ultimatevocalremovergui/inference_v5.py
2022-07-06 02:57:56 -05:00

1267 lines
71 KiB
Python

import os
import importlib
import pydub
import shutil
import hashlib
import cv2
import librosa
import math
import numpy as np
import soundfile as sf
from tqdm import tqdm
from demucs.pretrained import get_model as _gm
from demucs.hdemucs import HDemucs
from demucs.apply import BagOfModels, apply_model
from pathlib import Path
from models import stft, istft
from lib_v5 import dataset
from lib_v5 import spec_utils
from lib_v5.model_param_init import ModelParameters
import torch
from datetime import datetime
# Command line text parsing and widget manipulation
from collections import defaultdict
import tkinter as tk
import traceback # Error Message Recent Calls
import time # Timer
from random import randrange
class VocalRemover(object):
def __init__(self, data, text_widget: tk.Text):
self.data = data
self.text_widget = text_widget
self.models = defaultdict(lambda: None)
self.devices = defaultdict(lambda: None)
# self.offset = model.offset
data = {
# Paths
'input_paths': None,
'export_path': None,
'saveFormat': 'wav',
# Processing Options
'gpu': -1,
'postprocess': True,
'tta': True,
'output_image': True,
'voc_only': False,
'inst_only': False,
# Models
'instrumentalModel': None,
'useModel': None,
# Constants
'window_size': 512,
'agg': 10,
'high_end_process': 'mirroring',
'ModelParams': 'Auto',
'demucsmodel_sel_VR': 'UVR_Demucs_Model_1',
'overlap': 0.5,
'shifts': 0,
'segment': 'None',
'split_mode': False,
'normalize': False,
'demucsmodelVR': True,
'wavtype': 'PCM_16',
'mp3bit': '320k',
'settest': False,
}
default_window_size = data['window_size']
default_agg = data['agg']
def update_progress(progress_var, total_files, file_num, step: float = 1):
"""Calculate the progress for the progress widget in the GUI"""
base = (100 / total_files)
progress = base * (file_num - 1)
progress += base * step
progress_var.set(progress)
def get_baseText(total_files, file_num):
"""Create the base text for the command widget"""
text = 'File {file_num}/{total_files} '.format(file_num=file_num,
total_files=total_files)
return text
def determineModelFolderName():
"""
Determine the name that is used for the folder and appended
to the back of the music files
"""
modelFolderName = ''
if not data['modelFolder']:
# Model Test Mode not selected
return modelFolderName
# -Instrumental-
if os.path.isfile(data['instrumentalModel']):
modelFolderName += os.path.splitext(os.path.basename(data['instrumentalModel']))[0]
if modelFolderName:
modelFolderName = '/' + modelFolderName
return modelFolderName
def main(window: tk.Wm, text_widget: tk.Text, button_widget: tk.Button, progress_var: tk.Variable,
**kwargs: dict):
global model_params_d
global nn_arch_sizes
global nn_architecture
global overlap_set
global shift_set
global split_mode
global demucs_model_set
global wav_type_set
global flac_type_set
global mp3_bit_set
wav_type_set = data['wavtype']
#Error Handling
runtimeerr = "CUDNN error executing cudnnSetTensorNdDescriptor"
systemmemerr = "DefaultCPUAllocator: not enough memory"
cuda_err = "CUDA out of memory"
mod_err = "ModuleNotFoundError"
file_err = "FileNotFoundError"
ffmp_err = """audioread\__init__.py", line 116, in audio_open"""
sf_write_err = "sf.write"
try:
with open('errorlog.txt', 'w') as f:
f.write(f'No errors to report at this time.' + f'\n\nLast Process Method Used: VR Architecture' +
f'\nLast Conversion Time Stamp: [{datetime.now().strftime("%Y-%m-%d %H:%M:%S")}]\n')
except:
pass
nn_arch_sizes = [
31191, # default
33966, 123821, 123812, 537238 # custom
]
nn_architecture = list('{}KB'.format(s) for s in nn_arch_sizes)
def save_files(wav_instrument, wav_vocals):
"""Save output music files"""
vocal_name = '(Vocals)'
instrumental_name = '(Instrumental)'
save_path = os.path.dirname(base_name)
# Swap names if vocal model
VModel="Vocal"
if VModel in model_name:
# Reverse names
vocal_name, instrumental_name = instrumental_name, vocal_name
# Save Temp File
# For instrumental the instrumental is the temp file
# and for vocal the instrumental is the temp file due
# to reversement
if data['demucsmodelVR']:
samplerate = 44100
else:
samplerate = mp.param['sr']
sf.write(f'temp.wav',
normalization_set(wav_instrument).T, samplerate, subtype=wav_type_set)
appendModelFolderName = modelFolderName.replace('/', '_')
# -Save files-
# Instrumental
if instrumental_name is not None:
if data['modelFolder']:
instrumental_path = '{save_path}/{file_name}.wav'.format(
save_path=save_path,
file_name=f'{os.path.basename(base_name)}{appendModelFolderName}_{instrumental_name}',)
instrumental_path_mp3 = '{save_path}/{file_name}.mp3'.format(
save_path=save_path,
file_name=f'{os.path.basename(base_name)}{appendModelFolderName}_{instrumental_name}',)
instrumental_path_flac = '{save_path}/{file_name}.flac'.format(
save_path=save_path,
file_name=f'{os.path.basename(base_name)}{appendModelFolderName}_{instrumental_name}',)
else:
instrumental_path = '{save_path}/{file_name}.wav'.format(
save_path=save_path,
file_name=f'{os.path.basename(base_name)}_{instrumental_name}',)
instrumental_path_mp3 = '{save_path}/{file_name}.mp3'.format(
save_path=save_path,
file_name=f'{os.path.basename(base_name)}_{instrumental_name}',)
instrumental_path_flac = '{save_path}/{file_name}.flac'.format(
save_path=save_path,
file_name=f'{os.path.basename(base_name)}_{instrumental_name}',)
if os.path.isfile(instrumental_path):
file_exists_i = 'there'
else:
file_exists_i = 'not_there'
if VModel in model_name and data['voc_only']:
sf.write(instrumental_path,
normalization_set(wav_instrument).T, samplerate, subtype=wav_type_set)
elif VModel in model_name and data['inst_only']:
pass
