ultimatevocalremovergui/inference_v5_ensemble.py
2022-07-31 18:49:21 -05:00

4344 lines
232 KiB
Python

from collections import defaultdict
from datetime import datetime
from demucs.apply import BagOfModels, apply_model
from demucs.hdemucs import HDemucs
from demucs.model_v2 import Demucs
from demucs.pretrained import get_model as _gm
from demucs.tasnet_v2 import ConvTasNet
from demucs.utils import apply_model_v1
from demucs.utils import apply_model_v2
from functools import total_ordering
from lib_v5 import dataset
from lib_v5 import spec_utils
from lib_v5.model_param_init import ModelParameters
from models import get_models, spec_effects
from pathlib import Path
from random import randrange
from statistics import mode
from tqdm import tqdm
from tqdm import tqdm
from tkinter import filedialog
import tkinter.ttk as ttk
import tkinter.messagebox
import tkinter.filedialog
import tkinter.simpledialog
import tkinter.font
import tkinter as tk
from tkinter import *
from tkinter.tix import *
import lib_v5.filelist
import cv2
import gzip
import hashlib
import importlib
import librosa
import json
import math
import numpy as np
import numpy as np
import onnxruntime as ort
import os
import pathlib
import psutil
import pydub
import re
import shutil
import soundfile as sf
import soundfile as sf
import subprocess
import sys
import time
import time # Timer
import tkinter as tk
import torch
import torch
import traceback # Error Message Recent Calls
import warnings
class Predictor():
def __init__(self):
pass
def mdx_options(self):
"""
Open Advanced MDX Options
"""
self.okVar = tk.IntVar()
self.n_fft_scale_set_var = tk.StringVar(value='6144')
self.dim_f_set_var = tk.StringVar(value='2048')
self.mdxnetModeltype_var = tk.StringVar(value='Vocals')
self.noise_pro_select_set_var = tk.StringVar(value='MDX-NET_Noise_Profile_14_kHz')
self.compensate_v_var = tk.StringVar(value=1.03597672895)
top= Toplevel()
top.geometry("740x550")
window_height = 740
window_width = 550
top.title("Specify Parameters")
top.resizable(False, False) # This code helps to disable windows from resizing
screen_width = top.winfo_screenwidth()
screen_height = top.winfo_screenheight()
x_cordinate = int((screen_width/2) - (window_width/2))
y_cordinate = int((screen_height/2) - (window_height/2))
top.geometry("{}x{}+{}+{}".format(window_width, window_height, x_cordinate, y_cordinate))
# change title bar icon
top.iconbitmap('img\\UVR-Icon-v2.ico')
tabControl = ttk.Notebook(top)
tabControl.pack(expand = 1, fill ="both")
tabControl.grid_rowconfigure(0, weight=1)
tabControl.grid_columnconfigure(0, weight=1)
frame0=Frame(tabControl,highlightbackground='red',highlightthicknes=0)
frame0.grid(row=0,column=0,padx=0,pady=0)
frame0.tkraise(frame0)
space_small = ' '*20
space_small_1 = ' '*10
l0=tk.Label(frame0, text=f'{space_small}Stem Type{space_small}', font=("Century Gothic", "9"), foreground='#13a4c9')
l0.grid(row=3,column=0,padx=0,pady=5)
l0=ttk.OptionMenu(frame0, self.mdxnetModeltype_var, None, 'Vocals', 'Instrumental')
l0.grid(row=4,column=0,padx=0,pady=5)
l0=tk.Label(frame0, text='N_FFT Scale', font=("Century Gothic", "9"), foreground='#13a4c9')
l0.grid(row=5,column=0,padx=0,pady=5)
l0=tk.Label(frame0, text=f'{space_small_1}(Manual Set){space_small_1}', font=("Century Gothic", "9"), foreground='#13a4c9')
l0.grid(row=5,column=1,padx=0,pady=5)
self.options_n_fft_scale_Opt = l0=ttk.OptionMenu(frame0, self.n_fft_scale_set_var, None, '4096', '6144', '7680', '8192', '16384')
self.options_n_fft_scale_Opt
l0.grid(row=6,column=0,padx=0,pady=5)
self.options_n_fft_scale_Entry = l0=ttk.Entry(frame0, textvariable=self.n_fft_scale_set_var, justify='center')
self.options_n_fft_scale_Entry
l0.grid(row=6,column=1,padx=0,pady=5)
l0=tk.Label(frame0, text='Dim_f', font=("Century Gothic", "9"), foreground='#13a4c9')
l0.grid(row=7,column=0,padx=0,pady=5)
l0=tk.Label(frame0, text='(Manual Set)', font=("Century Gothic", "9"), foreground='#13a4c9')
l0.grid(row=7,column=1,padx=0,pady=5)
self.options_dim_f_Opt = l0=ttk.OptionMenu(frame0, self.dim_f_set_var, None, '2048', '3072', '4096')
self.options_dim_f_Opt
l0.grid(row=8,column=0,padx=0,pady=5)
self.options_dim_f_Entry = l0=ttk.Entry(frame0, textvariable=self.dim_f_set_var, justify='center')
self.options_dim_f_Entry
l0.grid(row=8,column=1,padx=0,pady=5)
l0=tk.Label(frame0, text='Noise Profile', font=("Century Gothic", "9"), foreground='#13a4c9')
l0.grid(row=9,column=0,padx=0,pady=5)
l0=ttk.OptionMenu(frame0, self.noise_pro_select_set_var, None, 'MDX-NET_Noise_Profile_14_kHz', 'MDX-NET_Noise_Profile_17_kHz', 'MDX-NET_Noise_Profile_Full_Band')
l0.grid(row=10,column=0,padx=0,pady=5)
l0=tk.Label(frame0, text='Volume Compensation', font=("Century Gothic", "9"), foreground='#13a4c9')
