if mix.ndim == 1:
mix = np.asfortranarray([mix,mix])
samplerate = samplerate
mix = mix.T
sources = self.demix(mix.T)
widget_text.write(base_text + 'Inferences complete!\n')
c = -1
#Main Save Path
save_path = os.path.dirname(_basename)
print('stemset_n: ', stemset_n)
#Vocal Path
if stemset_n == '(Vocals)':
vocal_name = '(Vocals)'
elif stemset_n == '(Other)':
vocal_name = '(Other)'
elif stemset_n == '(Drums)':
vocal_name = '(Drums)'
elif stemset_n == '(Bass)':
vocal_name = '(Bass)'
if data['modelFolder']:
vocal_path = '{save_path}/{file_name}.wav'.format(
save_path=save_path,
file_name = f'{os.path.basename(_basename)}_{vocal_name}_{model_set_name}',)
vocal_path_mp3 = '{save_path}/{file_name}.mp3'.format(
save_path=save_path,
file_name = f'{os.path.basename(_basename)}_{vocal_name}_{model_set_name}',)
vocal_path_flac = '{save_path}/{file_name}.flac'.format(
save_path=save_path,
file_name = f'{os.path.basename(_basename)}_{vocal_name}_{model_set_name}',)
else:
vocal_path = '{save_path}/{file_name}.wav'.format(
save_path=save_path,
file_name = f'{os.path.basename(_basename)}_{vocal_name}',)
vocal_path_mp3 = '{save_path}/{file_name}.mp3'.format(
save_path=save_path,
file_name = f'{os.path.basename(_basename)}_{vocal_name}',)
vocal_path_flac = '{save_path}/{file_name}.flac'.format(
save_path=save_path,
file_name = f'{os.path.basename(_basename)}_{vocal_name}',)
#Instrumental Path
if stemset_n == '(Vocals)':
Instrumental_name = '(Instrumental)'
elif stemset_n == '(Other)':
Instrumental_name = '(No_Other)'
elif stemset_n == '(Drums)':
Instrumental_name = '(No_Drums)'
elif stemset_n == '(Bass)':
Instrumental_name = '(No_Bass)'
if data['modelFolder']:
Instrumental_path = '{save_path}/{file_name}.wav'.format(
save_path=save_path,
file_name = f'{os.path.basename(_basename)}_{Instrumental_name}_{model_set_name}',)
Instrumental_path_mp3 = '{save_path}/{file_name}.mp3'.format(
save_path=save_path,
file_name = f'{os.path.basename(_basename)}_{Instrumental_name}_{model_set_name}',)
Instrumental_path_flac = '{save_path}/{file_name}.flac'.format(
save_path=save_path,
file_name = f'{os.path.basename(_basename)}_{Instrumental_name}_{model_set_name}',)
else:
Instrumental_path = '{save_path}/{file_name}.wav'.format(
save_path=save_path,
file_name = f'{os.path.basename(_basename)}_{Instrumental_name}',)
Instrumental_path_mp3 = '{save_path}/{file_name}.mp3'.format(
save_path=save_path,
file_name = f'{os.path.basename(_basename)}_{Instrumental_name}',)
Instrumental_path_flac = '{save_path}/{file_name}.flac'.format(
save_path=save_path,
file_name = f'{os.path.basename(_basename)}_{Instrumental_name}',)
#Non-Reduced Vocal Path
if stemset_n == '(Vocals)':
vocal_name = '(Vocals)'
elif stemset_n == '(Other)':
vocal_name = '(Other)'
elif stemset_n == '(Drums)':
vocal_name = '(Drums)'
elif stemset_n == '(Bass)':
vocal_name = '(Bass)'
if data['modelFolder']:
non_reduced_vocal_path = '{save_path}/{file_name}.wav'.format(
save_path=save_path,
file_name = f'{os.path.basename(_basename)}_{vocal_name}_{model_set_name}_No_Reduction',)
non_reduced_vocal_path_mp3 = '{save_path}/{file_name}.mp3'.format(
save_path=save_path,
file_name = f'{os.path.basename(_basename)}_{vocal_name}_{model_set_name}_No_Reduction',)
non_reduced_vocal_path_flac = '{save_path}/{file_name}.flac'.format(
save_path=save_path,
file_name = f'{os.path.basename(_basename)}_{vocal_name}_{model_set_name}_No_Reduction',)
else:
non_reduced_vocal_path = '{save_path}/{file_name}.wav'.format(
save_path=save_path,
file_name = f'{os.path.basename(_basename)}_{vocal_name}_No_Reduction',)
non_reduced_vocal_path_mp3 = '{save_path}/{file_name}.mp3'.format(
save_path=save_path,
file_name = f'{os.path.basename(_basename)}_{vocal_name}_No_Reduction',)
non_reduced_vocal_path_flac = '{save_path}/{file_name}.flac'.format(
save_path=save_path,
file_name = f'{os.path.basename(_basename)}_{vocal_name}_No_Reduction',)
if data['modelFolder']:
non_reduced_Instrumental_path = '{save_path}/{file_name}.wav'.format(
save_path=save_path,
file_name = f'{os.path.basename(_basename)}_{Instrumental_name}_{model_set_name}_No_Reduction',)
non_reduced_path_mp3 = '{save_path}/{file_name}.mp3'.format(
save_path=save_path,
file_name = f'{os.path.basename(_basename)}_{Instrumental_name}_{model_set_name}_No_Reduction',)
non_reduced_Instrumental_path_flac = '{save_path}/{file_name}.flac'.format(
save_path=save_path,
file_name = f'{os.path.basename(_basename)}_{Instrumental_name}_{model_set_name}_No_Reduction',)
else:
non_reduced_Instrumental_path = '{save_path}/{file_name}.wav'.format(
save_path=save_path,
file_name = f'{os.path.basename(_basename)}_{Instrumental_name}_No_Reduction',)
non_reduced_Instrumental_path_mp3 = '{save_path}/{file_name}.mp3'.format(
save_path=save_path,
file_name = f'{os.path.basename(_basename)}_{Instrumental_name}_No_Reduction',)
non_reduced_Instrumental_path_flac = '{save_path}/{file_name}.flac'.format(
save_path=save_path,
file_name = f'{os.path.basename(_basename)}_{Instrumental_name}_No_Reduction',)
if os.path.isfile(non_reduced_vocal_path):
file_exists_n = 'there'
else:
file_exists_n = 'not_there'
if os.path.isfile(vocal_path):
file_exists_v = 'there'
else:
file_exists_v = 'not_there'
if os.path.isfile(Instrumental_path):
file_exists_i = 'there'
else:
file_exists_i = 'not_there'
print('Is there already a voc file there? ', file_exists_v)
if not data['noisereduc_s'] == 'None':
c += 1
if not data['demucsmodel']:
if data['inst_only']:
widget_text.write(base_text + 'Preparing to save Instrumental...')
else:
widget_text.write(base_text + 'Saving vocals... ')
sf.write(non_reduced_vocal_path, sources[c].T, samplerate)
update_progress(**progress_kwargs,
step=(0.9))
widget_text.write('Done!\n')
widget_text.write(base_text + 'Performing Noise Reduction... ')
reduction_sen = float(int(data['noisereduc_s'])/10)
subprocess.call("lib_v5\\sox\\sox.exe" + ' "' +
f"{str(non_reduced_vocal_path)}" + '" "' + f"{str(vocal_path)}" + '" ' +
"noisered lib_v5\\sox\\" + noise_pro_set + ".prof " + f"{reduction_sen}",
shell=True, stdout=subprocess.PIPE,
stdin=subprocess.PIPE, stderr=subprocess.PIPE)
widget_text.write('Done!\n')
update_progress(**progress_kwargs,
step=(0.95))
else:
if data['inst_only']:
widget_text.write(base_text + 'Preparing Instrumental...')