elif data['voc_only']:
pass
else:
sf.write(instrumental_path,
normalization_set(wav_instrument).T, samplerate, subtype=wav_type_set)
# Vocal
if vocal_name is not None:
if data['modelFolder']:
vocal_path = '{save_path}/{file_name}.wav'.format(
save_path=save_path,
file_name=f'{os.path.basename(base_name)}{appendModelFolderName}_{vocal_name}',)
vocal_path_mp3 = '{save_path}/{file_name}.mp3'.format(
save_path=save_path,
file_name=f'{os.path.basename(base_name)}{appendModelFolderName}_{vocal_name}',)
vocal_path_flac = '{save_path}/{file_name}.flac'.format(
save_path=save_path,
file_name=f'{os.path.basename(base_name)}{appendModelFolderName}_{vocal_name}',)
else:
vocal_path = '{save_path}/{file_name}.wav'.format(
save_path=save_path,
file_name=f'{os.path.basename(base_name)}_{vocal_name}',)
vocal_path_mp3 = '{save_path}/{file_name}.mp3'.format(
save_path=save_path,
file_name=f'{os.path.basename(base_name)}_{vocal_name}',)
vocal_path_flac = '{save_path}/{file_name}.flac'.format(
save_path=save_path,
file_name=f'{os.path.basename(base_name)}_{vocal_name}',)
if os.path.isfile(vocal_path):
file_exists_v = 'there'
else:
file_exists_v = 'not_there'
if VModel in model_name and data['inst_only']:
sf.write(vocal_path,
normalization_set(wav_vocals).T, samplerate, subtype=wav_type_set)
elif VModel in model_name and data['voc_only']:
pass
elif data['inst_only']:
pass
else:
sf.write(vocal_path,
normalization_set(wav_vocals).T, samplerate, subtype=wav_type_set)
if data['saveFormat'] == 'Mp3':
try:
if data['inst_only'] == True:
pass
else:
musfile = pydub.AudioSegment.from_wav(vocal_path)
musfile.export(vocal_path_mp3, format="mp3", bitrate=mp3_bit_set)
if file_exists_v == 'there':
pass
else:
try:
os.remove(vocal_path)
except:
pass
if data['voc_only'] == True:
pass
else:
musfile = pydub.AudioSegment.from_wav(instrumental_path)
musfile.export(instrumental_path_mp3, format="mp3", bitrate=mp3_bit_set)
if file_exists_i == 'there':
pass
else:
try:
os.remove(instrumental_path)
except:
pass
except Exception as e:
traceback_text = ''.join(traceback.format_tb(e.__traceback__))
errmessage = f'Traceback Error: "{traceback_text}"\n{type(e).__name__}: "{e}"\n'
if "ffmpeg" in errmessage:
text_widget.write(base_text + 'Failed to save output(s) as Mp3(s).\n')
text_widget.write(base_text + 'FFmpeg might be missing or corrupted, please check error log.\n')
text_widget.write(base_text + 'Moving on...\n')
else:
text_widget.write(base_text + 'Failed to save output(s) as Mp3(s).\n')
text_widget.write(base_text + 'Please check error log.\n')
text_widget.write(base_text + 'Moving on...\n')
try:
with open('errorlog.txt', 'w') as f:
f.write(f'Last Error Received:\n\n' +
f'Error Received while attempting to save file as mp3 "{os.path.basename(music_file)}":\n' +
f'Process Method: VR Architecture\n\n' +
f'FFmpeg might be missing or corrupted.\n\n' +
f'If this error persists, please contact the developers.\n\n' +
f'Raw error details:\n\n' +
errmessage + f'\nError Time Stamp: [{datetime.now().strftime("%Y-%m-%d %H:%M:%S")}]\n')
except:
pass
if data['saveFormat'] == 'Flac':
try:
if VModel in model_name:
if data['inst_only'] == True:
pass
else:
musfile = pydub.AudioSegment.from_wav(instrumental_path)
musfile.export(instrumental_path_flac, format="flac")
if file_exists_v == 'there':
pass
else:
try:
os.remove(instrumental_path)
except:
pass
if data['voc_only'] == True:
pass
else:
musfile = pydub.AudioSegment.from_wav(vocal_path)
musfile.export(vocal_path_flac, format="flac")
if file_exists_i == 'there':
pass
else:
try:
os.remove(vocal_path)
except:
pass
else:
if data['inst_only'] == True:
pass
else:
musfile = pydub.AudioSegment.from_wav(vocal_path)
musfile.export(vocal_path_flac, format="flac")
if file_exists_v == 'there':
pass
else:
try:
os.remove(vocal_path)
except:
pass
if data['voc_only'] == True:
pass
else:
musfile = pydub.AudioSegment.from_wav(instrumental_path)
musfile.export(instrumental_path_flac, format="flac")
if file_exists_i == 'there':
pass
else:
try:
os.remove(instrumental_path)
except:
pass
except Exception as e:
traceback_text = ''.join(traceback.format_tb(e.__traceback__))
errmessage = f'Traceback Error: "{traceback_text}"\n{type(e).__name__}: "{e}"\n'
if "ffmpeg" in errmessage:
text_widget.write(base_text + 'Failed to save output(s) as Flac(s).\n')
text_widget.write(base_text + 'FFmpeg might be missing or corrupted, please check error log.\n')
text_widget.write(base_text + 'Moving on...\n')
else:
text_widget.write(base_text + 'Failed to save output(s) as Flac(s).\n')
text_widget.write(base_text + 'Please check error log.\n')
text_widget.write(base_text + 'Moving on...\n')
try:
with open('errorlog.txt', 'w') as f:
f.write(f'Last Error Received:\n\n' +
f'Error Received while attempting to save file as flac "{os.path.basename(music_file)}":\n' +
f'Process Method: VR Architecture\n\n' +
f'FFmpeg might be missing or corrupted.\n\n' +
f'If this error persists, please contact the developers.\n\n' +
f'Raw error details:\n\n' +
errmessage + f'\nError Time Stamp: [{datetime.now().strftime("%Y-%m-%d %H:%M:%S")}]\n')
except:
pass
data.update(kwargs)
# Update default settings
global default_window_size
global default_agg
global normalization_set
default_window_size = data['window_size']
default_agg = data['agg']
stime = time.perf_counter()
progress_var.set(0)
text_widget.clear()
button_widget.configure(state=tk.DISABLED) # Disable Button
overlap_set = float(data['overlap'])
shift_set = int(data['shifts'])
demucs_model_set = data['demucsmodel_sel_VR']
split_mode = data['split_mode']
if data['wavtype'] == '32-bit Float':
wav_type_set = 'FLOAT'
elif data['wavtype'] == '64-bit Float':
wav_type_set = 'DOUBLE'
else:
wav_type_set = data['wavtype']
