mirror of
https://github.com/Anjok07/ultimatevocalremovergui.git
synced 2024-11-24 15:30:11 +01:00
524 lines
21 KiB
Python
524 lines
21 KiB
Python
import pprint
|
|
import argparse
|
|
import os
|
|
|
|
import cv2
|
|
import librosa
|
|
import numpy as np
|
|
import soundfile as sf
|
|
from tqdm import tqdm
|
|
|
|
from lib_v4 import dataset
|
|
from lib_v4 import nets
|
|
from lib_v4 import spec_utils
|
|
import torch
|
|
|
|
# Command line text parsing and widget manipulation
|
|
from collections import defaultdict
|
|
import tkinter as tk
|
|
import traceback # Error Message Recent Calls
|
|
import time # Timer
|
|
|
|
|
|
class VocalRemover(object):
|
|
|
|
def __init__(self, data, text_widget: tk.Text):
|
|
self.data = data
|
|
self.text_widget = text_widget
|
|
self.models = defaultdict(lambda: None)
|
|
self.devices = defaultdict(lambda: None)
|
|
self._load_models()
|
|
# self.offset = model.offset
|
|
|
|
def _load_models(self):
|
|
self.text_widget.write('Loading models...\n') # nopep8 Write Command Text
|
|
|
|
# -Instrumental-
|
|
if os.path.isfile(data['instrumentalModel']):
|
|
device = torch.device('cpu')
|
|
model = nets.CascadedASPPNet(self.data['n_fft'])
|
|
model.load_state_dict(torch.load(self.data['instrumentalModel'],
|
|
map_location=device))
|
|
if torch.cuda.is_available() and self.data['gpu'] >= 0:
|
|
device = torch.device('cuda:{}'.format(self.data['gpu']))
|
|
model.to(device)
|
|
|
|
self.models['instrumental'] = model
|
|
self.devices['instrumental'] = device
|
|
# -Vocal-
|
|
elif os.path.isfile(data['vocalModel']):
|
|
device = torch.device('cpu')
|
|
model = nets.CascadedASPPNet(self.data['n_fft'])
|
|
model.load_state_dict(torch.load(self.data['vocalModel'],
|
|
map_location=device))
|
|
if torch.cuda.is_available() and self.data['gpu'] >= 0:
|
|
device = torch.device('cuda:{}'.format(self.data['gpu']))
|
|
model.to(device)
|
|
|
|
self.models['vocal'] = model
|
|
self.devices['vocal'] = device
|
|
# -Stack-
|
|
if os.path.isfile(self.data['stackModel']):
|
|
device = torch.device('cpu')
|
|
model = nets.CascadedASPPNet(self.data['n_fft'])
|
|
model.load_state_dict(torch.load(self.data['stackModel'],
|
|
map_location=device))
|
|
if torch.cuda.is_available() and self.data['gpu'] >= 0:
|
|
device = torch.device('cuda:{}'.format(self.data['gpu']))
|
|
model.to(device)
|
|
|
|
self.models['stack'] = model
|
|
self.devices['stack'] = device
|
|
|
|
self.text_widget.write('Done!\n')
|
|
|
|
def _execute(self, X_mag_pad, roi_size, n_window, device, model):
|
|
model.eval()
|
|
with torch.no_grad():
|
|
preds = []
|
|
for i in tqdm(range(n_window)):
|
|
start = i * roi_size
|
|
X_mag_window = X_mag_pad[None, :, :,
|
|
start:start + self.data['window_size']]
|
|
X_mag_window = torch.from_numpy(X_mag_window).to(device)
|
|
|
|
pred = model.predict(X_mag_window)
|
|
|
|
pred = pred.detach().cpu().numpy()
|
|
preds.append(pred[0])
|
|
|
|
pred = np.concatenate(preds, axis=2)
|
|
|
|
return pred
|
|
|
|
def preprocess(self, X_spec):
|
|
X_mag = np.abs(X_spec)
|
|
X_phase = np.angle(X_spec)
|
|
|
|
return X_mag, X_phase
|
|
|
|
def inference(self, X_spec, device, model):
|
|
X_mag, X_phase = self.preprocess(X_spec)
|
|
|
|
coef = X_mag.max()
|
|
X_mag_pre = X_mag / coef
|
|
|
|
n_frame = X_mag_pre.shape[2]
|
|
pad_l, pad_r, roi_size = dataset.make_padding(n_frame,
|
|
self.data['window_size'], model.offset)
|