l0.grid(row=11,column=0,padx=0,pady=10)
self.options_compensate = l0=ttk.Entry(frame0, textvariable=self.compensate_v_var, justify='center')
self.options_compensate
l0.grid(row=12,column=0,padx=0,pady=0)
l0=ttk.Button(frame0,text="Continue & Set These Parameters", command=lambda: self.okVar.set(1))
l0.grid(row=13,column=0,padx=0,pady=30)
def stop():
widget_text.write(f'Please configure the ONNX model settings accordingly and try again.\n\n')
widget_text.write(f'Time Elapsed: {time.strftime("%H:%M:%S", time.gmtime(int(time.perf_counter() - stime)))}')
torch.cuda.empty_cache()
gui_progress_bar.set(0)
widget_button.configure(state=tk.NORMAL) # Enable Button
top.destroy()
return
l0=ttk.Button(frame0,text="Stop Process", command=stop)
l0.grid(row=13,column=1,padx=0,pady=30)
#print('print from top ', model_hash)
#source_val = 0
def change_event():
self.okVar.set(1)
#top.destroy()
pass
top.protocol("WM_DELETE_WINDOW", change_event)
frame0.wait_variable(self.okVar)
global n_fft_scale_set
global dim_f_set
global modeltype
global stemset_n
global source_val
global noise_pro_set
global compensate
global demucs_model_set
stemtype = self.mdxnetModeltype_var.get()
if stemtype == 'Vocals':
modeltype = 'v'
stemset_n = '(Vocals)'
source_val = 3
if stemtype == 'Instrumental':
modeltype = 'v'
stemset_n = '(Instrumental)'
source_val = 2
if stemtype == 'Other':
modeltype = 'o'
stemset_n = '(Other)'
source_val = 2
if stemtype == 'Drums':
modeltype = 'd'
stemset_n = '(Drums)'
source_val = 1
if stemtype == 'Bass':
modeltype = 'b'
stemset_n = '(Bass)'
source_val = 0
compensate = self.compensate_v_var.get()
n_fft_scale_set = int(self.n_fft_scale_set_var.get())
dim_f_set = int(self.dim_f_set_var.get())
noise_pro_set = self.noise_pro_select_set_var.get()
mdx_model_params = {
'modeltype' : modeltype,
'stemset_n' : stemset_n,
'source_val' : source_val,
'compensate' : compensate,
'n_fft_scale_set' : n_fft_scale_set,
'dim_f_set' : dim_f_set,
'noise_pro' : noise_pro_set,
}
mdx_model_params_r = json.dumps(mdx_model_params, indent=4)
with open(f"lib_v5/filelists/model_cache/mdx_model_cache/{model_hash}.json", "w") as outfile:
outfile.write(mdx_model_params_r)
if stemset_n == '(Instrumental)':
if not 'UVR' in demucs_model_set:
widget_text.write(base_text + 'The selected Demucs model cannot be used with this model.\n')
widget_text.write(base_text + 'Only 2 stem Demucs models are compatible with this model.\n')
widget_text.write(base_text + 'Setting Demucs model to \"UVR_Demucs_Model_1\".\n\n')
demucs_model_set = 'UVR_Demucs_Model_1'
top.destroy()
def prediction_setup(self):
global device
if data['gpu'] >= 0:
device = torch.device('cuda:0' if torch.cuda.is_available() else 'cpu')
if data['gpu'] == -1:
device = torch.device('cpu')
if demucs_switch == 'on':
#print('check model here: ', demucs_model_set)
#'demucs.th.gz', 'demucs_extra.th.gz', 'light.th.gz', 'light_extra.th.gz'
if 'tasnet.th' in demucs_model_set or 'tasnet_extra.th' in demucs_model_set or \
'demucs.th' in demucs_model_set or \
'demucs_extra.th' in demucs_model_set or 'light.th' in demucs_model_set or \
'light_extra.th' in demucs_model_set or 'v1' in demucs_model_set or '.gz' in demucs_model_set:
load_from = "models/Demucs_Models/"f"{demucs_model_set}"
if str(load_from).endswith(".gz"):
load_from = gzip.open(load_from, "rb")
klass, args, kwargs, state = torch.load(load_from)
self.demucs = klass(*args, **kwargs)
widget_text.write(base_text + 'Loading Demucs v1 model... ')
update_progress(**progress_kwargs,
step=0.05)
self.demucs.to(device)
self.demucs.load_state_dict(state)
widget_text.write('Done!\n')
elif 'tasnet-beb46fac.th' in demucs_model_set or 'tasnet_extra-df3777b2.th' in demucs_model_set or \
'demucs48_hq-28a1282c.th' in demucs_model_set or'demucs-e07c671f.th' in demucs_model_set or \
'demucs_extra-3646af93.th' in demucs_model_set or 'demucs_unittest-09ebc15f.th' in demucs_model_set or \
'v2' in demucs_model_set:
if '48' in demucs_model_set:
channels=48
elif 'unittest' in demucs_model_set:
channels=4
else:
channels=64
if 'tasnet' in demucs_model_set:
self.demucs = ConvTasNet(sources=["drums", "bass", "other", "vocals"], X=10)
else:
self.demucs = Demucs(sources=["drums", "bass", "other", "vocals"], channels=channels)
widget_text.write(base_text + 'Loading Demucs v2 model... ')
update_progress(**progress_kwargs,
step=0.05)
self.demucs.to(device)
self.demucs.load_state_dict(torch.load("models/Demucs_Models/"f"{demucs_model_set}"))
widget_text.write('Done!\n')
self.demucs.eval()
else:
if 'UVR' in demucs_model_set:
self.demucs = HDemucs(sources=["other", "vocals"])
else:
self.demucs = HDemucs(sources=["drums", "bass", "other", "vocals"])