flac_type_set = data['flactype']
mp3_bit_set = data['mp3bit']
if data['normalize'] == True:
normalization_set = spec_utils.normalize
print('normalization on')
else:
normalization_set = spec_utils.nonormalize
print('normalization off')
vocal_remover = VocalRemover(data, text_widget)
modelFolderName = determineModelFolderName()
timestampnum = round(datetime.utcnow().timestamp())
randomnum = randrange(100000, 1000000)
# Separation Preperation
try: #Load File(s)
for file_num, music_file in enumerate(data['input_paths'], start=1):
# Determine File Name
m=music_file
if data['settest']:
try:
base_name = f'{data["export_path"]}/{str(timestampnum)}_{file_num}_{os.path.splitext(os.path.basename(music_file))[0]}'
except:
base_name = f'{data["export_path"]}/{str(randomnum)}_{file_num}_{os.path.splitext(os.path.basename(music_file))[0]}'
else:
base_name = f'{data["export_path"]}/{file_num}_{os.path.splitext(os.path.basename(music_file))[0]}'
model_name = os.path.basename(data[f'{data["useModel"]}Model'])
model = vocal_remover.models[data['useModel']]
device = vocal_remover.devices[data['useModel']]
# -Get text and update progress-
base_text = get_baseText(total_files=len(data['input_paths']),
file_num=file_num)
progress_kwargs = {'progress_var': progress_var,
'total_files': len(data['input_paths']),
'file_num': file_num}
update_progress(**progress_kwargs,
step=0)
try:
total, used, free = shutil.disk_usage("/")
total_space = int(total/1.074e+9)
used_space = int(used/1.074e+9)
free_space = int(free/1.074e+9)
if int(free/1.074e+9) <= int(2):
text_widget.write('Error: Not enough storage on main drive to continue. Your main drive must have \nat least 3 GB\'s of storage in order for this application function properly. \n\nPlease ensure your main drive has at least 3 GB\'s of storage and try again.\n\n')
text_widget.write('Detected Total Space: ' + str(total_space) + ' GB' + '\n')
text_widget.write('Detected Used Space: ' + str(used_space) + ' GB' + '\n')
text_widget.write('Detected Free Space: ' + str(free_space) + ' GB' + '\n')
progress_var.set(0)
button_widget.configure(state=tk.NORMAL) # Enable Button
return
if int(free/1.074e+9) in [3, 4, 5, 6, 7, 8]:
text_widget.write('Warning: Your main drive is running low on storage. Your main drive must have \nat least 3 GB\'s of storage in order for this application function properly.\n\n')
text_widget.write('Detected Total Space: ' + str(total_space) + ' GB' + '\n')
text_widget.write('Detected Used Space: ' + str(used_space) + ' GB' + '\n')
text_widget.write('Detected Free Space: ' + str(free_space) + ' GB' + '\n\n')
except:
pass
if data['wavtype'] == '64-bit Float':
if data['saveFormat'] == 'Flac':
text_widget.write('Please select \"WAV\" as your save format to use 64-bit Float.\n')
text_widget.write(f'Time Elapsed: {time.strftime("%H:%M:%S", time.gmtime(int(time.perf_counter() - stime)))}')
progress_var.set(0)
button_widget.configure(state=tk.NORMAL) # Enable Button
return
if data['wavtype'] == '64-bit Float':
if data['saveFormat'] == 'Mp3':
text_widget.write('Please select \"WAV\" as your save format to use 64-bit Float.\n')
text_widget.write(f'Time Elapsed: {time.strftime("%H:%M:%S", time.gmtime(int(time.perf_counter() - stime)))}')
progress_var.set(0)
button_widget.configure(state=tk.NORMAL) # Enable Button
return
#Load Model
text_widget.write(base_text + 'Loading models...')
model_size = math.ceil(os.stat(data['instrumentalModel']).st_size / 1024)
nn_architecture = '{}KB'.format(min(nn_arch_sizes, key=lambda x:abs(x-model_size)))
nets = importlib.import_module('lib_v5.nets' + f'_{nn_architecture}'.replace('_{}KB'.format(nn_arch_sizes[0]), ''), package=None)
aggresive_set = float(data['agg']/100)
ModelName=(data['instrumentalModel'])
#Package Models
model_hash = hashlib.md5(open(ModelName,'rb').read()).hexdigest()
print(model_hash)
#v5 Models
if model_hash == '47939caf0cfe52a0e81442b85b971dfd':
model_params_auto=str('lib_v5/modelparams/4band_44100.json')
param_name_auto=str('4band_44100')
if model_hash == '4e4ecb9764c50a8c414fee6e10395bbe':
model_params_auto=str('lib_v5/modelparams/4band_v2.json')
param_name_auto=str('4band_v2')
if model_hash == 'e60a1e84803ce4efc0a6551206cc4b71':
model_params_auto=str('lib_v5/modelparams/4band_44100.json')
param_name_auto=str('4band_44100')
if model_hash == 'a82f14e75892e55e994376edbf0c8435':
model_params_auto=str('lib_v5/modelparams/4band_44100.json')
param_name_auto=str('4band_44100')
if model_hash == '6dd9eaa6f0420af9f1d403aaafa4cc06':
model_params_auto=str('lib_v5/modelparams/4band_v2_sn.json')
param_name_auto=str('4band_v2_sn')
if model_hash == '5c7bbca45a187e81abbbd351606164e5':
model_params_auto=str('lib_v5/modelparams/3band_44100_msb2.json')
param_name_auto=str('3band_44100_msb2')
if model_hash == 'd6b2cb685a058a091e5e7098192d3233':
model_params_auto=str('lib_v5/modelparams/3band_44100_msb2.json')
param_name_auto=str('3band_44100_msb2')
if model_hash == 'c1b9f38170a7c90e96f027992eb7c62b':
model_params_auto=str('lib_v5/modelparams/4band_44100.json')
param_name_auto=str('4band_44100')
if model_hash == 'c3448ec923fa0edf3d03a19e633faa53':
model_params_auto=str('lib_v5/modelparams/4band_44100.json')
param_name_auto=str('4band_44100')
if model_hash == '68aa2c8093d0080704b200d140f59e54':
model_params_auto=str('lib_v5/modelparams/3band_44100.json')
param_name_auto=str('3band_44100.json')
if model_hash == 'fdc83be5b798e4bd29fe00fe6600e147':
model_params_auto=str('lib_v5/modelparams/3band_44100_mid.json')
param_name_auto=str('3band_44100_mid.json')
if model_hash == '2ce34bc92fd57f55db16b7a4def3d745':
model_params_auto=str('lib_v5/modelparams/3band_44100_mid.json')
param_name_auto=str('3band_44100_mid.json')