else:
widget_text.write(base_text + 'Saving Vocals... ')
if data['demucs_only']:
if 'UVR' in demucs_model_set:
sf.write(non_reduced_vocal_path, sources[1].T, samplerate)
else:
sf.write(non_reduced_vocal_path, sources[source_val].T, samplerate)
update_progress(**progress_kwargs,
step=(0.9))
widget_text.write('Done!\n')
widget_text.write(base_text + 'Performing Noise Reduction... ')
reduction_sen = float(data['noisereduc_s'])/10
print(noise_pro_set)
subprocess.call("lib_v5\\sox\\sox.exe" + ' "' +
f"{str(non_reduced_vocal_path)}" + '" "' + f"{str(vocal_path)}" + '" ' +
"noisered lib_v5\\sox\\" + noise_pro_set + ".prof " + f"{reduction_sen}",
shell=True, stdout=subprocess.PIPE,
stdin=subprocess.PIPE, stderr=subprocess.PIPE)
update_progress(**progress_kwargs,
step=(0.95))
widget_text.write('Done!\n')
else:
c += 1
if not data['demucsmodel']:
if data['inst_only']:
widget_text.write(base_text + 'Preparing Instrumental...')
else:
widget_text.write(base_text + 'Saving Vocals... ')
sf.write(vocal_path, sources[c].T, samplerate)
update_progress(**progress_kwargs,
step=(0.9))
widget_text.write('Done!\n')
else:
if data['inst_only']:
widget_text.write(base_text + 'Preparing Instrumental...')
else:
widget_text.write(base_text + 'Saving Vocals... ')
if data['demucs_only']:
if 'UVR' in demucs_model_set:
sf.write(vocal_path, sources[1].T, samplerate)
else:
sf.write(vocal_path, sources[source_val].T, samplerate)
else:
sf.write(vocal_path, sources[source_val].T, samplerate)
update_progress(**progress_kwargs,
step=(0.9))
widget_text.write('Done!\n')
if data['voc_only'] and not data['inst_only']:
pass
else:
if not data['noisereduc_s'] == 'None':
if data['nophaseinst']:
finalfiles = [
{
'model_params':'lib_v5/modelparams/1band_sr44100_hl512.json',
'files':[str(music_file), non_reduced_vocal_path],
}
]
else:
finalfiles = [
{
'model_params':'lib_v5/modelparams/1band_sr44100_hl512.json',
'files':[str(music_file), vocal_path],
}
]
else:
finalfiles = [
{
'model_params':'lib_v5/modelparams/1band_sr44100_hl512.json',
'files':[str(music_file), vocal_path],
}
]
widget_text.write(base_text + 'Saving Instrumental... ')
for i, e in tqdm(enumerate(finalfiles)):
wave, specs = {}, {}
mp = ModelParameters(e['model_params'])
for i in range(len(e['files'])):
spec = {}
for d in range(len(mp.param['band']), 0, -1):
bp = mp.param['band'][d]
if d == len(mp.param['band']): # high-end band
wave[d], _ = librosa.load(
e['files'][i], bp['sr'], False, dtype=np.float32, res_type=bp['res_type'])
if len(wave[d].shape) == 1: # mono to stereo
wave[d] = np.array([wave[d], wave[d]])
else: # lower bands
wave[d] = librosa.resample(wave[d+1], mp.param['band'][d+1]['sr'], bp['sr'], res_type=bp['res_type'])
spec[d] = spec_utils.wave_to_spectrogram(wave[d], bp['hl'], bp['n_fft'], mp.param['mid_side'], mp.param['mid_side_b2'], mp.param['reverse'])
specs[i] = spec_utils.combine_spectrograms(spec, mp)
del wave
ln = min([specs[0].shape[2], specs[1].shape[2]])
specs[0] = specs[0][:,:,:ln]
specs[1] = specs[1][:,:,:ln]
X_mag = np.abs(specs[0])
y_mag = np.abs(specs[1])
max_mag = np.where(X_mag >= y_mag, X_mag, y_mag)
v_spec = specs[1] - max_mag * np.exp(1.j * np.angle(specs[0]))
update_progress(**progress_kwargs,
step=(1))
if not data['noisereduc_s'] == 'None':
if data['nophaseinst']:
sf.write(non_reduced_Instrumental_path, spec_utils.cmb_spectrogram_to_wave(-v_spec, mp), mp.param['sr'])
reduction_sen = float(data['noisereduc_s'])/10
print(noise_pro_set)
subprocess.call("lib_v5\\sox\\sox.exe" + ' "' +
f"{str(non_reduced_Instrumental_path)}" + '" "' + f"{str(Instrumental_path)}" + '" ' +
"noisered lib_v5\\sox\\" + noise_pro_set + ".prof " + f"{reduction_sen}",
shell=True, stdout=subprocess.PIPE,
stdin=subprocess.PIPE, stderr=subprocess.PIPE)
else:
sf.write(Instrumental_path, spec_utils.cmb_spectrogram_to_wave(-v_spec, mp), mp.param['sr'])
else:
sf.write(Instrumental_path, spec_utils.cmb_spectrogram_to_wave(-v_spec, mp), mp.param['sr'])
if data['inst_only']:
if file_exists_v == 'there':
pass
else:
try:
os.remove(vocal_path)
except:
pass
widget_text.write('Done!\n')
if data['saveFormat'] == 'Mp3':
try:
if data['inst_only'] == True:
if data['non_red'] == True:
if not data['nophaseinst']:
pass
else:
musfile = pydub.AudioSegment.from_wav(non_reduced_Instrumental_path)
musfile.export(non_reduced_Instrumental_path_mp3, format="mp3", bitrate="320k")
try:
os.remove(non_reduced_Instrumental_path)
except:
pass
pass
else:
musfile = pydub.AudioSegment.from_wav(vocal_path)
musfile.export(vocal_path_mp3, format="mp3", bitrate="320k")
if file_exists_v == 'there':
pass
else:
try:
os.remove(vocal_path)
except:
pass
if data['non_red'] == True:
if not data['nophaseinst']:
pass
else:
if data['voc_only'] == True:
pass
else:
musfile = pydub.AudioSegment.from_wav(non_reduced_Instrumental_path)
musfile.export(non_reduced_Instrumental_path_mp3, format="mp3", bitrate="320k")
if file_exists_n == 'there':
pass
else:
try:
os.remove(non_reduced_Instrumental_path)
except:
pass
if data['voc_only'] == True:
if data['non_red'] == True:
musfile = pydub.AudioSegment.from_wav(non_reduced_vocal_path)
musfile.export(non_reduced_vocal_path_mp3, format="mp3", bitrate="320k")
try:
os.remove(non_reduced_vocal_path)
except:
pass
pass
else:
musfile = pydub.AudioSegment.from_wav(Instrumental_path)
musfile.export(Instrumental_path_mp3, format="mp3", bitrate="320k")
if file_exists_i == 'there':
pass
else:
try:
os.remove(Instrumental_path)
except:
pass
if data['non_red'] == True:
if data['inst_only'] == True:
pass
else:
musfile = pydub.AudioSegment.from_wav(non_reduced_vocal_path)
musfile.export(non_reduced_vocal_path_mp3, format="mp3", bitrate="320k")
if file_exists_n == 'there':
pass
else:
try:
os.remove(non_reduced_vocal_path)