widget_text.write(base_text + 'Loading Demucs model... ')
update_progress(**progress_kwargs,
step=0.05)
path_d = Path('models/Demucs_Models/v3_repo')
#print('What Demucs model was chosen? ', demucs_model_set)
self.demucs = _gm(name=demucs_model_set, repo=path_d)
self.demucs.to(device)
self.demucs.eval()
widget_text.write('Done!\n')
if isinstance(self.demucs, BagOfModels):
widget_text.write(base_text + f"Selected Demucs model is a bag of {len(self.demucs.models)} model(s).\n")
self.onnx_models = {}
c = 0
if demucs_only == 'on':
pass
else:
self.models = get_models('tdf_extra', load=False, device=cpu, stems=modeltype, n_fft_scale=n_fft_scale_set, dim_f=dim_f_set)
widget_text.write(base_text + 'Loading ONNX model... ')
update_progress(**progress_kwargs,
step=0.1)
c+=1
if data['gpu'] >= 0:
if torch.cuda.is_available():
run_type = ['CUDAExecutionProvider']
else:
data['gpu'] = -1
widget_text.write("\n" + base_text + "No NVIDIA GPU detected. Switching to CPU... ")
run_type = ['CPUExecutionProvider']
elif data['gpu'] == -1:
run_type = ['CPUExecutionProvider']
if demucs_only == 'off':
self.onnx_models[c] = ort.InferenceSession(os.path.join('models/MDX_Net_Models', model_set), providers=run_type)
#print(demucs_model_set)
widget_text.write('Done!\n')
elif demucs_only == 'on':
#print(demucs_model_set)
pass
def prediction(self, m):
mix, samplerate = librosa.load(m, mono=False, sr=44100)
if mix.ndim == 1:
mix = np.asfortranarray([mix,mix])
samplerate = samplerate
mix = mix.T
sources = self.demix(mix.T)
widget_text.write(base_text + 'Inferences complete!\n')
c = -1
inst_only = data['inst_only']
voc_only = data['voc_only']
if stemset_n == '(Instrumental)':
if data['inst_only'] == True:
voc_only = True
inst_only = False
if data['voc_only'] == True:
inst_only = True
voc_only = False
#Main Save Path
save_path = os.path.dirname(base_name)
#Write name
if stemset_n == '(Vocals)':
stem_text_a = 'Vocals'
stem_text_b = 'Instrumental'
elif stemset_n == '(Instrumental)':
stem_text_a = 'Instrumental'
stem_text_b = 'Vocals'
#Vocal Path
if stemset_n == '(Vocals)':
vocal_name = '(Vocals)'
elif stemset_n == '(Instrumental)':
vocal_name = '(Instrumental)'
if data['modelFolder']:
vocal_path = '{save_path}/{file_name}.wav'.format(
save_path=save_path,
file_name = f'{os.path.basename(base_name)}_{ModelName_2}_{vocal_name}',)
else:
vocal_path = '{save_path}/{file_name}.wav'.format(
save_path=save_path,
file_name = f'{os.path.basename(base_name)}_{ModelName_2}_{vocal_name}',)
#Instrumental Path
if stemset_n == '(Vocals)':
Instrumental_name = '(Instrumental)'
elif stemset_n == '(Instrumental)':
Instrumental_name = '(Vocals)'
if data['modelFolder']:
Instrumental_path = '{save_path}/{file_name}.wav'.format(
save_path=save_path,
file_name = f'{os.path.basename(base_name)}_{ModelName_2}_{Instrumental_name}',)
else:
Instrumental_path = '{save_path}/{file_name}.wav'.format(
save_path=save_path,
file_name = f'{os.path.basename(base_name)}_{ModelName_2}_{Instrumental_name}',)
#Non-Reduced Vocal Path
if stemset_n == '(Vocals)':
vocal_name = '(Vocals)'
elif stemset_n == '(Instrumental)':
vocal_name = '(Instrumental)'
if data['modelFolder']:
non_reduced_vocal_path = '{save_path}/{file_name}.wav'.format(
save_path=save_path,
file_name = f'{os.path.basename(base_name)}_{ModelName_2}_{vocal_name}_No_Reduction',)
else:
non_reduced_vocal_path = '{save_path}/{file_name}.wav'.format(
save_path=save_path,
file_name = f'{os.path.basename(base_name)}_{ModelName_2}_{vocal_name}_No_Reduction',)
if os.path.isfile(non_reduced_vocal_path):
file_exists_n = 'there'
else:
file_exists_n = 'not_there'
if os.path.isfile(vocal_path):
file_exists = 'there'
else:
file_exists = 'not_there'
if demucs_only == 'on':
data['noisereduc_s'] == 'None'
if not data['noisereduc_s'] == 'None':
c += 1
if demucs_switch == 'off':
if inst_only and not voc_only:
widget_text.write(base_text + f'Preparing to save {stem_text_b}...')
else:
widget_text.write(base_text + f'Saving {stem_text_a}... ')
sf.write(non_reduced_vocal_path, sources[c].T, samplerate, subtype=wav_type_set)
update_progress(**progress_kwargs,
step=(0.9))
widget_text.write('Done!\n')
widget_text.write(base_text + 'Performing Noise Reduction... ')
reduction_sen = float(int(data['noisereduc_s'])/10)
subprocess.call("lib_v5\\sox\\sox.exe" + ' "' +
f"{str(non_reduced_vocal_path)}" + '" "' + f"{str(vocal_path)}" + '" ' +
"noisered lib_v5\\sox\\" + noise_pro_set + ".prof " + f"{reduction_sen}",
shell=True, stdout=subprocess.PIPE,
stdin=subprocess.PIPE, stderr=subprocess.PIPE)
widget_text.write('Done!\n')
update_progress(**progress_kwargs,
step=(0.95))
else:
if inst_only and not voc_only:
widget_text.write(base_text + f'Preparing to save {stem_text_b}...')
