ultimatevocalremovergui/inference_v4.py
2021-01-15 10:12:16 +01:00

524 lines
21 KiB
Python

import pprint
import argparse
import os
import cv2
import librosa
import numpy as np
import soundfile as sf
from tqdm import tqdm
from lib_v4 import dataset
from lib_v4 import nets
from lib_v4 import spec_utils
import torch
# Command line text parsing and widget manipulation
from collections import defaultdict
import tkinter as tk
import traceback # Error Message Recent Calls
import time # Timer
class VocalRemover(object):
def __init__(self, data, text_widget: tk.Text):
self.data = data
self.text_widget = text_widget
self.models = defaultdict(lambda: None)
self.devices = defaultdict(lambda: None)
self._load_models()
# self.offset = model.offset
def _load_models(self):
self.text_widget.write('Loading models...\n') # nopep8 Write Command Text
# -Instrumental-
if os.path.isfile(data['instrumentalModel']):
device = torch.device('cpu')
model = nets.CascadedASPPNet(self.data['n_fft'])
model.load_state_dict(torch.load(self.data['instrumentalModel'],
map_location=device))
if torch.cuda.is_available() and self.data['gpu'] >= 0:
device = torch.device('cuda:{}'.format(self.data['gpu']))
model.to(device)
self.models['instrumental'] = model
self.devices['instrumental'] = device
# -Vocal-
elif os.path.isfile(data['vocalModel']):
device = torch.device('cpu')
model = nets.CascadedASPPNet(self.data['n_fft'])
model.load_state_dict(torch.load(self.data['vocalModel'],
map_location=device))
if torch.cuda.is_available() and self.data['gpu'] >= 0:
device = torch.device('cuda:{}'.format(self.data['gpu']))
model.to(device)
self.models['vocal'] = model
self.devices['vocal'] = device
# -Stack-
if os.path.isfile(self.data['stackModel']):
device = torch.device('cpu')
model = nets.CascadedASPPNet(self.data['n_fft'])
model.load_state_dict(torch.load(self.data['stackModel'],
map_location=device))
if torch.cuda.is_available() and self.data['gpu'] >= 0:
device = torch.device('cuda:{}'.format(self.data['gpu']))
model.to(device)
self.models['stack'] = model
self.devices['stack'] = device
self.text_widget.write('Done!\n')
def _execute(self, X_mag_pad, roi_size, n_window, device, model):
model.eval()
with torch.no_grad():
preds = []
for i in tqdm(range(n_window)):
start = i * roi_size
X_mag_window = X_mag_pad[None, :, :,
start:start + self.data['window_size']]
X_mag_window = torch.from_numpy(X_mag_window).to(device)
pred = model.predict(X_mag_window)
pred = pred.detach().cpu().numpy()
preds.append(pred[0])
pred = np.concatenate(preds, axis=2)
return pred
def preprocess(self, X_spec):
X_mag = np.abs(X_spec)
X_phase = np.angle(X_spec)
return X_mag, X_phase
def inference(self, X_spec, device, model):
X_mag, X_phase = self.preprocess(X_spec)
coef = X_mag.max()
X_mag_pre = X_mag / coef
n_frame = X_mag_pre.shape[2]
pad_l, pad_r, roi_size = dataset.make_padding(n_frame,
self.data['window_size'], model.offset)
n_window = int(np.ceil(n_frame / roi_size))
X_mag_pad = np.pad(
X_mag_pre, ((0, 0), (0, 0), (pad_l, pad_r)), mode='constant')
pred = self._execute(X_mag_pad, roi_size, n_window,
device, model)
pred = pred[:, :, :n_frame]
return pred * coef, X_mag, np.exp(1.j * X_phase)
def inference_tta(self, X_spec, device, model):
X_mag, X_phase = self.preprocess(X_spec)
coef = X_mag.max()
X_mag_pre = X_mag / coef
n_frame = X_mag_pre.shape[2]
pad_l, pad_r, roi_size = dataset.make_padding(n_frame,
self.data['window_size'], model.offset)
n_window = int(np.ceil(n_frame / roi_size))
X_mag_pad = np.pad(
X_mag_pre, ((0, 0), (0, 0), (pad_l, pad_r)), mode='constant')
pred = self._execute(X_mag_pad, roi_size, n_window,
device, model)
pred = pred[:, :, :n_frame]
pad_l += roi_size // 2
pad_r += roi_size // 2