except:
pass
except Exception as e:
traceback_text = ''.join(traceback.format_tb(e.__traceback__))
errmessage = f'Traceback Error: "{traceback_text}"\n{type(e).__name__}: "{e}"\n'
if "ffmpeg" in errmessage:
widget_text.write(base_text + 'Failed to save output(s) as Mp3(s).\n')
widget_text.write(base_text + 'FFmpeg might be missing or corrupted, please check error log.\n')
widget_text.write(base_text + 'Moving on...\n')
else:
widget_text.write(base_text + 'Failed to save output(s) as Mp3(s).\n')
widget_text.write(base_text + 'Please check error log.\n')
widget_text.write(base_text + 'Moving on...\n')
try:
with open('errorlog.txt', 'w') as f:
f.write(f'Last Error Received:\n\n' +
f'Error Received while attempting to save file as mp3 "{os.path.basename(music_file)}":\n\n' +
f'Process Method: MDX-Net\n\n' +
f'FFmpeg might be missing or corrupted.\n\n' +
f'If this error persists, please contact the developers.\n\n' +
f'Raw error details:\n\n' +
errmessage + f'\nError Time Stamp: [{datetime.now().strftime("%Y-%m-%d %H:%M:%S")}]\n')
except:
pass
if data['saveFormat'] == 'Flac':
try:
if data['inst_only'] == True:
if data['non_red'] == True:
if not data['nophaseinst']:
pass
else:
musfile = pydub.AudioSegment.from_wav(non_reduced_Instrumental_path)
musfile.export(non_reduced_Instrumental_path_flac, format="flac")
try:
os.remove(non_reduced_Instrumental_path)
except:
pass
pass
else:
musfile = pydub.AudioSegment.from_wav(vocal_path)
musfile.export(vocal_path_flac, format="flac")
if file_exists_v == 'there':
pass
else:
try:
os.remove(vocal_path)
except:
pass
if data['non_red'] == True:
if not data['nophaseinst']:
pass
else:
if data['voc_only'] == True:
pass
else:
musfile = pydub.AudioSegment.from_wav(non_reduced_Instrumental_path)
musfile.export(non_reduced_Instrumental_path_flac, format="flac")
if file_exists_n == 'there':
pass
else:
try:
os.remove(non_reduced_Instrumental_path)
except:
pass
if data['voc_only'] == True:
if data['non_red'] == True:
musfile = pydub.AudioSegment.from_wav(non_reduced_vocal_path)
musfile.export(non_reduced_vocal_path_flac, format="flac")
try:
os.remove(non_reduced_vocal_path)
except:
pass
pass
else:
musfile = pydub.AudioSegment.from_wav(Instrumental_path)
musfile.export(Instrumental_path_flac, format="flac")
if file_exists_i == 'there':
pass
else:
try:
os.remove(Instrumental_path)
except:
pass
if data['non_red'] == True:
if data['inst_only'] == True:
pass
else:
musfile = pydub.AudioSegment.from_wav(non_reduced_vocal_path)
musfile.export(non_reduced_vocal_path_flac, format="flac")
if file_exists_n == 'there':
pass
else:
try:
os.remove(non_reduced_vocal_path)
except:
pass
except Exception as e:
traceback_text = ''.join(traceback.format_tb(e.__traceback__))
errmessage = f'Traceback Error: "{traceback_text}"\n{type(e).__name__}: "{e}"\n'
if "ffmpeg" in errmessage:
widget_text.write(base_text + 'Failed to save output(s) as Flac(s).\n')
widget_text.write(base_text + 'FFmpeg might be missing or corrupted, please check error log.\n')
widget_text.write(base_text + 'Moving on...\n')
else:
widget_text.write(base_text + 'Failed to save output(s) as Flac(s).\n')
widget_text.write(base_text + 'Please check error log.\n')
widget_text.write(base_text + 'Moving on...\n')
try:
with open('errorlog.txt', 'w') as f:
f.write(f'Last Error Received:\n\n' +
f'Error Received while attempting to save file as flac "{os.path.basename(music_file)}":\n\n' +
f'Process Method: MDX-Net\n\n' +
f'FFmpeg might be missing or corrupted.\n\n' +
f'If this error persists, please contact the developers.\n\n' +
f'Raw error details:\n\n' +
errmessage + f'\nError Time Stamp: [{datetime.now().strftime("%Y-%m-%d %H:%M:%S")}]\n')
except:
pass
if data['noisereduc_s'] == 'None':
pass
elif data['non_red'] == True:
if data['inst_only']:
if file_exists_n == 'there':
pass
else:
try:
os.remove(non_reduced_vocal_path)
except:
pass
pass
elif data['inst_only']:
if file_exists_n == 'there':
pass
else:
try:
os.remove(non_reduced_vocal_path)
except:
pass
else:
try:
os.remove(non_reduced_vocal_path)
os.remove(non_reduced_Instrumental_path)
except:
pass
widget_text.write(base_text + 'Completed Seperation!\n')
def demix(self, mix):
# 1 = demucs only
# 0 = onnx only
if data['chunks'] == 'Full':
chunk_set = 0
else:
chunk_set = data['chunks']
if data['chunks'] == 'Auto':
if data['gpu'] == 0:
try:
gpu_mem = round(torch.cuda.get_device_properties(0).total_memory/1.074e+9)
except:
widget_text.write(base_text + 'NVIDIA GPU Required for conversion!\n')
if int(gpu_mem) <= int(6):
chunk_set = int(5)
widget_text.write(base_text + 'Chunk size auto-set to 5... \n')
if gpu_mem in [7, 8, 9, 10, 11, 12, 13, 14, 15]:
chunk_set = int(10)
widget_text.write(base_text + 'Chunk size auto-set to 10... \n')
if int(gpu_mem) >= int(16):
chunk_set = int(40)
widget_text.write(base_text + 'Chunk size auto-set to 40... \n')
if data['gpu'] == -1:
sys_mem = psutil.virtual_memory().total >> 30
if int(sys_mem) <= int(4):
chunk_set = int(1)
widget_text.write(base_text + 'Chunk size auto-set to 1... \n')
if sys_mem in [5, 6, 7, 8]:
chunk_set = int(10)
widget_text.write(base_text + 'Chunk size auto-set to 10... \n')
if sys_mem in [9, 10, 11, 12, 13, 14, 15, 16]:
chunk_set = int(25)
widget_text.write(base_text + 'Chunk size auto-set to 25... \n')
if int(sys_mem) >= int(17):
chunk_set = int(60)
widget_text.write(base_text + 'Chunk size auto-set to 60... \n')
elif data['chunks'] == 'Full':
chunk_set = 0
widget_text.write(base_text + "Chunk size set to full... \n")
else:
chunk_set = int(data['chunks'])
widget_text.write(base_text + "Chunk size user-set to "f"{chunk_set}... \n")
samples = mix.shape[-1]
margin = margin_set
chunk_size = chunk_set*44100
assert not margin == 0, 'margin cannot be zero!'