else:
widget_text.write(base_text + f'Saving {stem_text_a}... ')
if demucs_only == 'on':
if 'UVR' in model_set_name:
sf.write(vocal_path, sources[1].T, samplerate, subtype=wav_type_set)
update_progress(**progress_kwargs,
step=(0.95))
widget_text.write('Done!\n')
if 'extra' in model_set_name:
sf.write(vocal_path, sources[3].T, samplerate, subtype=wav_type_set)
update_progress(**progress_kwargs,
step=(0.95))
widget_text.write('Done!\n')
else:
sf.write(non_reduced_vocal_path, sources[3].T, samplerate, subtype=wav_type_set)
update_progress(**progress_kwargs,
step=(0.9))
widget_text.write('Done!\n')
widget_text.write(base_text + 'Performing Noise Reduction... ')
reduction_sen = float(data['noisereduc_s'])/10
subprocess.call("lib_v5\\sox\\sox.exe" + ' "' +
f"{str(non_reduced_vocal_path)}" + '" "' + f"{str(vocal_path)}" + '" ' +
"noisered lib_v5\\sox\\" + noise_pro_set + ".prof " + f"{reduction_sen}",
shell=True, stdout=subprocess.PIPE,
stdin=subprocess.PIPE, stderr=subprocess.PIPE)
update_progress(**progress_kwargs,
step=(0.95))
widget_text.write('Done!\n')
else:
c += 1
if demucs_switch == 'off':
widget_text.write(base_text + f'Saving {stem_text_a}... ')
sf.write(vocal_path, sources[c].T, samplerate, subtype=wav_type_set)
update_progress(**progress_kwargs,
step=(0.9))
widget_text.write('Done!\n')
else:
widget_text.write(base_text + f'Saving {stem_text_a}... ')
if demucs_only == 'on':
if 'UVR' in model_set_name:
sf.write(vocal_path, sources[1].T, samplerate, subtype=wav_type_set)
if 'extra' in model_set_name:
sf.write(vocal_path, sources[3].T, samplerate, subtype=wav_type_set)
else:
sf.write(vocal_path, sources[3].T, samplerate, subtype=wav_type_set)
update_progress(**progress_kwargs,
step=(0.9))
widget_text.write('Done!\n')
if voc_only and not inst_only:
pass
else:
finalfiles = [
{
'model_params':'lib_v5/modelparams/1band_sr44100_hl512.json',
'files':[str(music_file), vocal_path],
}
]
widget_text.write(base_text + f'Saving {stem_text_b}... ')
for i, e in tqdm(enumerate(finalfiles)):
wave, specs = {}, {}
mp = ModelParameters(e['model_params'])
for i in range(len(e['files'])):
spec = {}
for d in range(len(mp.param['band']), 0, -1):
bp = mp.param['band'][d]
if d == len(mp.param['band']): # high-end band
wave[d], _ = librosa.load(
e['files'][i], bp['sr'], False, dtype=np.float32, res_type=bp['res_type'])
if len(wave[d].shape) == 1: # mono to stereo
wave[d] = np.array([wave[d], wave[d]])
else: # lower bands
wave[d] = librosa.resample(wave[d+1], mp.param['band'][d+1]['sr'], bp['sr'], res_type=bp['res_type'])
spec[d] = spec_utils.wave_to_spectrogram(wave[d], bp['hl'], bp['n_fft'], mp.param['mid_side'], mp.param['mid_side_b2'], mp.param['reverse'])
specs[i] = spec_utils.combine_spectrograms(spec, mp)
del wave
ln = min([specs[0].shape[2], specs[1].shape[2]])
specs[0] = specs[0][:,:,:ln]
specs[1] = specs[1][:,:,:ln]
X_mag = np.abs(specs[0])
y_mag = np.abs(specs[1])
max_mag = np.where(X_mag >= y_mag, X_mag, y_mag)
v_spec = specs[1] - max_mag * np.exp(1.j * np.angle(specs[0]))
update_progress(**progress_kwargs,
step=(0.95))
sf.write(Instrumental_path, normalization_set(spec_utils.cmb_spectrogram_to_wave(-v_spec, mp)), mp.param['sr'], subtype=wav_type_set)
if inst_only:
if file_exists == 'there':
pass
else:
try:
os.remove(vocal_path)
except:
pass
widget_text.write('Done!\n')
if data['noisereduc_s'] == 'None':
pass
elif inst_only:
if file_exists_n == 'there':
pass
else:
try:
os.remove(non_reduced_vocal_path)
except:
pass
else:
try:
os.remove(non_reduced_vocal_path)
except:
pass
widget_text.write(base_text + 'Completed Separation!\n\n')
def demix(self, mix):
# 1 = demucs only
# 0 = onnx only
if data['chunks'] == 'Full':
chunk_set = 0
else:
chunk_set = data['chunks']
if data['chunks'] == 'Auto':
if data['gpu'] == 0:
try:
gpu_mem = round(torch.cuda.get_device_properties(0).total_memory/1.074e+9)
except:
widget_text.write(base_text + 'NVIDIA GPU Required for conversion!\n')
if int(gpu_mem) <= int(6):
chunk_set = int(5)
widget_text.write(base_text + 'Chunk size auto-set to 5... \n')
if gpu_mem in [7, 8, 9, 10, 11, 12, 13, 14, 15]:
chunk_set = int(10)
widget_text.write(base_text + 'Chunk size auto-set to 10... \n')
if int(gpu_mem) >= int(16):
chunk_set = int(40)
widget_text.write(base_text + 'Chunk size auto-set to 40... \n')
if data['gpu'] == -1:
sys_mem = psutil.virtual_memory().total >> 30
if int(sys_mem) <= int(4):
chunk_set = int(1)
widget_text.write(base_text + 'Chunk size auto-set to 1... \n')
if sys_mem in [5, 6, 7, 8]:
chunk_set = int(10)
widget_text.write(base_text + 'Chunk size auto-set to 10... \n')
if sys_mem in [9, 10, 11, 12, 13, 14, 15, 16]:
chunk_set = int(25)
widget_text.write(base_text + 'Chunk size auto-set to 25... \n')
if int(sys_mem) >= int(17):
chunk_set = int(60)
widget_text.write(base_text + 'Chunk size auto-set to 60... \n')
elif data['chunks'] == 'Full':
chunk_set = 0
widget_text.write(base_text + "Chunk size set to full... \n")
else:
chunk_set = int(data['chunks'])
widget_text.write(base_text + "Chunk size user-set to "f"{chunk_set}... \n")
samples = mix.shape[-1]
margin = margin_set
chunk_size = chunk_set*44100
assert not margin == 0, 'margin cannot be zero!'
