mirror of
https://github.com/Anjok07/ultimatevocalremovergui.git
synced 2025-01-20 09:32:44 +01:00
186 lines
7.3 KiB
Python
186 lines
7.3 KiB
Python
# Copyright (c) Facebook, Inc. and its affiliates.
|
|
# All rights reserved.
|
|
#
|
|
# This source code is licensed under the license found in the
|
|
# LICENSE file in the root directory of this source tree.
|
|
|
|
import argparse
|
|
import sys
|
|
from pathlib import Path
|
|
import subprocess
|
|
|
|
import julius
|
|
import torch as th
|
|
import torchaudio as ta
|
|
|
|
from .audio import AudioFile, convert_audio_channels
|
|
from .pretrained import is_pretrained, load_pretrained
|
|
from .utils import apply_model, load_model
|
|
|
|
|
|
def load_track(track, device, audio_channels, samplerate):
|
|
errors = {}
|
|
wav = None
|
|
|
|
try:
|
|
wav = AudioFile(track).read(
|
|
streams=0,
|
|
samplerate=samplerate,
|
|
channels=audio_channels).to(device)
|
|
except FileNotFoundError:
|
|
errors['ffmpeg'] = 'Ffmpeg is not installed.'
|
|
except subprocess.CalledProcessError:
|
|
errors['ffmpeg'] = 'FFmpeg could not read the file.'
|
|
|
|
if wav is None:
|
|
try:
|
|
wav, sr = ta.load(str(track))
|
|
except RuntimeError as err:
|
|
errors['torchaudio'] = err.args[0]
|
|
else:
|
|
wav = convert_audio_channels(wav, audio_channels)
|
|
wav = wav.to(device)
|
|
wav = julius.resample_frac(wav, sr, samplerate)
|
|
|
|
if wav is None:
|
|
print(f"Could not load file {track}. "
|
|
"Maybe it is not a supported file format? ")
|
|
for backend, error in errors.items():
|
|
print(f"When trying to load using {backend}, got the following error: {error}")
|
|
sys.exit(1)
|
|
return wav
|
|
|
|
|
|
def encode_mp3(wav, path, bitrate=320, samplerate=44100, channels=2, verbose=False):
|
|
try:
|
|
import lameenc
|
|
except ImportError:
|
|
print("Failed to call lame encoder. Maybe it is not installed? "
|
|
"On windows, run `python.exe -m pip install -U lameenc`, "
|
|
"on OSX/Linux, run `python3 -m pip install -U lameenc`, "
|
|
"then try again.", file=sys.stderr)
|
|
sys.exit(1)
|
|
encoder = lameenc.Encoder()
|
|
encoder.set_bit_rate(bitrate)
|
|
encoder.set_in_sample_rate(samplerate)
|
|
encoder.set_channels(channels)
|
|
encoder.set_quality(2) # 2-highest, 7-fastest
|
|
if not verbose:
|
|
encoder.silence()
|
|
wav = wav.transpose(0, 1).numpy()
|
|
mp3_data = encoder.encode(wav.tobytes())
|
|
mp3_data += encoder.flush()
|
|
with open(path, "wb") as f:
|
|
f.write(mp3_data)
|
|
|
|
|
|
def main():
|
|
parser = argparse.ArgumentParser("demucs.separate",
|
|
description="Separate the sources for the given tracks")
|
|
parser.add_argument("tracks", nargs='+', type=Path, default=[], help='Path to tracks')
|
|
parser.add_argument("-n",
|
|
"--name",
|
|
default="demucs_quantized",
|
|
help="Model name. See README.md for the list of pretrained models. "
|
|
"Default is demucs_quantized.")
|
|
parser.add_argument("-v", "--verbose", action="store_true")
|
|
parser.add_argument("-o",
|
|
"--out",
|
|
type=Path,
|
|
default=Path("separated"),
|
|
help="Folder where to put extracted tracks. A subfolder "
|
|
"with the model name will be created.")