if margin > chunk_size:
margin = chunk_size
b = np.array([[[0.5]], [[0.5]], [[0.7]], [[0.9]]])
segmented_mix = {}
if chunk_set == 0 or samples < chunk_size:
chunk_size = samples
counter = -1
for skip in range(0, samples, chunk_size):
counter+=1
s_margin = 0 if counter == 0 else margin
end = min(skip+chunk_size+margin, samples)
start = skip-s_margin
segmented_mix[skip] = mix[:,start:end].copy()
if end == samples:
break
if not data['demucsmodel']:
sources = self.demix_base(segmented_mix, margin_size=margin)
#value=float(0.9)*float(compensate)
elif data['demucs_only']:
if split_mode == True:
sources = self.demix_demucs_split(mix)
if split_mode == False:
sources = self.demix_demucs(segmented_mix, margin_size=margin)
else: # both, apply spec effects
base_out = self.demix_base(segmented_mix, margin_size=margin)
print(split_mode)
if split_mode == True:
demucs_out = self.demix_demucs_split(mix)
if split_mode == False:
demucs_out = self.demix_demucs(segmented_mix, margin_size=margin)
nan_count = np.count_nonzero(np.isnan(demucs_out)) + np.count_nonzero(np.isnan(base_out))
if nan_count > 0:
print('Warning: there are {} nan values in the array(s).'.format(nan_count))
demucs_out, base_out = np.nan_to_num(demucs_out), np.nan_to_num(base_out)
sources = {}
print(data['mixing'])
if 'UVR' in demucs_model_set:
sources[source_val] = (spec_effects(wave=[demucs_out[1],base_out[0]],
algorithm=data['mixing'],
value=b[source_val])*float(compensate)) # compensation
else:
sources[source_val] = (spec_effects(wave=[demucs_out[source_val],base_out[0]],
algorithm=data['mixing'],
value=b[source_val])*float(compensate)) # compensation
return sources
def demix_base(self, mixes, margin_size):
chunked_sources = []
onnxitera = len(mixes)
onnxitera_calc = onnxitera * 2
gui_progress_bar_onnx = 0
widget_text.write(base_text + "Running ONNX Inference...\n")
widget_text.write(base_text + "Processing "f"{onnxitera} slices... ")
print(' Running ONNX Inference...')
for mix in mixes:
gui_progress_bar_onnx += 1
if data['demucsmodel']:
update_progress(**progress_kwargs,
step=(0.1 + (0.5/onnxitera_calc * gui_progress_bar_onnx)))
else:
update_progress(**progress_kwargs,
step=(0.1 + (0.9/onnxitera * gui_progress_bar_onnx)))
cmix = mixes[mix]
sources = []
n_sample = cmix.shape[1]
mod = 0
for model in self.models:
mod += 1
trim = model.n_fft//2
gen_size = model.chunk_size-2*trim
pad = gen_size - n_sample%gen_size
mix_p = np.concatenate((np.zeros((2,trim)), cmix, np.zeros((2,pad)), np.zeros((2,trim))), 1)
mix_waves = []
i = 0
while i < n_sample + pad:
waves = np.array(mix_p[:, i:i+model.chunk_size])
mix_waves.append(waves)
i += gen_size
mix_waves = torch.tensor(mix_waves, dtype=torch.float32).to(cpu)
with torch.no_grad():
_ort = self.onnx_models[mod]
spek = model.stft(mix_waves)
tar_waves = model.istft(torch.tensor(_ort.run(None, {'input': spek.cpu().numpy()})[0]))#.cpu()
tar_signal = tar_waves[:,:,trim:-trim].transpose(0,1).reshape(2, -1).numpy()[:, :-pad]
start = 0 if mix == 0 else margin_size
end = None if mix == list(mixes.keys())[::-1][0] else -margin_size
if margin_size == 0:
end = None
sources.append(tar_signal[:,start:end])
chunked_sources.append(sources)
_sources = np.concatenate(chunked_sources, axis=-1)
del self.onnx_models
widget_text.write('Done!\n')
return _sources
def demix_demucs(self, mix, margin_size):
print('shift_set ', shift_set)
processed = {}
demucsitera = len(mix)
demucsitera_calc = demucsitera * 2
gui_progress_bar_demucs = 0
widget_text.write(base_text + "Split Mode is off. (Chunks enabled for Demucs Model)\n")
widget_text.write(base_text + "Running Demucs Inference...\n")
widget_text.write(base_text + "Processing "f"{len(mix)} slices... ")
print(' Running Demucs Inference...')
for nmix in mix:
gui_progress_bar_demucs += 1
update_progress(**progress_kwargs,
step=(0.35 + (1.05/demucsitera_calc * gui_progress_bar_demucs)))
cmix = mix[nmix]
cmix = torch.tensor(cmix, dtype=torch.float32)
ref = cmix.mean(0)
cmix = (cmix - ref.mean()) / ref.std()
with torch.no_grad():
print(split_mode)
sources = apply_model(self.demucs, cmix[None], split=split_mode, device=device, overlap=overlap_set, shifts=shift_set, progress=False)[0]
sources = (sources * ref.std() + ref.mean()).cpu().numpy()
sources[[0,1]] = sources[[1,0]]
start = 0 if nmix == 0 else margin_size
end = None if nmix == list(mix.keys())[::-1][0] else -margin_size
if margin_size == 0:
end = None
processed[nmix] = sources[:,:,start:end].copy()
sources = list(processed.values())
sources = np.concatenate(sources, axis=-1)
widget_text.write('Done!\n')
print('the demucs model is done running')
return sources
def demix_demucs_split(self, mix):
print('shift_set ', shift_set)
widget_text.write(base_text + "Split Mode is on. (Chunks disabled for Demucs Model)\n")
widget_text.write(base_text + "Running Demucs Inference...\n")
widget_text.write(base_text + "Processing "f"{len(mix)} slices... ")
print(' Running Demucs Inference...')