if model_hash == '52fdca89576f06cf4340b74a4730ee5f':
model_params_auto=str('lib_v5/modelparams/4band_44100.json')
param_name_auto=str('4band_44100.json')
if model_hash == '41191165b05d38fc77f072fa9e8e8a30':
model_params_auto=str('lib_v5/modelparams/4band_44100.json')
param_name_auto=str('4band_44100.json')
if model_hash == '89e83b511ad474592689e562d5b1f80e':
model_params_auto=str('lib_v5/modelparams/2band_32000.json')
param_name_auto=str('2band_32000.json')
if model_hash == '0b954da81d453b716b114d6d7c95177f':
model_params_auto=str('lib_v5/modelparams/2band_32000.json')
param_name_auto=str('2band_32000.json')
#v4 Models
if model_hash == '6a00461c51c2920fd68937d4609ed6c8':
model_params_auto=str('lib_v5/modelparams/1band_sr16000_hl512.json')
param_name_auto=str('1band_sr16000_hl512')
if model_hash == '0ab504864d20f1bd378fe9c81ef37140':
model_params_auto=str('lib_v5/modelparams/1band_sr32000_hl512.json')
param_name_auto=str('1band_sr32000_hl512')
if model_hash == '7dd21065bf91c10f7fccb57d7d83b07f':
model_params_auto=str('lib_v5/modelparams/1band_sr32000_hl512.json')
param_name_auto=str('1band_sr32000_hl512')
if model_hash == '80ab74d65e515caa3622728d2de07d23':
model_params_auto=str('lib_v5/modelparams/1band_sr32000_hl512.json')
param_name_auto=str('1band_sr32000_hl512')
if model_hash == 'edc115e7fc523245062200c00caa847f':
model_params_auto=str('lib_v5/modelparams/1band_sr33075_hl384.json')
param_name_auto=str('1band_sr33075_hl384')
if model_hash == '28063e9f6ab5b341c5f6d3c67f2045b7':
model_params_auto=str('lib_v5/modelparams/1band_sr33075_hl384.json')
param_name_auto=str('1band_sr33075_hl384')
if model_hash == 'b58090534c52cbc3e9b5104bad666ef2':
model_params_auto=str('lib_v5/modelparams/1band_sr44100_hl512.json')
param_name_auto=str('1band_sr44100_hl512')
if model_hash == '0cdab9947f1b0928705f518f3c78ea8f':
model_params_auto=str('lib_v5/modelparams/1band_sr44100_hl512.json')
param_name_auto=str('1band_sr44100_hl512')
if model_hash == 'ae702fed0238afb5346db8356fe25f13':
model_params_auto=str('lib_v5/modelparams/1band_sr44100_hl1024.json')
param_name_auto=str('1band_sr44100_hl1024')
#User Models
#1 Band
if '1band_sr16000_hl512' in ModelName:
model_params_auto=str('lib_v5/modelparams/1band_sr16000_hl512.json')
param_name_auto=str('1band_sr16000_hl512')
if '1band_sr32000_hl512' in ModelName:
model_params_auto=str('lib_v5/modelparams/1band_sr32000_hl512.json')
param_name_auto=str('1band_sr32000_hl512')
if '1band_sr33075_hl384' in ModelName:
model_params_auto=str('lib_v5/modelparams/1band_sr33075_hl384.json')
param_name_auto=str('1band_sr33075_hl384')
if '1band_sr44100_hl256' in ModelName:
model_params_auto=str('lib_v5/modelparams/1band_sr44100_hl256.json')
param_name_auto=str('1band_sr44100_hl256')
if '1band_sr44100_hl512' in ModelName:
model_params_auto=str('lib_v5/modelparams/1band_sr44100_hl512.json')
param_name_auto=str('1band_sr44100_hl512')
if '1band_sr44100_hl1024' in ModelName:
model_params_auto=str('lib_v5/modelparams/1band_sr44100_hl1024.json')
param_name_auto=str('1band_sr44100_hl1024')
#2 Band
if '2band_44100_lofi' in ModelName:
model_params_auto=str('lib_v5/modelparams/2band_44100_lofi.json')
param_name_auto=str('2band_44100_lofi')
if '2band_32000' in ModelName:
model_params_auto=str('lib_v5/modelparams/2band_32000.json')
param_name_auto=str('2band_32000')
if '2band_48000' in ModelName:
model_params_auto=str('lib_v5/modelparams/2band_48000.json')
param_name_auto=str('2band_48000')
#3 Band
if '3band_44100' in ModelName:
model_params_auto=str('lib_v5/modelparams/3band_44100.json')
param_name_auto=str('3band_44100')
if '3band_44100_mid' in ModelName:
model_params_auto=str('lib_v5/modelparams/3band_44100_mid.json')
param_name_auto=str('3band_44100_mid')
if '3band_44100_msb2' in ModelName:
model_params_auto=str('lib_v5/modelparams/3band_44100_msb2.json')
param_name_auto=str('3band_44100_msb2')
#4 Band
if '4band_44100' in ModelName:
model_params_auto=str('lib_v5/modelparams/4band_44100.json')
param_name_auto=str('4band_44100')
if '4band_44100_mid' in ModelName:
model_params_auto=str('lib_v5/modelparams/4band_44100_mid.json')
param_name_auto=str('4band_44100_mid')
if '4band_44100_msb' in ModelName:
model_params_auto=str('lib_v5/modelparams/4band_44100_msb.json')
param_name_auto=str('4band_44100_msb')
if '4band_44100_msb2' in ModelName:
model_params_auto=str('lib_v5/modelparams/4band_44100_msb2.json')
param_name_auto=str('4band_44100_msb2')
if '4band_44100_reverse' in ModelName:
model_params_auto=str('lib_v5/modelparams/4band_44100_reverse.json')
param_name_auto=str('4band_44100_reverse')
if '4band_44100_sw' in ModelName:
model_params_auto=str('lib_v5/modelparams/4band_44100_sw.json')
param_name_auto=str('4band_44100_sw')
if '4band_v2' in ModelName:
model_params_auto=str('lib_v5/modelparams/4band_v2.json')
param_name_auto=str('4band_v2')
if '4band_v2_sn' in ModelName:
model_params_auto=str('lib_v5/modelparams/4band_v2_sn.json')
param_name_auto=str('4band_v2_sn')
if 'tmodelparam' in ModelName:
model_params_auto=str('lib_v5/modelparams/tmodelparam.json')
param_name_auto=str('User Model Param Set')
text_widget.write(' Done!\n')
if data['ModelParams'] == 'Auto':
param_name = param_name_auto
model_params_d = model_params_auto
else:
param_name = str(data['ModelParams'])
model_params_d = str('lib_v5/modelparams/' + data['ModelParams'])
try:
print('Model Parameters:', model_params_d)
text_widget.write(base_text + 'Loading assigned model parameters ' + '\"' + param_name + '\"... ')
except Exception as e:
traceback_text = ''.join(traceback.format_tb(e.__traceback__))
errmessage = f'Traceback Error: "{traceback_text}"\n{type(e).__name__}: "{e}"\n'