|
|
parser.add_argument("--models",
|
|
type=Path,
|
|
default=Path("models"),
|
|
help="Path to trained models. "
|
|
"Also used to store downloaded pretrained models")
|
|
parser.add_argument("-d",
|
|
"--device",
|
|
default="cuda" if th.cuda.is_available() else "cpu",
|
|
help="Device to use, default is cuda if available else cpu")
|
|
parser.add_argument("--shifts",
|
|
default=0,
|
|
type=int,
|
|
help="Number of random shifts for equivariant stabilization."
|
|
"Increase separation time but improves quality for Demucs. 10 was used "
|
|
"in the original paper.")
|
|
parser.add_argument("--overlap",
|
|
default=0.25,
|
|
type=float,
|
|
help="Overlap between the splits.")
|
|
parser.add_argument("--no-split",
|
|
action="store_false",
|
|
dest="split",
|
|
default=True,
|
|
help="Doesn't split audio in chunks. This can use large amounts of memory.")
|
|
parser.add_argument("--float32",
|
|
action="store_true",
|
|
help="Convert the output wavefile to use pcm f32 format instead of s16. "
|
|
"This should not make a difference if you just plan on listening to the "
|
|
"audio but might be needed to compute exactly metrics like SDR etc.")
|
|
parser.add_argument("--int16",
|
|
action="store_false",
|
|
dest="float32",
|
|
help="Opposite of --float32, here for compatibility.")
|
|
parser.add_argument("--mp3", action="store_true",
|
|
help="Convert the output wavs to mp3.")
|
|
parser.add_argument("--mp3-bitrate",
|
|
default=320,
|
|
type=int,
|
|
help="Bitrate of converted mp3.")
|
|
|
|
args = parser.parse_args()
|
|
name = args.name + ".th"
|
|
model_path = args.models / name
|
|
if model_path.is_file():
|
|
model = load_model(model_path)
|
|
else:
|
|
if is_pretrained(args.name):
|
|
model = load_pretrained(args.name)
|
|
else:
|
|
print(f"No pre-trained model {args.name}", file=sys.stderr)
|
|
sys.exit(1)
|
|
model.to(args.device)
|
|
|
|
out = args.out / args.name
|
|
out.mkdir(parents=True, exist_ok=True)
|
|
print(f"Separated tracks will be stored in {out.resolve()}")
|
|
for track in args.tracks:
|
|
if not track.exists():
|
|
print(
|
|
f"File {track} does not exist. If the path contains spaces, "
|
|
"please try again after surrounding the entire path with quotes \"\".",
|
|
file=sys.stderr)
|
|
continue
|
|
print(f"Separating track {track}")
|
|
wav = load_track(track, args.device, model.audio_channels, model.samplerate)
|
|
|
|
ref = wav.mean(0)
|
|
wav = (wav - ref.mean()) / ref.std()
|
|
sources = apply_model(model, wav, shifts=args.shifts, split=args.split,
|
|
overlap=args.overlap, progress=True)
|
|
sources = sources * ref.std() + ref.mean()
|
|
|
|
track_folder = out / track.name.rsplit(".", 1)[0]
|
|
track_folder.mkdir(exist_ok=True)
|
|
for source, name in zip(sources, model.sources):
|
|
source = source / max(1.01 * source.abs().max(), 1)
|
|
if args.mp3 or not args.float32:
|
|
source = (source * 2**15).clamp_(-2**15, 2**15 - 1).short()
|
|
source = source.cpu()
|
|
stem = str(track_folder / name)
|
|
if args.mp3:
|
|
encode_mp3(source, stem + ".mp3",
|
|
bitrate=args.mp3_bitrate,
|
|
samplerate=model.samplerate,
|
|
channels=model.audio_channels,
|
|
verbose=args.verbose)
|
|
else:
|
|
wavname = str(track_folder / f"{name}.wav")
|
|
ta.save(wavname, source, sample_rate=model.samplerate)
|
|
|
|
|
|
if __name__ == "__main__":
|
|
main()
|