mix = torch.tensor(mix, dtype=torch.float32)
ref = mix.mean(0)
mix = (mix - ref.mean()) / ref.std()
with torch.no_grad():
sources = apply_model(self.demucs, mix[None], split=split_mode, device=device, overlap=overlap_set, shifts=shift_set, progress=False)[0]
widget_text.write('Done!\n')
sources = (sources * ref.std() + ref.mean()).cpu().numpy()
sources[[0,1]] = sources[[1,0]]
print('the demucs model is done running')
return sources
data = {
# Paths
'input_paths': None,
'export_path': None,
'saveFormat': 'Wav',
# Processing Options
'demucsmodel': True,
'gpu': -1,
'chunks': 10,
'non_red': False,
'noisereduc_s': 3,
'modelFolder': False,
'voc_only': False,
'inst_only': False,
'n_fft_scale': 6144,
'dim_f': 2048,
'noise_pro_select': 'Auto Select',
'overlap': 0.5,
'shifts': 0,
'margin': 44100,
'split_mode': False,
'nophaseinst': True,
'compensate': 1.03597672895,
'autocompensate': True,
'demucs_only': False,
'mixing': 'Default',
'DemucsModel_MDX': 'UVR_Demucs_Model_1',
# Choose Model
'mdxnetModel': 'UVR-MDX-NET Main',
'mdxnetModeltype': 'Vocals (Custom)',
}
default_chunks = data['chunks']
default_noisereduc_s = data['noisereduc_s']
def update_progress(progress_var, total_files, file_num, step: float = 1):
"""Calculate the progress for the progress widget in the GUI"""
base = (100 / total_files)
progress = base * (file_num - 1)
progress += base * step
progress_var.set(progress)
def get_baseText(total_files, file_num):
"""Create the base text for the command widget"""
text = 'File {file_num}/{total_files} '.format(file_num=file_num,
total_files=total_files)
return text
warnings.filterwarnings("ignore")
cpu = torch.device('cpu')
def hide_opt():
with open(os.devnull, "w") as devnull:
old_stdout = sys.stdout
sys.stdout = devnull
try:
yield
finally:
sys.stdout = old_stdout
def main(window: tk.Wm, text_widget: tk.Text, button_widget: tk.Button, progress_var: tk.Variable,
**kwargs: dict):
global widget_text
global gui_progress_bar
global music_file
global default_chunks
global default_noisereduc_s
global _basename
global _mixture
global modeltype
global n_fft_scale_set
global dim_f_set
global progress_kwargs
global base_text
global model_set
global model_set_name
global stemset_n
global noise_pro_set
global demucs_model_set
global autocompensate
global compensate
global channel_set
global margin_set
global overlap_set
global shift_set
global source_val
global split_mode
global demucs_model_set
global demucs_switch
autocompensate = data['autocompensate']
# Update default settings
default_chunks = data['chunks']
default_noisereduc_s = data['noisereduc_s']
widget_text = text_widget
gui_progress_bar = progress_var
#Error Handling
onnxmissing = "[ONNXRuntimeError] : 3 : NO_SUCHFILE"
onnxmemerror = "onnxruntime::CudaCall CUDA failure 2: out of memory"
onnxmemerror2 = "onnxruntime::BFCArena::AllocateRawInternal"
systemmemerr = "DefaultCPUAllocator: not enough memory"
runtimeerr = "CUDNN error executing cudnnSetTensorNdDescriptor"
cuda_err = "CUDA out of memory"
mod_err = "ModuleNotFoundError"
file_err = "FileNotFoundError"
ffmp_err = """audioread\__init__.py", line 116, in audio_open"""
sf_write_err = "sf.write"
model_adv_set_err = "Got invalid dimensions for input"
try:
with open('errorlog.txt', 'w') as f:
f.write(f'No errors to report at this time.' + f'\n\nLast Process Method Used: MDX-Net' +
f'\nLast Conversion Time Stamp: [{datetime.now().strftime("%Y-%m-%d %H:%M:%S")}]\n')
except:
pass
data.update(kwargs)
if data['mdxnetModeltype'] == 'Vocals (Custom)':
stemset = 'v'
source_val_set = 3
stem_name = '(Vocals)'
if data['mdxnetModeltype'] == 'Other (Custom)':
stemset = 'o'
source_val_set = 2
stem_name = '(Other)'
if data['mdxnetModeltype'] == 'Drums (Custom)':
stemset = 'd'
source_val_set = 1
stem_name = '(Drums)'
if data['mdxnetModeltype'] == 'Bass (Custom)':
stemset = 'b'
source_val_set = 0
stem_name = '(Bass)'
if data['mdxnetModeltype'] == 'Vocals (Default)':
stemset = 'v'
source_val_set = 3
stem_name = '(Vocals)'
if data['mdxnetModeltype'] == 'Other (Default)':
stemset = 'o'
source_val_set = 2
stem_name = '(Other)'
if data['mdxnetModeltype'] == 'Drums (Default)':
stemset = 'd'
source_val_set = 1
stem_name = '(Drums)'
if data['mdxnetModeltype'] == 'Bass (Default)':
stemset = 'b'
source_val_set = 0
stem_name = '(Bass)'
if data['mdxnetModel'] == 'UVR-MDX-NET 1':
if os.path.isfile('models/MDX_Net_Models/UVR_MDXNET_1_9703.onnx'):
model_set = 'UVR_MDXNET_1_9703'
model_set_name = 'UVR_MDXNET_1_9703'
else:
model_set = 'UVR_MDXNET_9703'
model_set_name = 'UVR_MDXNET_9703'
modeltype = 'v'
noise_pro = 'MDX-NET_Noise_Profile_14_kHz'
stemset_n = '(Vocals)'
if autocompensate == True:
compensate = 1.03597672895
else:
compensate = data['compensate']
source_val = 3
n_fft_scale_set=6144
dim_f_set=2048
elif data['mdxnetModel'] == 'UVR-MDX-NET 2':
if os.path.isfile('models/MDX_Net_Models/UVR_MDXNET_2_9682.onnx'):
model_set = 'UVR_MDXNET_2_9682'
model_set_name = 'UVR_MDXNET_2_9682'
else:
model_set = 'UVR_MDXNET_9682'
model_set_name = 'UVR_MDXNET_9682'
modeltype = 'v'
noise_pro = 'MDX-NET_Noise_Profile_14_kHz'
stemset_n = '(Vocals)'
if autocompensate == True:
compensate = 1.03597672895
else:
compensate = data['compensate']
source_val = 3
n_fft_scale_set=6144
dim_f_set=2048
elif data['mdxnetModel'] == 'UVR-MDX-NET 3':
if os.path.isfile('models/MDX_Net_Models/UVR_MDXNET_3_9662.onnx'):
model_set = 'UVR_MDXNET_3_9662'
model_set_name = 'UVR_MDXNET_3_9662'
else:
model_set = 'UVR_MDXNET_9662'
model_set_name = 'UVR_MDXNET_9662'
modeltype = 'v'
noise_pro = 'MDX-NET_Noise_Profile_14_kHz'
stemset_n = '(Vocals)'
if autocompensate == True:
compensate = 1.03597672895
else:
compensate = data['compensate']
source_val = 3
n_fft_scale_set=6144
dim_f_set=2048
elif data['mdxnetModel'] == 'UVR-MDX-NET Karaoke':
model_set = 'UVR_MDXNET_KARA'
model_set_name = 'UVR_MDXNET_Karaoke'
modeltype = 'v'
noise_pro = 'MDX-NET_Noise_Profile_14_kHz'
stemset_n = '(Vocals)'
if autocompensate == True:
compensate = 1.03597672895
else:
compensate = data['compensate']
source_val = 3
n_fft_scale_set=6144
dim_f_set=2048
elif data['mdxnetModel'] == 'UVR-MDX-NET Main':
model_set = 'UVR_MDXNET_Main'
model_set_name = 'UVR_MDXNET_Main'
modeltype = 'v'
noise_pro = 'MDX-NET_Noise_Profile_17_kHz'
stemset_n = '(Vocals)'
if autocompensate == True:
compensate = 1.08
else:
compensate = data['compensate']
source_val = 3
n_fft_scale_set=7680
dim_f_set=3072
elif 'other' in data['mdxnetModel']:
model_set = 'other'
model_set_name = 'other'
modeltype = 'o'
noise_pro = 'MDX-NET_Noise_Profile_Full_Band'
stemset_n = '(Other)'
if autocompensate == True:
compensate = 1.03597672895
else:
compensate = data['compensate']
source_val = 2
n_fft_scale_set=8192
dim_f_set=2048
elif 'drums' in data['mdxnetModel']:
model_set = 'drums'
model_set_name = 'drums'
modeltype = 'd'
noise_pro = 'MDX-NET_Noise_Profile_Full_Band'
stemset_n = '(Drums)'
if autocompensate == True:
compensate = 1.03597672895
else:
compensate = data['compensate']
source_val = 1
n_fft_scale_set=4096
dim_f_set=2048
elif 'bass' in data['mdxnetModel']:
model_set = 'bass'
model_set_name = 'bass'
modeltype = 'b'