|
n_window = int(np.ceil(n_frame / roi_size))
|
|
|
|
X_mag_pad = np.pad(
|
|
X_mag_pre, ((0, 0), (0, 0), (pad_l, pad_r)), mode='constant')
|
|
|
|
pred = self._execute(X_mag_pad, roi_size, n_window,
|
|
device, model)
|
|
pred = pred[:, :, :n_frame]
|
|
|
|
return pred * coef, X_mag, np.exp(1.j * X_phase)
|
|
|
|
def inference_tta(self, X_spec, device, model):
|
|
X_mag, X_phase = self.preprocess(X_spec)
|
|
|
|
coef = X_mag.max()
|
|
X_mag_pre = X_mag / coef
|
|
|
|
n_frame = X_mag_pre.shape[2]
|
|
pad_l, pad_r, roi_size = dataset.make_padding(n_frame,
|
|
self.data['window_size'], model.offset)
|
|
n_window = int(np.ceil(n_frame / roi_size))
|
|
|
|
X_mag_pad = np.pad(
|
|
X_mag_pre, ((0, 0), (0, 0), (pad_l, pad_r)), mode='constant')
|
|
|
|
pred = self._execute(X_mag_pad, roi_size, n_window,
|
|
device, model)
|
|
pred = pred[:, :, :n_frame]
|
|
|
|
pad_l += roi_size // 2
|
|
pad_r += roi_size // 2
|
|
n_window += 1
|
|
|
|
X_mag_pad = np.pad(
|
|
X_mag_pre, ((0, 0), (0, 0), (pad_l, pad_r)), mode='constant')
|
|
|
|
pred_tta = self._execute(X_mag_pad, roi_size, n_window,
|
|
device, model)
|
|
pred_tta = pred_tta[:, :, roi_size // 2:]
|
|
pred_tta = pred_tta[:, :, :n_frame]
|
|
|
|
return (pred + pred_tta) * 0.5 * coef, X_mag, np.exp(1.j * X_phase)
|
|
|
|
|
|
data = {
|
|
# Paths
|
|
'input_paths': None,
|
|
'export_path': None,
|
|
# Processing Options
|
|
'gpu': -1,
|
|
'postprocess': True,
|
|
'tta': True,
|
|
'output_image': True,
|
|
# Models
|
|
'instrumentalModel': None,
|
|
'vocalModel': None,
|
|
'stackModel': None,
|
|
'useModel': None,
|
|
# Stack Options
|
|
'stackPasses': 0,
|
|
'stackOnly': False,
|
|
'saveAllStacked': False,
|
|
# Model Folder
|
|
'modelFolder': False,
|
|
# Constants
|
|
'sr': 44_100,
|
|
'hop_length': 1_024,
|
|
'window_size': 320,
|
|
'n_fft': 2_048,
|
|
# Resolution Type
|
|
'resType': 'kaiser_fast',
|
|
# Parsed constants should be fixed
|
|
'manType': False,
|
|
}
|
|
default_sr = data['sr']
|
|
default_hop_length = data['hop_length']
|
|
default_window_size = data['window_size']
|
|
default_n_fft = data['n_fft']
|
|
|
|
|
|
def update_progress(progress_var, total_files, total_loops, file_num, loop_num, step: float = 1):
|
|
"""Calculate the progress for the progress widget in the GUI"""
|
|
base = (100 / total_files)
|
|
progress = base * (file_num - 1)
|
|
progress += (base / total_loops) * (loop_num + step)
|
|
|
|
progress_var.set(progress)
|
|
|
|
|
|
def get_baseText(total_files, total_loops, file_num, loop_num):
|
|
"""Create the base text for the command widget"""
|
|
text = 'File {file_num}/{total_files}:{loop} '.format(file_num=file_num,
|
|
total_files=total_files,
|
|
loop='' if total_loops <= 1 else f' ({loop_num+1}/{total_loops})')
|
|
return text
|
|
|
|
|
|
def update_constants(model_name):
|
|
"""
|
|
Decode the conversion settings from the model's name
|
|
"""
|
|
global data
|
|
text = model_name.replace('.pth', '')
|
|
text_parts = text.split('_')[1:]
|
|
|
|
data['sr'] = default_sr
|
|
data['hop_length'] = default_hop_length
|
|
data['window_size'] = default_window_size
|
|
data['n_fft'] = default_n_fft
|
|
|
|
if data['manType']:
|
|
# Default constants should be fixed
|
|
return
|
|
|
|
for text_part in text_parts:
|
|
if 'sr' in text_part:
|
|
text_part = text_part.replace('sr', '')
|
|
if text_part.isdecimal():
|
|
try:
|
|
data['sr'] = int(text_part)
|
|
continue