if margin > chunk_size:
margin = chunk_size
b = np.array([[[0.5]], [[0.5]], [[0.7]], [[0.9]]])
segmented_mix = {}
if chunk_set == 0 or samples < chunk_size:
chunk_size = samples
counter = -1
for skip in range(0, samples, chunk_size):
counter+=1
s_margin = 0 if counter == 0 else margin
end = min(skip+chunk_size+margin, samples)
start = skip-s_margin
segmented_mix[skip] = mix[:,start:end].copy()
if end == samples:
break
if demucs_switch == 'off':
sources = self.demix_base(segmented_mix, margin_size=margin)
elif demucs_only == 'on':
if 'tasnet.th' in demucs_model_set or 'tasnet_extra.th' in demucs_model_set or \
'demucs.th' in demucs_model_set or \
'demucs_extra.th' in demucs_model_set or 'light.th' in demucs_model_set or \
'light_extra.th' in demucs_model_set or 'v1' in demucs_model_set or '.gz' in demucs_model_set:
sources = self.demix_demucs_v1(segmented_mix, margin_size=margin)
elif 'tasnet-beb46fac.th' in demucs_model_set or 'tasnet_extra-df3777b2.th' in demucs_model_set or \
'demucs48_hq-28a1282c.th' in demucs_model_set or'demucs-e07c671f.th' in demucs_model_set or \
'demucs_extra-3646af93.th' in demucs_model_set or 'demucs_unittest-09ebc15f.th' in demucs_model_set or \
'v2' in demucs_model_set:
sources = self.demix_demucs_v2(segmented_mix, margin_size=margin)
else:
if split_mode == True:
sources = self.demix_demucs_split(mix)
if split_mode == False:
sources = self.demix_demucs(segmented_mix, margin_size=margin)
else: # both, apply spec effects
base_out = self.demix_base(segmented_mix, margin_size=margin)
if 'tasnet.th' in demucs_model_set or 'tasnet_extra.th' in demucs_model_set or \
'demucs.th' in demucs_model_set or \
'demucs_extra.th' in demucs_model_set or 'light.th' in demucs_model_set or \
'light_extra.th' in demucs_model_set or 'v1' in demucs_model_set or '.gz' in demucs_model_set:
demucs_out = self.demix_demucs_v1(segmented_mix, margin_size=margin)
elif 'tasnet-beb46fac.th' in demucs_model_set or 'tasnet_extra-df3777b2.th' in demucs_model_set or \
'demucs48_hq-28a1282c.th' in demucs_model_set or'demucs-e07c671f.th' in demucs_model_set or \
'demucs_extra-3646af93.th' in demucs_model_set or 'demucs_unittest-09ebc15f.th' in demucs_model_set or \
'v2' in demucs_model_set:
demucs_out = self.demix_demucs_v2(segmented_mix, margin_size=margin)
else:
if split_mode == True:
demucs_out = self.demix_demucs_split(mix)
if split_mode == False:
demucs_out = self.demix_demucs(segmented_mix, margin_size=margin)
nan_count = np.count_nonzero(np.isnan(demucs_out)) + np.count_nonzero(np.isnan(base_out))
if nan_count > 0:
print('Warning: there are {} nan values in the array(s).'.format(nan_count))
demucs_out, base_out = np.nan_to_num(demucs_out), np.nan_to_num(base_out)
sources = {}
if 'UVR' in demucs_model_set:
if stemset_n == '(Instrumental)':
sources[3] = (spec_effects(wave=[demucs_out[0],base_out[0]],
algorithm=data['mixing'],
value=b[3])*float(compensate)) # compensation
else:
sources[3] = (spec_effects(wave=[demucs_out[1],base_out[0]],
algorithm=data['mixing'],
value=b[3])*float(compensate)) # compensation
else:
sources[3] = (spec_effects(wave=[demucs_out[3],base_out[0]],
algorithm=data['mixing'],
value=b[3])*float(compensate)) # compensation
if demucs_switch == 'off':
return sources*float(compensate)
else:
return sources
def demix_base(self, mixes, margin_size):
chunked_sources = []
onnxitera = len(mixes)
onnxitera_calc = onnxitera * 2
gui_progress_bar_onnx = 0
widget_text.write(base_text + "Running ONNX Inference...\n")
widget_text.write(base_text + "Processing "f"{onnxitera} slices... ")
print(' Running ONNX Inference...')