noise_pro = 'MDX-NET_Noise_Profile_Full_Band'
stemset_n = '(Bass)'
if autocompensate == True:
compensate = 1.03597672895
else:
compensate = data['compensate']
source_val = 0
n_fft_scale_set=16384
dim_f_set=2048
else:
model_set = data['mdxnetModel']
model_set_name = data['mdxnetModel']
modeltype = stemset
noise_pro = 'MDX-NET_Noise_Profile_Full_Band'
stemset_n = stem_name
if autocompensate == True:
compensate = 1.03597672895
else:
compensate = data['compensate']
source_val = source_val_set
n_fft_scale_set=int(data['n_fft_scale'])
dim_f_set=int(data['dim_f'])
if data['noise_pro_select'] == 'Auto Select':
noise_pro_set = noise_pro
else:
noise_pro_set = data['noise_pro_select']
print(n_fft_scale_set)
print(dim_f_set)
print(data['DemucsModel_MDX'])
stime = time.perf_counter()
progress_var.set(0)
text_widget.clear()
button_widget.configure(state=tk.DISABLED) # Disable Button
try: #Load File(s)
for file_num, music_file in tqdm(enumerate(data['input_paths'], start=1)):
overlap_set = float(data['overlap'])
channel_set = int(data['channel'])
margin_set = int(data['margin'])
shift_set = int(data['shifts'])
demucs_model_set = data['DemucsModel_MDX']
split_mode = data['split_mode']
demucs_switch = data['demucsmodel']
if stemset_n == '(Bass)':
if 'UVR' in demucs_model_set:
text_widget.write('The selected Demucs model can only be used with vocal stems.\n')
text_widget.write('Please select a 4 stem Demucs model and try again.\n\n')
text_widget.write(f'Time Elapsed: {time.strftime("%H:%M:%S", time.gmtime(int(time.perf_counter() - stime)))}')
progress_var.set(0)
button_widget.configure(state=tk.NORMAL) # Enable Button
return
else:
pass
if stemset_n == '(Drums)':
if 'UVR' in demucs_model_set:
text_widget.write('The selected Demucs model can only be used with vocal stems.\n')
text_widget.write('Please select a 4 stem Demucs model and try again.\n\n')
text_widget.write(f'Time Elapsed: {time.strftime("%H:%M:%S", time.gmtime(int(time.perf_counter() - stime)))}')
progress_var.set(0)
button_widget.configure(state=tk.NORMAL) # Enable Button
return
else:
pass
if stemset_n == '(Other)':
if 'UVR' in demucs_model_set:
text_widget.write('The selected Demucs model can only be used with vocal stems.\n')
text_widget.write('Please select a 4 stem Demucs model and try again.\n\n')
text_widget.write(f'Time Elapsed: {time.strftime("%H:%M:%S", time.gmtime(int(time.perf_counter() - stime)))}')
progress_var.set(0)
button_widget.configure(state=tk.NORMAL) # Enable Button
return
else:
pass
_mixture = f'{data["input_paths"]}'
_basename = f'{data["export_path"]}/{file_num}_{os.path.splitext(os.path.basename(music_file))[0]}'
# -Get text and update progress-
base_text = get_baseText(total_files=len(data['input_paths']),
file_num=file_num)
progress_kwargs = {'progress_var': progress_var,
'total_files': len(data['input_paths']),
'file_num': file_num}
print(model_set)
try:
if float(data['noisereduc_s']) >= 11:
text_widget.write('Error: Noise Reduction only supports values between 0-10.\nPlease set a value between 0-10 (with or without decimals) and try again.')
progress_var.set(0)
button_widget.configure(state=tk.NORMAL) # Enable Button
return
total, used, free = shutil.disk_usage("/")
total_space = int(total/1.074e+9)
used_space = int(used/1.074e+9)
free_space = int(free/1.074e+9)
if int(free/1.074e+9) <= int(2):
text_widget.write('Error: Not enough storage on main drive to continue. Your main drive must have \nat least 3 GB\'s of storage in order for this application function properly. \n\nPlease ensure your main drive has at least 3 GB\'s of storage and try again.\n\n')
text_widget.write('Detected Total Space: ' + str(total_space) + ' GB' + '\n')
text_widget.write('Detected Used Space: ' + str(used_space) + ' GB' + '\n')
text_widget.write('Detected Free Space: ' + str(free_space) + ' GB' + '\n')
progress_var.set(0)
button_widget.configure(state=tk.NORMAL) # Enable Button
return
if int(free/1.074e+9) in [3, 4, 5, 6, 7, 8]:
text_widget.write('Warning: Your main drive is running low on storage. Your main drive must have \nat least 3 GB\'s of storage in order for this application function properly.\n\n')
text_widget.write('Detected Total Space: ' + str(total_space) + ' GB' + '\n')
text_widget.write('Detected Used Space: ' + str(used_space) + ' GB' + '\n')
text_widget.write('Detected Free Space: ' + str(free_space) + ' GB' + '\n\n')
except:
pass
if data['noisereduc_s'] == 'None':
pass
else:
if not os.path.isfile("lib_v5\sox\sox.exe"):
data['noisereduc_s'] = 'None'
data['non_red'] = False
widget_text.write(base_text + 'SoX is missing and required for noise reduction.\n')
widget_text.write(base_text + 'See the \"More Info\" tab in the Help Guide.\n')
widget_text.write(base_text + 'Noise Reduction will be disabled until SoX is available.\n\n')
update_progress(**progress_kwargs,
step=0)
e = os.path.join(data["export_path"])
demucsmodel = 'models/Demucs_Models/' + str(data['DemucsModel_MDX'])
pred = Predictor()
pred.prediction_setup()
print(demucsmodel)
# split
pred.prediction(
m=music_file,
)
except Exception as e:
traceback_text = ''.join(traceback.format_tb(e.__traceback__))
message = f'Traceback Error: "{traceback_text}"\n{type(e).__name__}: "{e}"\n'
if runtimeerr in message:
text_widget.write("\n" + base_text + f'Separation failed for the following audio file:\n')
text_widget.write(base_text + f'"{os.path.basename(music_file)}"\n')
text_widget.write(f'\nError Received:\n\n')
text_widget.write(f'Your PC cannot process this audio file with the chunk size selected.\nPlease lower the chunk size and try again.\n\n')
text_widget.write(f'If this error persists, please contact the developers.\n\n')
text_widget.write(f'Time Elapsed: {time.strftime("%H:%M:%S", time.gmtime(int(time.perf_counter() - stime)))}')
try:
with open('errorlog.txt', 'w') as f:
f.write(f'Last Error Received:\n\n' +
f'Error Received while processing "{os.path.basename(music_file)}":\n' +
f'Process Method: MDX-Net\n\n' +
f'Your PC cannot process this audio file with the chunk size selected.\nPlease lower the chunk size and try again.\n\n' +
f'If this error persists, please contact the developers.\n\n' +
f'Raw error details:\n\n' +
message + f'\nError Time Stamp: [{datetime.now().strftime("%Y-%m-%d %H:%M:%S")}]\n')
except:
pass
torch.cuda.empty_cache()
progress_var.set(0)
button_widget.configure(state=tk.NORMAL) # Enable Button
return
if cuda_err in message:
text_widget.write("\n" + base_text + f'Separation failed for the following audio file:\n')
text_widget.write(base_text + f'"{os.path.basename(music_file)}"\n')
text_widget.write(f'\nError Received:\n\n')
text_widget.write(f'The application was unable to allocate enough GPU memory to use this model.\n')
text_widget.write(f'Please close any GPU intensive applications and try again.\n')
text_widget.write(f'If the error persists, your GPU might not be supported.\n\n')
text_widget.write(f'Time Elapsed: {time.strftime("%H:%M:%S", time.gmtime(int(time.perf_counter() - stime)))}')
try:
with open('errorlog.txt', 'w') as f:
f.write(f'Last Error Received:\n\n' +
f'Error Received while processing "{os.path.basename(music_file)}":\n' +