n_window += 1
X_mag_pad = np.pad(
X_mag_pre, ((0, 0), (0, 0), (pad_l, pad_r)), mode='constant')
pred_tta = self._execute(X_mag_pad, roi_size, n_window,
device, model)
pred_tta = pred_tta[:, :, roi_size // 2:]
pred_tta = pred_tta[:, :, :n_frame]
return (pred + pred_tta) * 0.5 * coef, X_mag, np.exp(1.j * X_phase)
data = {
# Paths
'input_paths': None,
'export_path': None,
# Processing Options
'gpu': -1,
'postprocess': True,
'tta': True,
'output_image': True,
# Models
'instrumentalModel': None,
'vocalModel': None,
'stackModel': None,
'useModel': None,
# Stack Options
'stackPasses': 0,
'stackOnly': False,
'saveAllStacked': False,
# Model Folder
'modelFolder': False,
# Constants
'sr': 44_100,
'hop_length': 1_024,
'window_size': 320,
'n_fft': 2_048,
# Resolution Type
'resType': 'kaiser_fast',
# Parsed constants should be fixed
'manType': False,
}
default_sr = data['sr']
default_hop_length = data['hop_length']
default_window_size = data['window_size']
default_n_fft = data['n_fft']
def update_progress(progress_var, total_files, total_loops, file_num, loop_num, step: float = 1):
"""Calculate the progress for the progress widget in the GUI"""
base = (100 / total_files)
progress = base * (file_num - 1)
progress += (base / total_loops) * (loop_num + step)
progress_var.set(progress)
def get_baseText(total_files, total_loops, file_num, loop_num):
"""Create the base text for the command widget"""
text = 'File {file_num}/{total_files}:{loop} '.format(file_num=file_num,
total_files=total_files,
loop='' if total_loops <= 1 else f' ({loop_num+1}/{total_loops})')
return text
def update_constants(model_name):
"""
Decode the conversion settings from the model's name
"""
global data
text = model_name.replace('.pth', '')
text_parts = text.split('_')[1:]
data['sr'] = default_sr
data['hop_length'] = default_hop_length
data['window_size'] = default_window_size
data['n_fft'] = default_n_fft
if data['manType']:
# Default constants should be fixed
return
for text_part in text_parts:
if 'sr' in text_part:
text_part = text_part.replace('sr', '')
if text_part.isdecimal():
try:
data['sr'] = int(text_part)
continue
except ValueError:
# Cannot convert string to int
pass
if 'hl' in text_part:
text_part = text_part.replace('hl', '')
if text_part.isdecimal():
try:
data['hop_length'] = int(text_part)
continue
except ValueError:
# Cannot convert string to int
pass
if 'w' in text_part:
text_part = text_part.replace('w', '')
if text_part.isdecimal():
try:
data['window_size'] = int(text_part)
continue
except ValueError:
# Cannot convert string to int
pass
if 'nf' in text_part:
text_part = text_part.replace('nf', '')
if text_part.isdecimal():
try:
data['n_fft'] = int(text_part)
continue
except ValueError:
# Cannot convert string to int
pass
def determineModelFolderName():
"""
Determine the name that is used for the folder and appended
to the back of the music files
"""
modelFolderName = ''
if not data['modelFolder']:
# Model Test Mode not selected
return modelFolderName
# -Instrumental-
if os.path.isfile(data['instrumentalModel']):
modelFolderName += os.path.splitext(os.path.basename(data['instrumentalModel']))[0]
# -Vocal-
elif os.path.isfile(data['vocalModel']):
modelFolderName += os.path.splitext(os.path.basename(data['vocalModel']))[0]
# -Stack-
if os.path.isfile(data['stackModel']):
modelFolderName += '-' + os.path.splitext(os.path.basename(data['stackModel']))[0]
return modelFolderName
def main(window: tk.Wm, text_widget: tk.Text, button_widget: tk.Button, progress_var: tk.Variable,
**kwargs: dict):
def save_files(wav_instrument, wav_vocals):
"""Save output music files"""
vocal_name = None
instrumental_name = None
save_path = os.path.dirname(base_name)
# Get the Suffix Name
if (not loop_num or