for mix in mixes:
gui_progress_bar_onnx += 1
if demucs_switch == 'on':
update_progress(**progress_kwargs,
step=(0.1 + (0.5/onnxitera_calc * gui_progress_bar_onnx)))
else:
update_progress(**progress_kwargs,
step=(0.1 + (0.9/onnxitera * gui_progress_bar_onnx)))
cmix = mixes[mix]
sources = []
n_sample = cmix.shape[1]
mod = 0
for model in self.models:
mod += 1
trim = model.n_fft//2
gen_size = model.chunk_size-2*trim
pad = gen_size - n_sample%gen_size
mix_p = np.concatenate((np.zeros((2,trim)), cmix, np.zeros((2,pad)), np.zeros((2,trim))), 1)
mix_waves = []
i = 0
while i < n_sample + pad:
waves = np.array(mix_p[:, i:i+model.chunk_size])
mix_waves.append(waves)
i += gen_size
mix_waves = torch.tensor(mix_waves, dtype=torch.float32).to(cpu)
with torch.no_grad():
_ort = self.onnx_models[mod]
spek = model.stft(mix_waves)
tar_waves = model.istft(torch.tensor(_ort.run(None, {'input': spek.cpu().numpy()})[0]))#.cpu()
tar_signal = tar_waves[:,:,trim:-trim].transpose(0,1).reshape(2, -1).numpy()[:, :-pad]
start = 0 if mix == 0 else margin_size
end = None if mix == list(mixes.keys())[::-1][0] else -margin_size
if margin_size == 0:
end = None
sources.append(tar_signal[:,start:end])
chunked_sources.append(sources)
_sources = np.concatenate(chunked_sources, axis=-1)
del self.onnx_models
widget_text.write('Done!\n')
return _sources
def demix_demucs(self, mix, margin_size):
#print('shift_set ', shift_set)
processed = {}
demucsitera = len(mix)
demucsitera_calc = demucsitera * 2
gui_progress_bar_demucs = 0
widget_text.write(base_text + "Split Mode is off. (Chunks enabled for Demucs Model)\n")
widget_text.write(base_text + "Running Demucs Inference...\n")
widget_text.write(base_text + "Processing "f"{len(mix)} slices... ")
print('Running Demucs Inference...')
for nmix in mix:
gui_progress_bar_demucs += 1
update_progress(**progress_kwargs,
step=(0.35 + (1.05/demucsitera_calc * gui_progress_bar_demucs)))
cmix = mix[nmix]
cmix = torch.tensor(cmix, dtype=torch.float32)
ref = cmix.mean(0)
cmix = (cmix - ref.mean()) / ref.std()
with torch.no_grad():
sources = apply_model(self.demucs, cmix[None], split=split_mode, device=device, overlap=overlap_set, shifts=shift_set, progress=False)[0]
sources = (sources * ref.std() + ref.mean()).cpu().numpy()
sources[[0,1]] = sources[[1,0]]
start = 0 if nmix == 0 else margin_size
end = None if nmix == list(mix.keys())[::-1][0] else -margin_size
if margin_size == 0:
end = None
processed[nmix] = sources[:,:,start:end].copy()
sources = list(processed.values())
sources = np.concatenate(sources, axis=-1)
widget_text.write('Done!\n')
return sources
def demix_demucs_split(self, mix):
#print('shift_set ', shift_set)
widget_text.write(base_text + "Split Mode is on. (Chunks disabled for Demucs Model)\n")
widget_text.write(base_text + "Running Demucs Inference...\n")
widget_text.write(base_text + "Processing "f"{len(mix)} slices... ")
print(' Running Demucs Inference...')
mix = torch.tensor(mix, dtype=torch.float32)
ref = mix.mean(0)
mix = (mix - ref.mean()) / ref.std()
with torch.no_grad():
sources = apply_model(self.demucs, mix[None], split=split_mode, device=device, overlap=overlap_set, shifts=shift_set, progress=False)[0]
widget_text.write('Done!\n')
sources = (sources * ref.std() + ref.mean()).cpu().numpy()
sources[[0,1]] = sources[[1,0]]
return sources
def demix_demucs_v2(self, mix, margin_size):
processed = {}
demucsitera = len(mix)
demucsitera_calc = demucsitera * 2
gui_progress_bar_demucs = 0
widget_text.write(base_text + "Running Demucs v2 Inference...\n")
widget_text.write(base_text + "Processing "f"{len(mix)} slices... ")
print(' Running Demucs Inference...')
for nmix in mix:
gui_progress_bar_demucs += 1
update_progress(**progress_kwargs,
step=(0.35 + (1.05/demucsitera_calc * gui_progress_bar_demucs)))
cmix = mix[nmix]
cmix = torch.tensor(cmix, dtype=torch.float32)
ref = cmix.mean(0)
cmix = (cmix - ref.mean()) / ref.std()
with torch.no_grad():
sources = apply_model_v2(self.demucs, cmix.to(device), split=split_mode, overlap=overlap_set, shifts=shift_set)
sources = (sources * ref.std() + ref.mean()).cpu().numpy()
sources[[0,1]] = sources[[1,0]]
start = 0 if nmix == 0 else margin_size
end = None if nmix == list(mix.keys())[::-1][0] else -margin_size
if margin_size == 0:
end = None
processed[nmix] = sources[:,:,start:end].copy()
sources = list(processed.values())
sources = np.concatenate(sources, axis=-1)
widget_text.write('Done!\n')
return sources
def demix_demucs_v1(self, mix, margin_size):
processed = {}
demucsitera = len(mix)
demucsitera_calc = demucsitera * 2
gui_progress_bar_demucs = 0
widget_text.write(base_text + "Running Demucs v1 Inference...\n")
widget_text.write(base_text + "Processing "f"{len(mix)} slices... ")
print(' Running Demucs Inference...')