f'Process Method: MDX-Net\n\n' +
f'The application was unable to allocate enough GPU memory to use this model.\n' +
f'Please close any GPU intensive applications and try again.\n' +
f'If the error persists, your GPU might not be supported.\n\n' +
f'Raw error details:\n\n' +
message + f'\nError Time Stamp [{datetime.now().strftime("%Y-%m-%d %H:%M:%S")}]\n')
except:
pass
torch.cuda.empty_cache()
progress_var.set(0)
button_widget.configure(state=tk.NORMAL) # Enable Button
return
if mod_err in message:
text_widget.write("\n" + base_text + f'Separation failed for the following audio file:\n')
text_widget.write(base_text + f'"{os.path.basename(music_file)}"\n')
text_widget.write(f'\nError Received:\n\n')
text_widget.write(f'Application files(s) are missing.\n')
text_widget.write("\n" + f'{type(e).__name__} - "{e}"' + "\n\n")
text_widget.write(f'Please check for missing files/scripts in the app directory and try again.\n')
text_widget.write(f'If the error persists, please reinstall application or contact the developers.\n\n')
text_widget.write(f'Time Elapsed: {time.strftime("%H:%M:%S", time.gmtime(int(time.perf_counter() - stime)))}')
try:
with open('errorlog.txt', 'w') as f:
f.write(f'Last Error Received:\n\n' +
f'Error Received while processing "{os.path.basename(music_file)}":\n' +
f'Process Method: MDX-Net\n\n' +
f'Application files(s) are missing.\n' +
f'Please check for missing files/scripts in the app directory and try again.\n' +
f'If the error persists, please reinstall application or contact the developers.\n\n' +
message + f'\nError Time Stamp [{datetime.now().strftime("%Y-%m-%d %H:%M:%S")}]\n')
except:
pass
torch.cuda.empty_cache()
progress_var.set(0)
button_widget.configure(state=tk.NORMAL) # Enable Button
return
if file_err in message:
text_widget.write("\n" + base_text + f'Separation failed for the following audio file:\n')
text_widget.write(base_text + f'"{os.path.basename(music_file)}"\n')
text_widget.write(f'\nError Received:\n\n')
text_widget.write(f'Missing file error raised.\n')
text_widget.write("\n" + f'{type(e).__name__} - "{e}"' + "\n\n")
text_widget.write("\n" + f'Please address the error and try again.' + "\n")
text_widget.write(f'If this error persists, please contact the developers.\n\n')
text_widget.write(f'Time Elapsed: {time.strftime("%H:%M:%S", time.gmtime(int(time.perf_counter() - stime)))}')
torch.cuda.empty_cache()
try:
with open('errorlog.txt', 'w') as f:
f.write(f'Last Error Received:\n\n' +
f'Error Received while processing "{os.path.basename(music_file)}":\n' +
f'Process Method: MDX-Net\n\n' +
f'Missing file error raised.\n' +
"\n" + f'Please address the error and try again.' + "\n" +
f'If this error persists, please contact the developers.\n\n' +
message + f'\nError Time Stamp [{datetime.now().strftime("%Y-%m-%d %H:%M:%S")}]\n')
except:
pass
progress_var.set(0)
button_widget.configure(state=tk.NORMAL) # Enable Button
return
if ffmp_err in message:
text_widget.write("\n" + base_text + f'Separation failed for the following audio file:\n')
text_widget.write(base_text + f'"{os.path.basename(music_file)}"\n')
text_widget.write(f'\nError Received:\n\n')
text_widget.write(f'The input file type is not supported or FFmpeg is missing.\n')
text_widget.write(f'Please select a file type supported by FFmpeg and try again.\n\n')
text_widget.write(f'If FFmpeg is missing or not installed, you will only be able to process \".wav\" files \nuntil it is available on this system.\n\n')
text_widget.write(f'See the \"More Info\" tab in the Help Guide.\n\n')
text_widget.write(f'If this error persists, please contact the developers.\n\n')
text_widget.write(f'Time Elapsed: {time.strftime("%H:%M:%S", time.gmtime(int(time.perf_counter() - stime)))}')
torch.cuda.empty_cache()
try:
with open('errorlog.txt', 'w') as f:
f.write(f'Last Error Received:\n\n' +
f'Error Received while processing "{os.path.basename(music_file)}":\n' +
f'Process Method: MDX-Net\n\n' +
f'The input file type is not supported or FFmpeg is missing.\nPlease select a file type supported by FFmpeg and try again.\n\n' +
f'If FFmpeg is missing or not installed, you will only be able to process \".wav\" files until it is available on this system.\n\n' +
f'See the \"More Info\" tab in the Help Guide.\n\n' +
f'If this error persists, please contact the developers.\n\n' +
message + f'\nError Time Stamp [{datetime.now().strftime("%Y-%m-%d %H:%M:%S")}]\n')
except:
pass
progress_var.set(0)
button_widget.configure(state=tk.NORMAL) # Enable Button
return
if onnxmissing in message:
text_widget.write("\n" + base_text + f'Separation failed for the following audio file:\n')
text_widget.write(base_text + f'"{os.path.basename(music_file)}"\n')
text_widget.write(f'\nError Received:\n\n')
text_widget.write(f'The application could not detect this MDX-Net model on your system.\n')
text_widget.write(f'Please make sure all the models are present in the correct directory.\n')
text_widget.write(f'If the error persists, please reinstall application or contact the developers.\n\n')
text_widget.write(f'Time Elapsed: {time.strftime("%H:%M:%S", time.gmtime(int(time.perf_counter() - stime)))}')
try:
with open('errorlog.txt', 'w') as f:
f.write(f'Last Error Received:\n\n' +
f'Error Received while processing "{os.path.basename(music_file)}":\n' +
f'Process Method: MDX-Net\n\n' +
f'The application could not detect this MDX-Net model on your system.\n' +
f'Please make sure all the models are present in the correct directory.\n' +
f'If the error persists, please reinstall application or contact the developers.\n\n' +
message + f'\nError Time Stamp [{datetime.now().strftime("%Y-%m-%d %H:%M:%S")}]\n')
except:
pass
torch.cuda.empty_cache()
progress_var.set(0)
button_widget.configure(state=tk.NORMAL) # Enable Button
return
if onnxmemerror in message:
text_widget.write("\n" + base_text + f'Separation failed for the following audio file:\n')
text_widget.write(base_text + f'"{os.path.basename(music_file)}"\n')
text_widget.write(f'\nError Received:\n\n')
text_widget.write(f'The application was unable to allocate enough GPU memory to use this model.\n')
text_widget.write(f'Please do the following:\n\n1. Close any GPU intensive applications.\n2. Lower the set chunk size.\n3. Then try again.\n\n')
text_widget.write(f'If the error persists, your GPU might not be supported.\n\n')
text_widget.write(f'Time Elapsed: {time.strftime("%H:%M:%S", time.gmtime(int(time.perf_counter() - stime)))}')
try:
with open('errorlog.txt', 'w') as f:
f.write(f'Last Error Received:\n\n' +
f'Error Received while processing "{os.path.basename(music_file)}":\n' +
f'Process Method: MDX-Net\n\n' +
f'The application was unable to allocate enough GPU memory to use this model.\n' +
f'Please do the following:\n\n1. Close any GPU intensive applications.\n2. Lower the set chunk size.\n3. Then try again.\n\n' +
f'If the error persists, your GPU might not be supported.\n\n' +
message + f'\nError Time Stamp [{datetime.now().strftime("%Y-%m-%d %H:%M:%S")}]\n')
except:
pass
torch.cuda.empty_cache()
progress_var.set(0)
button_widget.configure(state=tk.NORMAL) # Enable Button