loop_num == (total_loops - 1)): # First or Last Loop
if data['stackOnly']:
if loop_num == (total_loops - 1): # Last Loop
if not (total_loops - 1): # Only 1 Loop
vocal_name = '(Vocals)'
instrumental_name = '(Instrumental)'
else:
vocal_name = '(Vocal_Final_Stacked_Output)'
instrumental_name = '(Instrumental_Final_Stacked_Output)'
elif data['useModel'] == 'instrumental':
if not loop_num: # First Loop
vocal_name = '(Vocals)'
if loop_num == (total_loops - 1): # Last Loop
if not (total_loops - 1): # Only 1 Loop
instrumental_name = '(Instrumental)'
else:
instrumental_name = '(Instrumental_Final_Stacked_Output)'
elif data['useModel'] == 'vocal':
if not loop_num: # First Loop
instrumental_name = '(Instrumental)'
if loop_num == (total_loops - 1): # Last Loop
if not (total_loops - 1): # Only 1 Loop
vocal_name = '(Vocals)'
else:
vocal_name = '(Vocals_Final_Stacked_Output)'
if data['useModel'] == 'vocal':
# Reverse names
vocal_name, instrumental_name = instrumental_name, vocal_name
elif data['saveAllStacked']:
folder_name = os.path.basename(base_name) + ' Stacked Outputs' # nopep8
save_path = os.path.join(save_path, folder_name)
if not os.path.isdir(save_path):
os.mkdir(save_path)
if data['stackOnly']:
vocal_name = f'(Vocal_{loop_num}_Stacked_Output)'
instrumental_name = f'(Instrumental_{loop_num}_Stacked_Output)'
elif (data['useModel'] == 'vocal' or
data['useModel'] == 'instrumental'):
vocal_name = f'(Vocals_{loop_num}_Stacked_Output)'
instrumental_name = f'(Instrumental_{loop_num}_Stacked_Output)'
if data['useModel'] == 'vocal':
# Reverse names
vocal_name, instrumental_name = instrumental_name, vocal_name
# Save Temp File
# For instrumental the instrumental is the temp file
# and for vocal the instrumental is the temp file due
# to reversement
sf.write(f'temp.wav',
wav_instrument.T, sr)
# -Save files-
# Instrumental
if instrumental_name is not None:
instrumental_path = os.path.join(save_path,
f'{os.path.basename(base_name)}_{instrumental_name}_{modelFolderName}.wav')
sf.write(instrumental_path,
wav_instrument.T, sr)
# Vocal
if vocal_name is not None:
vocal_path = os.path.join(save_path,
f'{os.path.basename(base_name)}_{vocal_name}_{modelFolderName}.wav')
sf.write(vocal_path,
wav_vocals.T, sr)
data.update(kwargs)
# Update default settings
global default_sr
global default_hop_length
global default_window_size
global default_n_fft
default_sr = data['sr']
default_hop_length = data['hop_length']
default_window_size = data['window_size']
default_n_fft = data['n_fft']
stime = time.perf_counter()
progress_var.set(0)
text_widget.clear()
button_widget.configure(state=tk.DISABLED) # Disable Button
vocal_remover = VocalRemover(data, text_widget)
modelFolderName = determineModelFolderName()
if modelFolderName:
folder_path = os.path.join(data["export_path"], modelFolderName)
if not os.path.isdir(folder_path):
os.mkdir(folder_path)
else:
folder_path = ''
# Determine Loops
total_loops = data['stackPasses']
if not data['stackOnly']:
total_loops += 1
for file_num, music_file in enumerate(data['input_paths'], start=1):
# Determine File Name
base_name = os.path.join(folder_path, f'{file_num}_{os.path.splitext(os.path.basename(music_file))[0]}')
try:
# --Seperate Music Files--
for loop_num in range(total_loops):
# -Determine which model will be used-
if not loop_num:
# First Iteration
if data['stackOnly']:
if os.path.isfile(data['stackModel']):
model_name = os.path.basename(data['stackModel'])
model = vocal_remover.models['stack']
device = vocal_remover.devices['stack']
else:
raise ValueError(f'Selected stack only model, however, stack model path file cannot be found\nPath: "{data["stackModel"]}"') # nopep8
else:
model_name = os.path.basename(data[f'{data["useModel"]}Model'])