text_widget.write("\n" + base_text + f'Separation failed for the following audio file:\n')
text_widget.write(base_text + f'"{os.path.basename(music_file)}"\n')
text_widget.write(f'\nError Received:\n\n')
text_widget.write(f'Model parameters are missing.\n\n')
text_widget.write(f'Please check the following:\n')
text_widget.write(f'1. Make sure the model is still present.\n')
text_widget.write(f'2. If you are running a model that was not originally included in this package, \nplease append the modelparam name to the model name.\n')
text_widget.write(f' - Example if using \"4band_v2.json\" modelparam: \"model_4band_v2.pth\"\n\n')
text_widget.write(f'Please address this and try again.\n\n')
text_widget.write(f'Time Elapsed: {time.strftime("%H:%M:%S", time.gmtime(int(time.perf_counter() - stime)))}')
try:
with open('errorlog.txt', 'w') as f:
f.write(f'Last Error Received:\n\n' +
f'Error Received while processing "{os.path.basename(music_file)}":\n' +
f'Process Method: VR Architecture\n\n' +
f'Model parameters are missing.\n\n' +
f'Please check the following:\n' +
f'1. Make sure the model is still present.\n' +
f'2. If you are running a model that was not originally included in this package, please append the modelparam name to the model name.\n' +
f' - Example if using \"4band_v2.json\" modelparam: \"model_4band_v2.pth\"\n\n' +
f'Please address this and try again.\n\n' +
f'Raw error details:\n\n' +
errmessage + f'\nError Time Stamp: [{datetime.now().strftime("%Y-%m-%d %H:%M:%S")}]\n')
except:
pass
torch.cuda.empty_cache()
progress_var.set(0)
button_widget.configure(state=tk.NORMAL) # Enable Button
return
mp = ModelParameters(model_params_d)
text_widget.write('Done!\n')
# -Instrumental-
if os.path.isfile(data['instrumentalModel']):
device = torch.device('cpu')
model = nets.CascadedASPPNet(mp.param['bins'] * 2)
model.load_state_dict(torch.load(data['instrumentalModel'],
map_location=device))
if torch.cuda.is_available() and data['gpu'] >= 0:
device = torch.device('cuda:{}'.format(data['gpu']))
model.to(device)
vocal_remover.models['instrumental'] = model
vocal_remover.devices['instrumental'] = device
model_name = os.path.basename(data[f'{data["useModel"]}Model'])
mp = ModelParameters(model_params_d)
# -Go through the different steps of seperation-
# Wave source
text_widget.write(base_text + 'Loading audio source...')
X_wave, y_wave, X_spec_s, y_spec_s = {}, {}, {}, {}
bands_n = len(mp.param['band'])
for d in range(bands_n, 0, -1):
bp = mp.param['band'][d]
if d == bands_n: # high-end band
X_wave[d], _ = librosa.load(
music_file, bp['sr'], False, dtype=np.float32, res_type=bp['res_type'])
if X_wave[d].ndim == 1:
X_wave[d] = np.asarray([X_wave[d], X_wave[d]])
else: # lower bands
X_wave[d] = librosa.resample(X_wave[d+1], mp.param['band'][d+1]['sr'], bp['sr'], res_type=bp['res_type'])
# Stft of wave source
X_spec_s[d] = spec_utils.wave_to_spectrogram_mt(X_wave[d], bp['hl'], bp['n_fft'], mp.param['mid_side'],
mp.param['mid_side_b2'], mp.param['reverse'])
if d == bands_n and data['high_end_process'] != 'none':
input_high_end_h = (bp['n_fft']//2 - bp['crop_stop']) + (mp.param['pre_filter_stop'] - mp.param['pre_filter_start'])
input_high_end = X_spec_s[d][:, bp['n_fft']//2-input_high_end_h:bp['n_fft']//2, :]
text_widget.write('Done!\n')
update_progress(**progress_kwargs,
step=0.1)
text_widget.write(base_text + 'Loading the stft of audio source...')
text_widget.write(' Done!\n')
text_widget.write(base_text + "Please Wait...\n")
X_spec_m = spec_utils.combine_spectrograms(X_spec_s, mp)
del X_wave, X_spec_s
def inference(X_spec, device, model, aggressiveness):
def _execute(X_mag_pad, roi_size, n_window, device, model, aggressiveness):
model.eval()
with torch.no_grad():
preds = []
iterations = [n_window]
total_iterations = sum(iterations)
text_widget.write(base_text + "Processing "f"{total_iterations} Slices... ")
for i in tqdm(range(n_window)):
update_progress(**progress_kwargs,
step=(0.1 + (0.8/n_window * i)))
start = i * roi_size
X_mag_window = X_mag_pad[None, :, :, start:start + data['window_size']]
X_mag_window = torch.from_numpy(X_mag_window).to(device)
pred = model.predict(X_mag_window, aggressiveness)
pred = pred.detach().cpu().numpy()
preds.append(pred[0])
pred = np.concatenate(preds, axis=2)
text_widget.write('Done!\n')
return pred
def preprocess(X_spec):
X_mag = np.abs(X_spec)
X_phase = np.angle(X_spec)
return X_mag, X_phase
X_mag, X_phase = preprocess(X_spec)
coef = X_mag.max()
X_mag_pre = X_mag / coef
n_frame = X_mag_pre.shape[2]
pad_l, pad_r, roi_size = dataset.make_padding(n_frame,
data['window_size'], model.offset)
n_window = int(np.ceil(n_frame / roi_size))
X_mag_pad = np.pad(
X_mag_pre, ((0, 0), (0, 0), (pad_l, pad_r)), mode='constant')
pred = _execute(X_mag_pad, roi_size, n_window,
device, model, aggressiveness)
pred = pred[:, :, :n_frame]
if data['tta']:
pad_l += roi_size // 2
pad_r += roi_size // 2
n_window += 1
X_mag_pad = np.pad(
X_mag_pre, ((0, 0), (0, 0), (pad_l, pad_r)), mode='constant')
pred_tta = _execute(X_mag_pad, roi_size, n_window,
device, model, aggressiveness)
pred_tta = pred_tta[:, :, roi_size // 2:]
pred_tta = pred_tta[:, :, :n_frame]
return (pred + pred_tta) * 0.5 * coef, X_mag, np.exp(1.j * X_phase)
else:
return pred * coef, X_mag, np.exp(1.j * X_phase)
aggressiveness = {'value': aggresive_set, 'split_bin': mp.param['band'][1]['crop_stop']}
if data['tta']:
text_widget.write(base_text + "Running Inferences (TTA)...\n")
else:
text_widget.write(base_text + "Running Inference...\n")
pred, X_mag, X_phase = inference(X_spec_m,
device,
model, aggressiveness)
update_progress(**progress_kwargs,
step=0.9)
# Postprocess
if data['postprocess']:
try:
text_widget.write(base_text + 'Post processing...')