return
if onnxmemerror2 in message:
text_widget.write("\n" + base_text + f'Separation failed for the following audio file:\n')
text_widget.write(base_text + f'"{os.path.basename(music_file)}"\n')
text_widget.write(f'\nError Received:\n\n')
text_widget.write(f'The application was unable to allocate enough GPU memory to use this model.\n')
text_widget.write(f'Please do the following:\n\n1. Close any GPU intensive applications.\n2. Lower the set chunk size.\n3. Then try again.\n\n')
text_widget.write(f'If the error persists, your GPU might not be supported.\n\n')
text_widget.write(f'Time Elapsed: {time.strftime("%H:%M:%S", time.gmtime(int(time.perf_counter() - stime)))}')
try:
with open('errorlog.txt', 'w') as f:
f.write(f'Last Error Received:\n\n' +
f'Error Received while processing "{os.path.basename(music_file)}":\n' +
f'Process Method: MDX-Net\n\n' +
f'The application was unable to allocate enough GPU memory to use this model.\n' +
f'Please do the following:\n\n1. Close any GPU intensive applications.\n2. Lower the set chunk size.\n3. Then try again.\n\n' +
f'If the error persists, your GPU might not be supported.\n\n' +
message + f'\nError Time Stamp [{datetime.now().strftime("%Y-%m-%d %H:%M:%S")}]\n')
except:
pass
torch.cuda.empty_cache()
progress_var.set(0)
button_widget.configure(state=tk.NORMAL) # Enable Button
return
if sf_write_err in message:
text_widget.write("\n" + base_text + f'Separation failed for the following audio file:\n')
text_widget.write(base_text + f'"{os.path.basename(music_file)}"\n')
text_widget.write(f'\nError Received:\n\n')
text_widget.write(f'Could not write audio file.\n')
text_widget.write(f'This could be due to low storage on target device or a system permissions issue.\n')
text_widget.write(f"\nFor raw error details, go to the Error Log tab in the Help Guide.\n")
text_widget.write(f'\nIf the error persists, please contact the developers.\n\n')
text_widget.write(f'Time Elapsed: {time.strftime("%H:%M:%S", time.gmtime(int(time.perf_counter() - stime)))}')
try:
with open('errorlog.txt', 'w') as f:
f.write(f'Last Error Received:\n\n' +
f'Error Received while processing "{os.path.basename(music_file)}":\n' +
f'Process Method: MDX-Net\n\n' +
f'Could not write audio file.\n' +
f'This could be due to low storage on target device or a system permissions issue.\n' +
f'If the error persists, please contact the developers.\n\n' +
message + f'\nError Time Stamp [{datetime.now().strftime("%Y-%m-%d %H:%M:%S")}]\n')
except:
pass
torch.cuda.empty_cache()
progress_var.set(0)
button_widget.configure(state=tk.NORMAL) # Enable Button
return
if systemmemerr in message:
text_widget.write("\n" + base_text + f'Separation failed for the following audio file:\n')
text_widget.write(base_text + f'"{os.path.basename(music_file)}"\n')
text_widget.write(f'\nError Received:\n\n')
text_widget.write(f'The application was unable to allocate enough system memory to use this \nmodel.\n\n')
text_widget.write(f'Please do the following:\n\n1. Restart this application.\n2. Ensure any CPU intensive applications are closed.\n3. Then try again.\n\n')
text_widget.write(f'Please Note: Intel Pentium and Intel Celeron processors do not work well with \nthis application.\n\n')
text_widget.write(f'If the error persists, the system may not have enough RAM, or your CPU might \nnot be supported.\n\n')
text_widget.write(f'Time Elapsed: {time.strftime("%H:%M:%S", time.gmtime(int(time.perf_counter() - stime)))}')
try:
with open('errorlog.txt', 'w') as f:
f.write(f'Last Error Received:\n\n' +
f'Error Received while processing "{os.path.basename(music_file)}":\n' +
f'Process Method: MDX-Net\n\n' +
f'The application was unable to allocate enough system memory to use this model.\n' +
f'Please do the following:\n\n1. Restart this application.\n2. Ensure any CPU intensive applications are closed.\n3. Then try again.\n\n' +
f'Please Note: Intel Pentium and Intel Celeron processors do not work well with this application.\n\n' +
f'If the error persists, the system may not have enough RAM, or your CPU might \nnot be supported.\n\n' +
message + f'\nError Time Stamp [{datetime.now().strftime("%Y-%m-%d %H:%M:%S")}]\n')
except:
pass
torch.cuda.empty_cache()
progress_var.set(0)
button_widget.configure(state=tk.NORMAL) # Enable Button
return
if model_adv_set_err in message:
text_widget.write("\n" + base_text + f'Separation failed for the following audio file:\n')
text_widget.write(base_text + f'"{os.path.basename(music_file)}"\n')
text_widget.write(f'\nError Received:\n\n')
text_widget.write(f'The current ONNX model settings are not compatible with the selected \nmodel.\n\n')
text_widget.write(f'Please re-configure the advanced ONNX model settings accordingly and try \nagain.\n\n')
text_widget.write(f'Time Elapsed: {time.strftime("%H:%M:%S", time.gmtime(int(time.perf_counter() - stime)))}')
try:
with open('errorlog.txt', 'w') as f:
f.write(f'Last Error Received:\n\n' +
f'Error Received while processing "{os.path.basename(music_file)}":\n' +
f'Process Method: MDX-Net\n\n' +
f'The current ONNX model settings are not compatible with the selected model.\n\n' +
f'Please re-configure the advanced ONNX model settings accordingly and try again.\n\n' +
message + f'\nError Time Stamp [{datetime.now().strftime("%Y-%m-%d %H:%M:%S")}]\n')
except:
pass
torch.cuda.empty_cache()
progress_var.set(0)
button_widget.configure(state=tk.NORMAL) # Enable Button
return
print(traceback_text)
print(type(e).__name__, e)
print(message)
try:
with open('errorlog.txt', 'w') as f:
f.write(f'Last Error Received:\n\n' +
f'Error Received while processing "{os.path.basename(music_file)}":\n' +
f'Process Method: MDX-Net\n\n' +
f'If this error persists, please contact the developers with the error details.\n\n' +
message + f'\nError Time Stamp [{datetime.now().strftime("%Y-%m-%d %H:%M:%S")}]\n')
except:
tk.messagebox.showerror(master=window,
title='Error Details',
message=message)
progress_var.set(0)
text_widget.write("\n" + base_text + f'Separation failed for the following audio file:\n')
text_widget.write(base_text + f'"{os.path.basename(music_file)}"\n')
text_widget.write(f'\nError Received:\n')
text_widget.write("\nFor raw error details, go to the Error Log tab in the Help Guide.\n")
text_widget.write("\n" + f'Please address the error and try again.' + "\n")
text_widget.write(f'If this error persists, please contact the developers with the error details.\n\n')
text_widget.write(f'Time Elapsed: {time.strftime("%H:%M:%S", time.gmtime(int(time.perf_counter() - stime)))}')
try:
torch.cuda.empty_cache()
except:
pass
button_widget.configure(state=tk.NORMAL) # Enable Button
return
progress_var.set(0)
text_widget.write(f'\nConversion(s) Completed!\n')
text_widget.write(f'Time Elapsed: {time.strftime("%H:%M:%S", time.gmtime(int(time.perf_counter() - stime)))}') # nopep8
torch.cuda.empty_cache()
button_widget.configure(state=tk.NORMAL) # Enable Button
if __name__ == '__main__':
start_time = time.time()
main()
print("Successfully completed music demixing.");print('Total time: {0:.{1}f}s'.format(time.time() - start_time, 1))