ultimatevocalremovergui/demucs/evaluate.py
2022-06-13 02:10:39 -05:00

174 lines
6.4 KiB
Python

# Copyright (c) Facebook, Inc. and its affiliates.
# All rights reserved.
#
# This source code is licensed under the license found in the
# LICENSE file in the root directory of this source tree.
"""Test time evaluation, either using the original SDR from [Vincent et al. 2006]
or the newest SDR definition from the MDX 2021 competition (this one will
be reported as `nsdr` for `new sdr`).
"""
from concurrent import futures
import logging
from dora.log import LogProgress
import numpy as np
import musdb
import museval
import torch as th
from .apply import apply_model
from .audio import convert_audio, save_audio
from . import distrib
from .utils import DummyPoolExecutor
logger = logging.getLogger(__name__)
def new_sdr(references, estimates):
"""
Compute the SDR according to the MDX challenge definition.
Adapted from AIcrowd/music-demixing-challenge-starter-kit (MIT license)
"""
assert references.dim() == 4
assert estimates.dim() == 4
delta = 1e-7 # avoid numerical errors
num = th.sum(th.square(references), dim=(2, 3))
den = th.sum(th.square(references - estimates), dim=(2, 3))
num += delta
den += delta
scores = 10 * th.log10(num / den)
return scores
def eval_track(references, estimates, win, hop, compute_sdr=True):
references = references.transpose(1, 2).double()
estimates = estimates.transpose(1, 2).double()
new_scores = new_sdr(references.cpu()[None], estimates.cpu()[None])[0]
if not compute_sdr:
return None, new_scores
else:
references = references.numpy()
estimates = estimates.numpy()
scores = museval.metrics.bss_eval(
references, estimates,
compute_permutation=False,
window=win,
hop=hop,
framewise_filters=False,
bsseval_sources_version=False)[:-1]
return scores, new_scores
def evaluate(solver, compute_sdr=False):
"""
Evaluate model using museval.
`new_only` means using only the MDX definition of the SDR, which is much faster to evaluate.
"""
args = solver.args
output_dir = solver.folder / "results"
output_dir.mkdir(exist_ok=True, parents=True)
json_folder = solver.folder / "results/test"
json_folder.mkdir(exist_ok=True, parents=True)
# we load tracks from the original musdb set
if args.test.nonhq is None:
test_set = musdb.DB(args.dset.musdb, subsets=["test"], is_wav=True)
else:
test_set = musdb.DB(args.test.nonhq, subsets=["test"], is_wav=False)
src_rate = args.dset.musdb_samplerate
eval_device = 'cpu'
model = solver.model
win = int(1. * model.samplerate)
hop = int(1. * model.samplerate)
indexes = range(distrib.rank, len(test_set), distrib.world_size)
indexes = LogProgress(logger, indexes, updates=args.misc.num_prints,
name='Eval')
pendings = []
pool = futures.ProcessPoolExecutor if args.test.workers else DummyPoolExecutor
with pool(args.test.workers) as pool:
for index in indexes:
track = test_set.tracks[index]
mix = th.from_numpy(track.audio).t().float()
if mix.dim() == 1:
mix = mix[None]
mix = mix.to(solver.device)
ref = mix.mean(dim=0) # mono mixture
mix = (mix - ref.mean()) / ref.std()
mix = convert_audio(mix, src_rate, model.samplerate, model.audio_channels)
estimates = apply_model(model, mix[None],
shifts=args.test.shifts, split=args.test.split,
overlap=args.test.overlap)[0]
estimates = estimates * ref.std() + ref.mean()
estimates = estimates.to(eval_device)
references = th.stack(
[th.from_numpy(track.targets[name].audio).t() for name in model.sources])
if references.dim() == 2:
references = references[:, None]
references = references.to(eval_device)
references = convert_audio(references, src_rate,
model.samplerate, model.audio_channels)
if args.test.save:
folder = solver.folder / "wav" / track.name
folder.mkdir(exist_ok=True, parents=True)
for name, estimate in zip(model.sources, estimates):
save_audio(estimate.cpu(), folder / (name + ".mp3"), model.samplerate)
pendings.append((track.name, pool.submit(
eval_track, references, estimates, win=win, hop=hop, compute_sdr=compute_sdr)))
pendings = LogProgress(logger, pendings, updates=args.misc.num_prints,
name='Eval (BSS)')
tracks = {}
for track_name, pending in pendings:
pending = pending.result()
scores, nsdrs = pending
tracks[track_name] = {}
for idx, target in enumerate(model.sources):
tracks[track_name][target] = {'nsdr': [float(nsdrs[idx])]}
if scores is not None:
(sdr, isr, sir, sar) = scores
for idx, target in enumerate(model.sources):
values = {
"SDR": sdr[idx].tolist(),
"SIR": sir[idx].tolist(),
"ISR": isr[idx].tolist(),
"SAR": sar[idx].tolist()
}
tracks[track_name][target].update(values)
all_tracks = {}
for src in range(distrib.world_size):
all_tracks.update(distrib.share(tracks, src))
result = {}
metric_names = next(iter(all_tracks.values()))[model.sources[0]]
for metric_name in metric_names:
avg = 0
avg_of_medians = 0
for source in model.sources:
medians = [
np.nanmedian(all_tracks[track][source][metric_name])
for track in all_tracks.keys()]
mean = np.mean(medians)
median = np.median(medians)
result[metric_name.lower() + "_" + source] = mean
result[metric_name.lower() + "_med" + "_" + source] = median
avg += mean / len(model.sources)
avg_of_medians += median / len(model.sources)
result[metric_name.lower()] = avg
result[metric_name.lower() + "_med"] = avg_of_medians
return result