pred_inv = np.clip(X_mag - pred, 0, np.inf)
pred = spec_utils.mask_silence(pred, pred_inv)
text_widget.write(' Done!\n')
except Exception as e:
text_widget.write('\n' + base_text + 'Post process failed, check error log.\n')
text_widget.write(base_text + 'Moving on...\n')
traceback_text = ''.join(traceback.format_tb(e.__traceback__))
errmessage = f'Traceback Error: "{traceback_text}"\n{type(e).__name__}: "{e}"\n'
try:
with open('errorlog.txt', 'w') as f:
f.write(f'Last Error Received:\n\n' +
f'Error Received while attempting to run Post Processing on "{os.path.basename(music_file)}":\n' +
f'Process Method: VR Architecture\n\n' +
f'If this error persists, please contact the developers.\n\n' +
f'Raw error details:\n\n' +
errmessage + f'\nError Time Stamp: [{datetime.now().strftime("%Y-%m-%d %H:%M:%S")}]\n')
except:
pass
update_progress(**progress_kwargs,
step=0.95)
# Inverse stft
y_spec_m = pred * X_phase
v_spec_m = X_spec_m - y_spec_m
def demix_demucs(mix):
#print('shift_set ', shift_set)
text_widget.write(base_text + "Running Demucs Inference...\n")
text_widget.write(base_text + "Processing... ")
print(' Running Demucs Inference...')
mix = torch.tensor(mix, dtype=torch.float32)
ref = mix.mean(0)
mix = (mix - ref.mean()) / ref.std()
with torch.no_grad():
sources = apply_model(demucs, mix[None], split=split_mode, device=device, overlap=overlap_set, shifts=shift_set, progress=False)[0]
text_widget.write('Done!\n')
sources = (sources * ref.std() + ref.mean()).cpu().numpy()
sources[[0,1]] = sources[[1,0]]
return sources
def demucs_prediction(m):
global demucs_sources
mix, samplerate = librosa.load(m, mono=False, sr=44100)
if mix.ndim == 1:
mix = np.asfortranarray([mix,mix])
mix = mix.T
demucs_sources = demix_demucs(mix.T)
if data['demucsmodelVR']:
demucs = HDemucs(sources=["other", "vocals"])
text_widget.write(base_text + 'Loading Demucs model... ')
update_progress(**progress_kwargs,
step=0.95)
path_d = Path('models/Demucs_Models')
print('What Demucs model was chosen? ', demucs_model_set)
demucs = _gm(name=demucs_model_set, repo=path_d)
text_widget.write('Done!\n')
print('segment: ', data['segment'])
if data['segment'] == 'None':
segment = None
if isinstance(demucs, BagOfModels):
if segment is not None:
for sub in demucs.models:
sub.segment = segment
else:
if segment is not None:
sub.segment = segment
else:
try:
segment = int(data['segment'])
if isinstance(demucs, BagOfModels):
if segment is not None:
for sub in demucs.models:
sub.segment = segment
else:
if segment is not None:
sub.segment = segment
text_widget.write(base_text + "Segments set to "f"{segment}.\n")
except:
segment = None
if isinstance(demucs, BagOfModels):
if segment is not None:
for sub in demucs.models:
sub.segment = segment
else:
if segment is not None:
sub.segment = segment
print('segment port-process: ', segment)
demucs.cpu()
demucs.eval()
demucs_prediction(m)
if data['voc_only'] and not data['inst_only']:
pass
else:
text_widget.write(base_text + 'Saving Instrumental... ')
if data['high_end_process'].startswith('mirroring'):
input_high_end_ = spec_utils.mirroring(data['high_end_process'], y_spec_m, input_high_end, mp)
if data['demucsmodelVR']:
wav_instrument = spec_utils.cmb_spectrogram_to_wave_d(y_spec_m, mp, input_high_end_h, input_high_end_, demucs=True)
demucs_inst = demucs_sources[0]
sources = [wav_instrument,demucs_inst]
spec = [stft(sources[0],2048,1024),stft(sources[1],2048,1024)]
ln = min([spec[0].shape[2], spec[1].shape[2]])
spec[0] = spec[0][:,:,:ln]
spec[1] = spec[1][:,:,:ln]
v_spec_c = np.where(np.abs(spec[1]) <= np.abs(spec[0]), spec[1], spec[0])
wav_instrument = istft(v_spec_c,1024)
else:
wav_instrument = spec_utils.cmb_spectrogram_to_wave_d(y_spec_m, mp, input_high_end_h, input_high_end_, demucs=False)
if data['voc_only'] and not data['inst_only']:
pass
else:
text_widget.write('Done!\n')
else:
wav_instrument = spec_utils.cmb_spectrogram_to_wave_d(y_spec_m, mp)
if data['voc_only'] and not data['inst_only']:
pass
else:
text_widget.write('Done!\n')
if data['inst_only'] and not data['voc_only']:
pass
else:
text_widget.write(base_text + 'Saving Vocals... ')
if data['high_end_process'].startswith('mirroring'):
input_high_end_ = spec_utils.mirroring(data['high_end_process'], v_spec_m, input_high_end, mp)
if data['demucsmodelVR']:
wav_vocals = spec_utils.cmb_spectrogram_to_wave_d(v_spec_m, mp, input_high_end_h, input_high_end_, demucs=True)
demucs_voc = demucs_sources[1]
sources = [wav_vocals,demucs_voc]
spec = [stft(sources[0],2048,1024),stft(sources[1],2048,1024)]
ln = min([spec[0].shape[2], spec[1].shape[2]])
spec[0] = spec[0][:,:,:ln]
spec[1] = spec[1][:,:,:ln]
v_spec_c = np.where(np.abs(spec[1]) >= np.abs(spec[0]), spec[1], spec[0])
wav_vocals = istft(v_spec_c,1024)
else:
wav_vocals = spec_utils.cmb_spectrogram_to_wave_d(v_spec_m, mp, input_high_end_h, input_high_end_, demucs=False)
if data['inst_only'] and not data['voc_only']:
pass
else:
text_widget.write('Done!\n')
else:
wav_vocals = spec_utils.cmb_spectrogram_to_wave_d(v_spec_m, mp, demucs=False)
if data['inst_only'] and not data['voc_only']:
pass
else:
text_widget.write('Done!\n')
update_progress(**progress_kwargs,
step=1)
# Save output music files
save_files(wav_instrument, wav_vocals)
update_progress(**progress_kwargs,
step=1)
# Save output image
if data['output_image']:
with open('{}_Instruments.jpg'.format(base_name), mode='wb') as f:
image = spec_utils.spectrogram_to_image(y_spec_m)
_, bin_image = cv2.imencode('.jpg', image)
bin_image.tofile(f)
with open('{}_Vocals.jpg'.format(base_name), mode='wb') as f:
image = spec_utils.spectrogram_to_image(v_spec_m)