|
|
except ValueError:
|
|
# Cannot convert string to int
|
|
pass
|
|
if 'hl' in text_part:
|
|
text_part = text_part.replace('hl', '')
|
|
if text_part.isdecimal():
|
|
try:
|
|
data['hop_length'] = int(text_part)
|
|
continue
|
|
except ValueError:
|
|
# Cannot convert string to int
|
|
pass
|
|
if 'w' in text_part:
|
|
text_part = text_part.replace('w', '')
|
|
if text_part.isdecimal():
|
|
try:
|
|
data['window_size'] = int(text_part)
|
|
continue
|
|
except ValueError:
|
|
# Cannot convert string to int
|
|
pass
|
|
if 'nf' in text_part:
|
|
text_part = text_part.replace('nf', '')
|
|
if text_part.isdecimal():
|
|
try:
|
|
data['n_fft'] = int(text_part)
|
|
continue
|
|
except ValueError:
|
|
# Cannot convert string to int
|
|
pass
|
|
|
|
|
|
def determineModelFolderName():
|
|
"""
|
|
Determine the name that is used for the folder and appended
|
|
to the back of the music files
|
|
"""
|
|
modelFolderName = ''
|
|
if not data['modelFolder']:
|
|
# Model Test Mode not selected
|
|
return modelFolderName
|
|
|
|
# -Instrumental-
|
|
if os.path.isfile(data['instrumentalModel']):
|
|
modelFolderName += os.path.splitext(os.path.basename(data['instrumentalModel']))[0]
|
|
# -Vocal-
|
|
elif os.path.isfile(data['vocalModel']):
|
|
modelFolderName += os.path.splitext(os.path.basename(data['vocalModel']))[0]
|
|
# -Stack-
|
|
if os.path.isfile(data['stackModel']):
|
|
modelFolderName += '-' + os.path.splitext(os.path.basename(data['stackModel']))[0]
|
|
|
|
return modelFolderName
|
|
|
|
|
|
def main(window: tk.Wm, text_widget: tk.Text, button_widget: tk.Button, progress_var: tk.Variable,
|
|
**kwargs: dict):
|
|
def save_files(wav_instrument, wav_vocals):
|
|
"""Save output music files"""
|
|
vocal_name = None
|
|
instrumental_name = None
|
|
save_path = os.path.dirname(base_name)
|
|
|
|
# Get the Suffix Name
|
|
if (not loop_num or
|
|
loop_num == (total_loops - 1)): # First or Last Loop
|
|
if data['stackOnly']:
|
|
if loop_num == (total_loops - 1): # Last Loop
|
|
if not (total_loops - 1): # Only 1 Loop
|
|
vocal_name = '(Vocals)'
|
|
instrumental_name = '(Instrumental)'
|
|
else:
|
|
vocal_name = '(Vocal_Final_Stacked_Output)'
|
|
instrumental_name = '(Instrumental_Final_Stacked_Output)'
|
|
elif data['useModel'] == 'instrumental':
|
|
if not loop_num: # First Loop
|
|
vocal_name = '(Vocals)'
|
|
if loop_num == (total_loops - 1): # Last Loop
|
|
if not (total_loops - 1): # Only 1 Loop
|
|
instrumental_name = '(Instrumental)'
|
|
else:
|
|
instrumental_name = '(Instrumental_Final_Stacked_Output)'
|
|
elif data['useModel'] == 'vocal':
|
|
if not loop_num: # First Loop
|
|
instrumental_name = '(Instrumental)'
|
|
if loop_num == (total_loops - 1): # Last Loop
|
|
if not (total_loops - 1): # Only 1 Loop
|
|
vocal_name = '(Vocals)'
|
|
else:
|
|
vocal_name = '(Vocals_Final_Stacked_Output)'
|
|
if data['useModel'] == 'vocal':
|
|
# Reverse names
|
|
vocal_name, instrumental_name = instrumental_name, vocal_name
|
|
elif data['saveAllStacked']:
|
|
folder_name = os.path.basename(base_name) + ' Stacked Outputs' # nopep8
|
|
save_path = os.path.join(save_path, folder_name)
|
|
|
|
if not os.path.isdir(save_path):
|
|
os.mkdir(save_path)
|
|
|
|
if data['stackOnly']:
|
|
vocal_name = f'(Vocal_{loop_num}_Stacked_Output)'
|
|
instrumental_name = f'(Instrumental_{loop_num}_Stacked_Output)'
|
|
elif (data['useModel'] == 'vocal' or
|
|