for nmix in mix:
gui_progress_bar_demucs += 1
update_progress(**progress_kwargs,
step=(0.35 + (1.05/demucsitera_calc * gui_progress_bar_demucs)))
cmix = mix[nmix]
cmix = torch.tensor(cmix, dtype=torch.float32)
ref = cmix.mean(0)
cmix = (cmix - ref.mean()) / ref.std()
with torch.no_grad():
sources = apply_model_v1(self.demucs, cmix.to(device), split=split_mode, shifts=shift_set)
sources = (sources * ref.std() + ref.mean()).cpu().numpy()
sources[[0,1]] = sources[[1,0]]
start = 0 if nmix == 0 else margin_size
end = None if nmix == list(mix.keys())[::-1][0] else -margin_size
if margin_size == 0:
end = None
processed[nmix] = sources[:,:,start:end].copy()
sources = list(processed.values())
sources = np.concatenate(sources, axis=-1)
widget_text.write('Done!\n')
return sources
def update_progress(progress_var, total_files, file_num, step: float = 1):
"""Calculate the progress for the progress widget in the GUI"""
base = (100 / total_files)
progress = base * (file_num - 1)
progress += base * step
progress_var.set(progress)
def get_baseText(total_files, file_num):
"""Create the base text for the command widget"""
text = 'File {file_num}/{total_files} '.format(file_num=file_num,
total_files=total_files)
return text
warnings.filterwarnings("ignore")
cpu = torch.device('cpu')
device = torch.device('cuda:0' if torch.cuda.is_available() else 'cpu')
def hide_opt():
with open(os.devnull, "w") as devnull:
old_stdout = sys.stdout
sys.stdout = devnull
try:
yield
finally:
sys.stdout = old_stdout
class VocalRemover(object):
def __init__(self, data, text_widget: tk.Text):
self.data = data
self.text_widget = text_widget
self.models = defaultdict(lambda: None)
self.devices = defaultdict(lambda: None)
# self.offset = model.offset
def update_progress(progress_var, total_files, file_num, step: float = 1):
"""Calculate the progress for the progress widget in the GUI"""
base = (100 / total_files)
progress = base * (file_num - 1)
progress += base * step
progress_var.set(progress)
def get_baseText(total_files, file_num):
"""Create the base text for the command widget"""
text = 'File {file_num}/{total_files} '.format(file_num=file_num,
total_files=total_files)
return text
def determineModelFolderName():
"""
Determine the name that is used for the folder and appended
to the back of the music files
"""
modelFolderName = ''
if not data['modelFolder']:
# Model Test Mode not selected
return modelFolderName
# -Instrumental-
if os.path.isfile(data['instrumentalModel']):
modelFolderName += os.path.splitext(os.path.basename(data['instrumentalModel']))[0]
if modelFolderName:
modelFolderName = '/' + modelFolderName
return modelFolderName
class VocalRemover(object):
def __init__(self, data, text_widget: tk.Text):
self.data = data
self.text_widget = text_widget
# self.offset = model.offset
data = {
'agg': 10,
'algo': 'Instrumentals (Min Spec)',
'appendensem': False,
'autocompensate': True,
'chunks': 'auto',
'compensate': 1.03597672895,
'demucs_only': False,
'demucsmodel': False,
'DemucsModel_MDX': 'UVR_Demucs_Model_1',
'ensChoose': 'Basic VR Ensemble',
'export_path': None,
'gpu': -1,
'high_end_process': 'mirroring',
'input_paths': None,
'inst_only': False,
'instrumentalModel': None,
'margin': 44100,
'mdx_ensem': 'MDX-Net: UVR-MDX-NET 1',
'mdx_ensem_b': 'No Model',
'mdx_only_ensem_a': 'MDX-Net: UVR-MDX-NET Main',
'mdx_only_ensem_b': 'MDX-Net: UVR-MDX-NET 1',
'mdx_only_ensem_c': 'No Model',
'mdx_only_ensem_d': 'No Model',
'mdx_only_ensem_e': 'No Model',
'mixing': 'Default',
'mp3bit': '320k',
'noise_pro_select': 'Auto Select',
'noisereduc_s': 3,
'non_red': False,
'normalize': False,
'output_image': True,
'overlap': 0.5,
'postprocess': True,
'saveFormat': 'wav',
'shifts': 0,
'split_mode': False,
'tta': True,
'useModel': None,
'voc_only': False,
'vr_ensem': '2_HP-UVR',
'vr_ensem_a': '1_HP-UVR',
'vr_ensem_b': '2_HP-UVR',
'vr_ensem_c': 'No Model',
'vr_ensem_d': 'No Model',
'vr_ensem_e': 'No Model',
'vr_ensem_mdx_a': 'No Model',
'vr_ensem_mdx_b': 'No Model',
'vr_ensem_mdx_c': 'No Model',
'vr_multi_USER_model_param_1': 'Auto',
'vr_multi_USER_model_param_2': 'Auto',
'vr_multi_USER_model_param_3': 'Auto',
'vr_multi_USER_model_param_4': 'Auto',
'vr_basic_USER_model_param_1': 'Auto',
'vr_basic_USER_model_param_2': 'Auto',
'vr_basic_USER_model_param_3': 'Auto',
'vr_basic_USER_model_param_4': 'Auto',
'vr_basic_USER_model_param_5': 'Auto',
'wavtype': 'PCM_16',
'window_size': 512
}
default_window_size = data['window_size']
default_agg = data['agg']
default_chunks = data['chunks']
default_noisereduc_s = data['noisereduc_s']
def update_progress(progress_var, total_files, file_num, step: float = 1):
"""Calculate the progress for the progress widget in the GUI"""
base = (100 / total_files)
progress = base * (file_num - 1)
progress += base * step
progress_var.set(progress)
def get_baseText(total_files, file_num):
"""Create the base text for the command widget"""
text = 'File {file_num}/{total_files} '.format(file_num=file_num,
total_files=total_files)
return text
def main(window: tk.Wm, text_widget: tk.Text, button_widget: tk.Button, progress_var: tk.Variable,
**kwargs: dict):
global widget_text
global gui_progress_bar
global music_file
global default_chunks
global default_noisereduc_s
global base_name
global progress_kwargs
global base_text
global modeltype
global model_set
global model_set_name
global ModelName_2
global compensate
global autocompensate
global demucs_model_set
global channel_set
global margin_set
global overlap_set
global shift_set
global noise_pro_set
global n_fft_scale_set
global dim_f_set
global split_mode
global demucs_switch
global demucs_only
global wav_type_set
global flac_type_set
global mp3_bit_set
global model_hash
global stime
global stemset_n
global source_val
global widget_button
wav_type_set = data['wavtype']
# Update default settings
default_chunks = data['chunks']
default_noisereduc_s = data['noisereduc_s']
autocompensate = data['autocompensate']
widget_text = text_widget
gui_progress_bar = progress_var
widget_button = button_widget
#Error Handling
onnxmissing = "[ONNXRuntimeError] : 3 : NO_SUCHFILE"
onnxmemerror = "onnxruntime::CudaCall CUDA failure 2: out of memory"
onnxmemerror2 = "onnxruntime::BFCArena::AllocateRawInternal"
systemmemerr = "DefaultCPUAllocator: not enough memory"
runtimeerr = "CUDNN error executing cudnnSetTensorNdDescriptor"
cuda_err = "CUDA out of memory"
enex_err = "local variable \'enseExport\' referenced before assignment"
mod_err = "ModuleNotFoundError"
file_err = "FileNotFoundError"
ffmp_err = """audioread\__init__.py", line 116, in audio_open"""
sf_write_err = "sf.write"
demucs_model_missing_err = "is neither a single pre-trained model or a bag of models."