model = vocal_remover.models[data['useModel']]
device = vocal_remover.devices[data['useModel']]
else:
model_name = os.path.basename(data['stackModel'])
# Every other iteration
model = vocal_remover.models['stack']
device = vocal_remover.devices['stack']
# Reference new music file
music_file = 'temp.wav'
# -Get text and update progress-
base_text = get_baseText(total_files=len(data['input_paths']),
total_loops=total_loops,
file_num=file_num,
loop_num=loop_num)
progress_kwargs = {'progress_var': progress_var,
'total_files': len(data['input_paths']),
'total_loops': total_loops,
'file_num': file_num,
'loop_num': loop_num}
update_progress(**progress_kwargs,
step=0)
update_constants(model_name)
# -Go through the different steps of seperation-
# Wave source
text_widget.write(base_text + 'Loading wave source...\n')
X, sr = librosa.load(music_file, data['sr'], False,
dtype=np.float32, res_type=data['resType'])
if X.ndim == 1:
X = np.asarray([X, X])
text_widget.write(base_text + 'Done!\n')
update_progress(**progress_kwargs,
step=0.1)
# Stft of wave source
text_widget.write(base_text + 'Stft of wave source...\n')
X = spec_utils.wave_to_spectrogram(X,
data['hop_length'], data['n_fft'])
if data['tta']:
pred, X_mag, X_phase = vocal_remover.inference_tta(X,
device=device,
model=model)
else:
pred, X_mag, X_phase = vocal_remover.inference(X,
device=device,
model=model)
text_widget.write(base_text + 'Done!\n')
update_progress(**progress_kwargs,
step=0.6)
# Postprocess
if data['postprocess']:
text_widget.write(base_text + 'Post processing...\n')
pred_inv = np.clip(X_mag - pred, 0, np.inf)
pred = spec_utils.mask_silence(pred, pred_inv)
text_widget.write(base_text + 'Done!\n')
update_progress(**progress_kwargs,
step=0.65)
# Inverse stft
text_widget.write(base_text + 'Inverse stft of instruments and vocals...\n') # nopep8
y_spec = pred * X_phase
wav_instrument = spec_utils.spectrogram_to_wave(y_spec,
hop_length=data['hop_length'])
v_spec = np.clip(X_mag - pred, 0, np.inf) * X_phase
wav_vocals = spec_utils.spectrogram_to_wave(v_spec,
hop_length=data['hop_length'])
text_widget.write(base_text + 'Done!\n')
update_progress(**progress_kwargs,
step=0.7)
# Save output music files
text_widget.write(base_text + 'Saving Files...\n')
save_files(wav_instrument, wav_vocals)
text_widget.write(base_text + 'Done!\n')
update_progress(**progress_kwargs,
step=0.8)
else:
# Save output image
if data['output_image']:
with open('{}_Instruments.jpg'.format(base_name), mode='wb') as f:
image = spec_utils.spectrogram_to_image(y_spec)
_, bin_image = cv2.imencode('.jpg', image)
bin_image.tofile(f)
with open('{}_Vocals.jpg'.format(base_name), mode='wb') as f:
image = spec_utils.spectrogram_to_image(v_spec)
_, bin_image = cv2.imencode('.jpg', image)
bin_image.tofile(f)
text_widget.write(base_text + 'Completed Seperation!\n\n')
except Exception as e:
traceback_text = ''.join(traceback.format_tb(e.__traceback__))
message = f'Traceback Error: "{traceback_text}"\n{type(e).__name__}: "{e}"\nFile: {music_file}\nLoop: {loop_num}\nPlease contact the creator and attach a screenshot of this error with the file and settings that caused it!'
tk.messagebox.showerror(master=window,
title='Untracked Error',
message=message)
print(traceback_text)
print(type(e).__name__, e)
print(message)
progress_var.set(0)
button_widget.configure(state=tk.NORMAL) # Enable Button
return
os.remove('temp.wav')
progress_var.set(0)
text_widget.write(f'Conversion(s) Completed and Saving all Files!\n')
text_widget.write(f'Time Elapsed: {time.strftime("%H:%M:%S", time.gmtime(int(time.perf_counter() - stime)))}') # nopep8
torch.cuda.empty_cache()
button_widget.configure(state=tk.NORMAL) # Enable Button