data['useModel'] == 'instrumental'):
|
|
vocal_name = f'(Vocals_{loop_num}_Stacked_Output)'
|
|
instrumental_name = f'(Instrumental_{loop_num}_Stacked_Output)'
|
|
|
|
if data['useModel'] == 'vocal':
|
|
# Reverse names
|
|
vocal_name, instrumental_name = instrumental_name, vocal_name
|
|
|
|
# Save Temp File
|
|
# For instrumental the instrumental is the temp file
|
|
# and for vocal the instrumental is the temp file due
|
|
# to reversement
|
|
sf.write(f'temp.wav',
|
|
wav_instrument.T, sr)
|
|
|
|
# -Save files-
|
|
# Instrumental
|
|
if instrumental_name is not None:
|
|
instrumental_path = os.path.join(save_path,
|
|
f'{os.path.basename(base_name)}_{instrumental_name}_{modelFolderName}.wav')
|
|
|
|
sf.write(instrumental_path,
|
|
wav_instrument.T, sr)
|
|
# Vocal
|
|
if vocal_name is not None:
|
|
vocal_path = os.path.join(save_path,
|
|
f'{os.path.basename(base_name)}_{vocal_name}_{modelFolderName}.wav')
|
|
sf.write(vocal_path,
|
|
wav_vocals.T, sr)
|
|
|
|
data.update(kwargs)
|
|
|
|
# Update default settings
|
|
global default_sr
|
|
global default_hop_length
|
|
global default_window_size
|
|
global default_n_fft
|
|
default_sr = data['sr']
|
|
default_hop_length = data['hop_length']
|
|
default_window_size = data['window_size']
|
|
default_n_fft = data['n_fft']
|
|
|
|
stime = time.perf_counter()
|
|
progress_var.set(0)
|
|
text_widget.clear()
|
|
button_widget.configure(state=tk.DISABLED) # Disable Button
|
|
|
|
vocal_remover = VocalRemover(data, text_widget)
|
|
modelFolderName = determineModelFolderName()
|
|
if modelFolderName:
|
|
folder_path = os.path.join(data["export_path"], modelFolderName)
|
|
if not os.path.isdir(folder_path):
|
|
os.mkdir(folder_path)
|
|
else:
|
|
folder_path = ''
|
|
|
|
# Determine Loops
|
|
total_loops = data['stackPasses']
|
|
if not data['stackOnly']:
|
|
total_loops += 1
|
|
for file_num, music_file in enumerate(data['input_paths'], start=1):
|
|
# Determine File Name
|
|
base_name = os.path.join(folder_path, f'{file_num}_{os.path.splitext(os.path.basename(music_file))[0]}')
|
|
try:
|
|
# --Seperate Music Files--
|
|
for loop_num in range(total_loops):
|
|
# -Determine which model will be used-
|
|
if not loop_num:
|
|
# First Iteration
|
|
if data['stackOnly']:
|
|
if os.path.isfile(data['stackModel']):
|
|
model_name = os.path.basename(data['stackModel'])
|
|
model = vocal_remover.models['stack']
|
|
device = vocal_remover.devices['stack']
|
|
else:
|
|
raise ValueError(f'Selected stack only model, however, stack model path file cannot be found\nPath: "{data["stackModel"]}"') # nopep8
|
|
else:
|
|
model_name = os.path.basename(data[f'{data["useModel"]}Model'])
|
|
model = vocal_remover.models[data['useModel']]
|
|
device = vocal_remover.devices[data['useModel']]
|
|
else:
|
|
model_name = os.path.basename(data['stackModel'])
|
|
# Every other iteration
|
|
model = vocal_remover.models['stack']
|
|
device = vocal_remover.devices['stack']
|
|
# Reference new music file
|
|
music_file = 'temp.wav'
|
|
|
|
# -Get text and update progress-
|
|
base_text = get_baseText(total_files=len(data['input_paths']),
|
|
total_loops=total_loops,
|
|
file_num=file_num,
|
|
loop_num=loop_num)
|
|
progress_kwargs = {'progress_var': progress_var,
|
|
'total_files': len(data['input_paths']),
|
|
'total_loops': total_loops,
|
|
'file_num': file_num,
|
|
'loop_num': loop_num}
|
|
update_progress(**progress_kwargs,
