mirror of
https://github.com/Anjok07/ultimatevocalremovergui.git
synced 2025-01-19 17:18:39 +01:00
77 lines
2.9 KiB
Python
77 lines
2.9 KiB
Python
import argparse
|
|
import os
|
|
import subprocess
|
|
|
|
import librosa
|
|
import numpy as np
|
|
import soundfile as sf
|
|
from tqdm import tqdm
|
|
|
|
from lib import spec_utils
|
|
|
|
|
|
if __name__ == '__main__':
|
|
p = argparse.ArgumentParser()
|
|
p.add_argument('--sr', '-r', type=int, default=44100)
|
|
p.add_argument('--hop_length', '-l', type=int, default=1024)
|
|
p.add_argument('--pitch', '-p', type=int, default=-2)
|
|
p.add_argument('--mixture_dataset', '-m', required=True)
|
|
p.add_argument('--instrumental_dataset', '-i', required=True)
|
|
args = p.parse_args()
|
|
|
|
input_exts = ['.wav', '.m4a', '.3gp', '.oma', '.mp3', '.mp4']
|
|
X_list = sorted([
|
|
os.path.join(args.mixture_dataset, fname)
|
|
for fname in os.listdir(args.mixture_dataset)
|
|
if os.path.splitext(fname)[1] in input_exts])
|
|
y_list = sorted([
|
|
os.path.join(args.instrumental_dataset, fname)
|
|
for fname in os.listdir(args.instrumental_dataset)
|
|
if os.path.splitext(fname)[1] in input_exts])
|
|
|
|
input_i = 'input_i_{}.wav'.format(args.pitch)
|
|
input_v = 'input_v_{}.wav'.format(args.pitch)
|
|
output_i = 'output_i_{}.wav'.format(args.pitch)
|
|
output_v = 'output_v_{}.wav'.format(args.pitch)
|
|
cmd_i = 'soundstretch {} {} -pitch={}'.format(input_i, output_i, args.pitch)
|
|
cmd_v = 'soundstretch {} {} -pitch={}'.format(input_v, output_v, args.pitch)
|
|
suffix = '_pitch{}.npy'.format(args.pitch)
|
|
|
|
filelist = list(zip(X_list, y_list))
|
|
for mix_path, inst_path in tqdm(filelist):
|
|
X, _ = librosa.load(
|
|
mix_path, args.sr, False, dtype=np.float32, res_type='kaiser_fast')
|
|
y, _ = librosa.load(
|
|
inst_path, args.sr, False, dtype=np.float32, res_type='kaiser_fast')
|
|
|
|
X, _ = librosa.effects.trim(X)
|
|
y, _ = librosa.effects.trim(y)
|
|
X, y = spec_utils.align_wave_head_and_tail(X, y, args.sr)
|
|
|
|
v = X - y
|
|
sf.write(input_i, y.T, args.sr)
|
|
sf.write(input_v, v.T, args.sr)
|
|
subprocess.call(cmd_i, stderr=subprocess.DEVNULL)
|
|
subprocess.call(cmd_v, stderr=subprocess.DEVNULL)
|
|
|
|
y, _ = librosa.load(
|
|
output_i, args.sr, False, dtype=np.float32, res_type='kaiser_fast')
|
|
v, _ = librosa.load(
|
|
output_v, args.sr, False, dtype=np.float32, res_type='kaiser_fast')
|
|
X = y + v
|
|
|
|
spec = spec_utils.calc_spec(X, args.hop_length)
|
|
basename, _ = os.path.splitext(os.path.basename(mix_path))
|
|
outpath = os.path.join(args.mixture_dataset, basename + suffix)
|
|
np.save(outpath, np.abs(spec))
|
|
|
|
spec = spec_utils.calc_spec(y, args.hop_length)
|
|
basename, _ = os.path.splitext(os.path.basename(inst_path))
|
|
outpath = os.path.join(args.instrumental_dataset, basename + suffix)
|
|
np.save(outpath, np.abs(spec))
|
|
|
|
os.remove(input_i)
|
|
os.remove(input_v)
|
|
os.remove(output_i)
|
|
os.remove(output_v)
|