_, bin_image = cv2.imencode('.jpg', image)
bin_image.tofile(f)
text_widget.write(base_text + 'Completed Seperation!\n\n')
except Exception as e:
traceback_text = ''.join(traceback.format_tb(e.__traceback__))
message = f'Traceback Error: "{traceback_text}"\n{type(e).__name__}: "{e}"\n'
if runtimeerr in message:
text_widget.write("\n" + base_text + f'Separation failed for the following audio file:\n')
text_widget.write(base_text + f'"{os.path.basename(music_file)}"\n')
text_widget.write(f'\nError Received:\n\n')
text_widget.write(f'Your PC cannot process this audio file with the chunk size selected.\nPlease lower the chunk size and try again.\n\n')
text_widget.write(f'If this error persists, please contact the developers.\n\n')
text_widget.write(f'Time Elapsed: {time.strftime("%H:%M:%S", time.gmtime(int(time.perf_counter() - stime)))}')
try:
with open('errorlog.txt', 'w') as f:
f.write(f'Last Error Received:\n\n' +
f'Error Received while processing "{os.path.basename(music_file)}":\n' +
f'Process Method: VR Architecture\n\n' +
f'Your PC cannot process this audio file with the chunk size selected.\nPlease lower the chunk size and try again.\n\n' +
f'If this error persists, please contact the developers.\n\n' +
f'Raw error details:\n\n' +
message + f'\nError Time Stamp: [{datetime.now().strftime("%Y-%m-%d %H:%M:%S")}]\n')
except:
pass
torch.cuda.empty_cache()
progress_var.set(0)
button_widget.configure(state=tk.NORMAL) # Enable Button
return
if cuda_err in message:
text_widget.write("\n" + base_text + f'Separation failed for the following audio file:\n')
text_widget.write(base_text + f'"{os.path.basename(music_file)}"\n')
text_widget.write(f'\nError Received:\n\n')
text_widget.write(f'The application was unable to allocate enough GPU memory to use this model.\n')
text_widget.write(f'Please close any GPU intensive applications and try again.\n')
text_widget.write(f'If the error persists, your GPU might not be supported.\n\n')
text_widget.write(f'Time Elapsed: {time.strftime("%H:%M:%S", time.gmtime(int(time.perf_counter() - stime)))}')
try:
with open('errorlog.txt', 'w') as f:
f.write(f'Last Error Received:\n\n' +
f'Error Received while processing "{os.path.basename(music_file)}":\n' +
f'Process Method: VR Architecture\n\n' +
f'The application was unable to allocate enough GPU memory to use this model.\n' +
f'Please close any GPU intensive applications and try again.\n' +
f'If the error persists, your GPU might not be supported.\n\n' +
f'Raw error details:\n\n' +
message + f'\nError Time Stamp [{datetime.now().strftime("%Y-%m-%d %H:%M:%S")}]\n')
except:
pass
torch.cuda.empty_cache()
progress_var.set(0)
button_widget.configure(state=tk.NORMAL) # Enable Button
return
if mod_err in message:
text_widget.write("\n" + base_text + f'Separation failed for the following audio file:\n')
text_widget.write(base_text + f'"{os.path.basename(music_file)}"\n')
text_widget.write(f'\nError Received:\n\n')
text_widget.write(f'Application files(s) are missing.\n')
text_widget.write("\n" + f'{type(e).__name__} - "{e}"' + "\n\n")
text_widget.write(f'Please check for missing files/scripts in the app directory and try again.\n')
text_widget.write(f'If the error persists, please reinstall application or contact the developers.\n\n')
text_widget.write(f'Time Elapsed: {time.strftime("%H:%M:%S", time.gmtime(int(time.perf_counter() - stime)))}')
try:
with open('errorlog.txt', 'w') as f:
f.write(f'Last Error Received:\n\n' +
f'Error Received while processing "{os.path.basename(music_file)}":\n' +
f'Process Method: VR Architecture\n\n' +
f'Application files(s) are missing.\n' +
f'Please check for missing files/scripts in the app directory and try again.\n' +
f'If the error persists, please reinstall application or contact the developers.\n\n' +
message + f'\nError Time Stamp [{datetime.now().strftime("%Y-%m-%d %H:%M:%S")}]\n')
except:
pass
torch.cuda.empty_cache()
progress_var.set(0)
button_widget.configure(state=tk.NORMAL) # Enable Button
return
if file_err in message:
text_widget.write("\n" + base_text + f'Separation failed for the following audio file:\n')
text_widget.write(base_text + f'"{os.path.basename(music_file)}"\n')
text_widget.write(f'\nError Received:\n\n')
text_widget.write(f'Missing file error raised.\n')
text_widget.write("\n" + f'{type(e).__name__} - "{e}"' + "\n\n")
text_widget.write("\n" + f'Please address the error and try again.' + "\n")
text_widget.write(f'If this error persists, please contact the developers.\n\n')
text_widget.write(f'Time Elapsed: {time.strftime("%H:%M:%S", time.gmtime(int(time.perf_counter() - stime)))}')
torch.cuda.empty_cache()
try:
with open('errorlog.txt', 'w') as f:
f.write(f'Last Error Received:\n\n' +
f'Error Received while processing "{os.path.basename(music_file)}":\n' +
f'Process Method: VR Architecture\n\n' +
f'Missing file error raised.\n' +
"\n" + f'Please address the error and try again.' + "\n" +
f'If this error persists, please contact the developers.\n\n' +
message + f'\nError Time Stamp [{datetime.now().strftime("%Y-%m-%d %H:%M:%S")}]\n')
except:
pass
progress_var.set(0)
button_widget.configure(state=tk.NORMAL) # Enable Button
return
if ffmp_err in message:
text_widget.write("\n" + base_text + f'Separation failed for the following audio file:\n')
text_widget.write(base_text + f'"{os.path.basename(music_file)}"\n')
text_widget.write(f'\nError Received:\n\n')
text_widget.write(f'The input file type is not supported or FFmpeg is missing.\n')
text_widget.write(f'Please select a file type supported by FFmpeg and try again.\n\n')