|
|
step=0)
|
|
update_constants(model_name)
|
|
|
|
# -Go through the different steps of seperation-
|
|
# Wave source
|
|
text_widget.write(base_text + 'Loading wave source...\n')
|
|
X, sr = librosa.load(music_file, data['sr'], False,
|
|
dtype=np.float32, res_type=data['resType'])
|
|
if X.ndim == 1:
|
|
X = np.asarray([X, X])
|
|
text_widget.write(base_text + 'Done!\n')
|
|
|
|
update_progress(**progress_kwargs,
|
|
step=0.1)
|
|
# Stft of wave source
|
|
text_widget.write(base_text + 'Stft of wave source...\n')
|
|
X = spec_utils.wave_to_spectrogram(X,
|
|
data['hop_length'], data['n_fft'])
|
|
if data['tta']:
|
|
pred, X_mag, X_phase = vocal_remover.inference_tta(X,
|
|
device=device,
|
|
model=model)
|
|
else:
|
|
pred, X_mag, X_phase = vocal_remover.inference(X,
|
|
device=device,
|
|
model=model)
|
|
text_widget.write(base_text + 'Done!\n')
|
|
|
|
update_progress(**progress_kwargs,
|
|
step=0.6)
|
|
# Postprocess
|
|
if data['postprocess']:
|
|
text_widget.write(base_text + 'Post processing...\n')
|
|
pred_inv = np.clip(X_mag - pred, 0, np.inf)
|
|
pred = spec_utils.mask_silence(pred, pred_inv)
|
|
text_widget.write(base_text + 'Done!\n')
|
|
|
|
update_progress(**progress_kwargs,
|
|
step=0.65)
|
|
|
|
# Inverse stft
|
|
text_widget.write(base_text + 'Inverse stft of instruments and vocals...\n') # nopep8
|
|
y_spec = pred * X_phase
|
|
wav_instrument = spec_utils.spectrogram_to_wave(y_spec,
|
|
hop_length=data['hop_length'])
|
|
v_spec = np.clip(X_mag - pred, 0, np.inf) * X_phase
|
|
wav_vocals = spec_utils.spectrogram_to_wave(v_spec,
|
|
hop_length=data['hop_length'])
|
|
text_widget.write(base_text + 'Done!\n')
|
|
|
|
update_progress(**progress_kwargs,
|
|
step=0.7)
|
|
# Save output music files
|
|
text_widget.write(base_text + 'Saving Files...\n')
|
|
save_files(wav_instrument, wav_vocals)
|
|
text_widget.write(base_text + 'Done!\n')
|
|
|
|
update_progress(**progress_kwargs,
|
|
step=0.8)
|
|
else:
|
|
# Save output image
|
|
if data['output_image']:
|
|
with open('{}_Instruments.jpg'.format(base_name), mode='wb') as f:
|
|
image = spec_utils.spectrogram_to_image(y_spec)
|
|
_, bin_image = cv2.imencode('.jpg', image)
|
|
bin_image.tofile(f)
|
|
with open('{}_Vocals.jpg'.format(base_name), mode='wb') as f:
|
|
image = spec_utils.spectrogram_to_image(v_spec)
|
|
_, bin_image = cv2.imencode('.jpg', image)
|
|
bin_image.tofile(f)
|
|
|
|
text_widget.write(base_text + 'Completed Seperation!\n\n')
|
|
except Exception as e:
|
|
traceback_text = ''.join(traceback.format_tb(e.__traceback__))
|
|
message = f'Traceback Error: "{traceback_text}"\n{type(e).__name__}: "{e}"\nFile: {music_file}\nLoop: {loop_num}\nPlease contact the creator and attach a screenshot of this error with the file and settings that caused it!'
|
|
tk.messagebox.showerror(master=window,
|
|
title='Untracked Error',
|
|
message=message)
|
|
print(traceback_text)
|
|
print(type(e).__name__, e)
|
|
print(message)
|
|
progress_var.set(0)
|
|
button_widget.configure(state=tk.NORMAL) # Enable Button
|
|
return
|
|
|
|
os.remove('temp.wav')
|
|
progress_var.set(0)
|
|
text_widget.write(f'Conversion(s) Completed and Saving all Files!\n')
|
|
text_widget.write(f'Time Elapsed: {time.strftime("%H:%M:%S", time.gmtime(int(time.perf_counter() - stime)))}') # nopep8
|
|
torch.cuda.empty_cache()
|
|
button_widget.configure(state=tk.NORMAL) # Enable Button
|