text_widget.write(f'If FFmpeg is missing or not installed, you will only be able to process \".wav\" files \nuntil it is available on this system.\n\n')
text_widget.write(f'See the \"More Info\" tab in the Help Guide.\n\n')
text_widget.write(f'If this error persists, please contact the developers.\n\n')
text_widget.write(f'Time Elapsed: {time.strftime("%H:%M:%S", time.gmtime(int(time.perf_counter() - stime)))}')
torch.cuda.empty_cache()
try:
with open('errorlog.txt', 'w') as f:
f.write(f'Last Error Received:\n\n' +
f'Error Received while processing "{os.path.basename(music_file)}":\n' +
f'Process Method: VR Architecture\n\n' +
f'The input file type is not supported or FFmpeg is missing.\nPlease select a file type supported by FFmpeg and try again.\n\n' +
f'If FFmpeg is missing or not installed, you will only be able to process \".wav\" files until it is available on this system.\n\n' +
f'See the \"More Info\" tab in the Help Guide.\n\n' +
f'If this error persists, please contact the developers.\n\n' +
message + f'\nError Time Stamp [{datetime.now().strftime("%Y-%m-%d %H:%M:%S")}]\n')
except:
pass
progress_var.set(0)
button_widget.configure(state=tk.NORMAL) # Enable Button
return
if sf_write_err in message:
text_widget.write("\n" + base_text + f'Separation failed for the following audio file:\n')
text_widget.write(base_text + f'"{os.path.basename(music_file)}"\n')
text_widget.write(f'\nError Received:\n\n')
text_widget.write(f'Could not write audio file.\n')
text_widget.write(f'This could be due to low storage on target device or a system permissions issue.\n')
text_widget.write(f"\nFor raw error details, go to the Error Log tab in the Help Guide.\n")
text_widget.write(f'\nIf the error persists, please contact the developers.\n\n')
text_widget.write(f'Time Elapsed: {time.strftime("%H:%M:%S", time.gmtime(int(time.perf_counter() - stime)))}')
try:
with open('errorlog.txt', 'w') as f:
f.write(f'Last Error Received:\n\n' +
f'Error Received while processing "{os.path.basename(music_file)}":\n' +
f'Process Method: VR Architecture\n\n' +
f'Could not write audio file.\n' +
f'This could be due to low storage on target device or a system permissions issue.\n' +
f'If the error persists, please contact the developers.\n\n' +
message + f'\nError Time Stamp [{datetime.now().strftime("%Y-%m-%d %H:%M:%S")}]\n')
except:
pass
torch.cuda.empty_cache()
progress_var.set(0)
button_widget.configure(state=tk.NORMAL) # Enable Button
return
if systemmemerr in message:
text_widget.write("\n" + base_text + f'Separation failed for the following audio file:\n')
text_widget.write(base_text + f'"{os.path.basename(music_file)}"\n')
text_widget.write(f'\nError Received:\n\n')
text_widget.write(f'The application was unable to allocate enough system memory to use this \nmodel.\n\n')
text_widget.write(f'Please do the following:\n\n1. Restart this application.\n2. Ensure any CPU intensive applications are closed.\n3. Then try again.\n\n')
text_widget.write(f'Please Note: Intel Pentium and Intel Celeron processors do not work well with \nthis application.\n\n')
text_widget.write(f'If the error persists, the system may not have enough RAM, or your CPU might \nnot be supported.\n\n')
text_widget.write(f'Time Elapsed: {time.strftime("%H:%M:%S", time.gmtime(int(time.perf_counter() - stime)))}')
try:
with open('errorlog.txt', 'w') as f:
f.write(f'Last Error Received:\n\n' +
f'Error Received while processing "{os.path.basename(music_file)}":\n' +
f'Process Method: VR Architecture\n\n' +
f'The application was unable to allocate enough system memory to use this model.\n' +
f'Please do the following:\n\n1. Restart this application.\n2. Ensure any CPU intensive applications are closed.\n3. Then try again.\n\n' +
f'Please Note: Intel Pentium and Intel Celeron processors do not work well with this application.\n\n' +
f'If the error persists, the system may not have enough RAM, or your CPU might \nnot be supported.\n\n' +
message + f'\nError Time Stamp [{datetime.now().strftime("%Y-%m-%d %H:%M:%S")}]\n')
except:
pass
torch.cuda.empty_cache()
progress_var.set(0)
button_widget.configure(state=tk.NORMAL) # Enable Button
return
print(traceback_text)
print(type(e).__name__, e)
print(message)
try:
with open('errorlog.txt', 'w') as f:
f.write(f'Last Error Received:\n\n' +
f'Error Received while processing "{os.path.basename(music_file)}":\n' +
f'Process Method: VR Architecture\n\n' +
f'If this error persists, please contact the developers with the error details.\n\n' +
message + f'\nError Time Stamp [{datetime.now().strftime("%Y-%m-%d %H:%M:%S")}]\n')
except:
tk.messagebox.showerror(master=window,
title='Error Details',
message=message)
progress_var.set(0)
text_widget.write("\n" + base_text + f'Separation failed for the following audio file:\n')
text_widget.write(base_text + f'"{os.path.basename(music_file)}"\n')
text_widget.write(f'\nError Received:\n')
text_widget.write("\nFor raw error details, go to the Error Log tab in the Help Guide.\n")
text_widget.write("\n" + f'Please address the error and try again.' + "\n")
text_widget.write(f'If this error persists, please contact the developers with the error details.\n\n')
text_widget.write(f'Time Elapsed: {time.strftime("%H:%M:%S", time.gmtime(int(time.perf_counter() - stime)))}')
torch.cuda.empty_cache()
button_widget.configure(state=tk.NORMAL) # Enable Button
return
try:
os.remove('temp.wav')
except:
pass
progress_var.set(0)
text_widget.write(f'Conversion(s) Completed!\n')
text_widget.write(f'Time Elapsed: {time.strftime("%H:%M:%S", time.gmtime(int(time.perf_counter() - stime)))}') # nopep8
torch.cuda.empty_cache()
button_widget.configure(state=tk.NORMAL) # Enable Button