try:
with open('errorlog.txt', 'w') as f:
f.write(f'No errors to report at this time.' + f'\n\nLast Process Method Used: Ensemble Mode' +
f'\nLast Conversion Time Stamp: [{datetime.now().strftime("%Y-%m-%d %H:%M:%S")}]\n')
except:
pass
global nn_arch_sizes
global nn_architecture
nn_arch_sizes = [
31191, # default
33966, 123821, 123812, 129605, 537238, 537227 # custom
]
def save_files(wav_instrument, wav_vocals):
"""Save output music files"""
vocal_name = '(Vocals)'
instrumental_name = '(Instrumental)'
save_path = os.path.dirname(base_name)
# Swap names if vocal model
VModel="Vocal"
if VModel in model_name:
# Reverse names
vocal_name, instrumental_name = instrumental_name, vocal_name
# Save Temp File
# For instrumental the instrumental is the temp file
# and for vocal the instrumental is the temp file due
# to reversement
sf.write(f'temp.wav',
normalization_set(wav_instrument), mp.param['sr'], subtype=wav_type_set)
# -Save files-
# Instrumental
if instrumental_name is not None:
instrumental_path = '{save_path}/{file_name}.wav'.format(
save_path=save_path,
file_name = f'{os.path.basename(base_name)}_{ModelName_1}_{instrumental_name}',
)
if VModel in ModelName_1 and data['voc_only']:
sf.write(instrumental_path,
normalization_set(wav_instrument), mp.param['sr'], subtype=wav_type_set)
elif VModel in ModelName_1 and data['inst_only']:
pass
elif data['voc_only']:
pass
else:
sf.write(instrumental_path,
normalization_set(wav_instrument), mp.param['sr'], subtype=wav_type_set)
# Vocal
if vocal_name is not None:
vocal_path = '{save_path}/{file_name}.wav'.format(
save_path=save_path,
file_name=f'{os.path.basename(base_name)}_{ModelName_1}_{vocal_name}',
)
if VModel in ModelName_1 and data['inst_only']:
sf.write(vocal_path,
normalization_set(wav_vocals), mp.param['sr'], subtype=wav_type_set)
elif VModel in ModelName_1 and data['voc_only']:
pass
elif data['inst_only']:
pass
else:
sf.write(vocal_path,
normalization_set(wav_vocals), mp.param['sr'], subtype=wav_type_set)
data.update(kwargs)
if data['DemucsModel_MDX'] == "Tasnet v1":
demucs_model_set_name = 'tasnet.th'
elif data['DemucsModel_MDX'] == "Tasnet_extra v1":
demucs_model_set_name = 'tasnet_extra.th'
elif data['DemucsModel_MDX'] == "Demucs v1":
demucs_model_set_name = 'demucs.th'
elif data['DemucsModel_MDX'] == "Demucs v1.gz":
demucs_model_set_name = 'demucs.th.gz'
elif data['DemucsModel_MDX'] == "Demucs_extra v1":
demucs_model_set_name = 'demucs_extra.th'
elif data['DemucsModel_MDX'] == "Demucs_extra v1.gz":
demucs_model_set_name = 'demucs_extra.th.gz'
elif data['DemucsModel_MDX'] == "Light v1":
demucs_model_set_name = 'light.th'
elif data['DemucsModel_MDX'] == "Light v1.gz":
demucs_model_set_name = 'light.th.gz'
elif data['DemucsModel_MDX'] == "Light_extra v1":
demucs_model_set_name = 'light_extra.th'
elif data['DemucsModel_MDX'] == "Light_extra v1.gz":
demucs_model_set_name = 'light_extra.th.gz'
elif data['DemucsModel_MDX'] == "Tasnet v2":
demucs_model_set_name = 'tasnet-beb46fac.th'
elif data['DemucsModel_MDX'] == "Tasnet_extra v2":
demucs_model_set_name = 'tasnet_extra-df3777b2.th'
elif data['DemucsModel_MDX'] == "Demucs48_hq v2":
demucs_model_set_name = 'demucs48_hq-28a1282c.th'
elif data['DemucsModel_MDX'] == "Demucs v2":
demucs_model_set_name = 'demucs-e07c671f.th'
elif data['DemucsModel_MDX'] == "Demucs_extra v2":
demucs_model_set_name = 'demucs_extra-3646af93.th'
elif data['DemucsModel_MDX'] == "Demucs_unittest v2":
demucs_model_set_name = 'demucs_unittest-09ebc15f.th'
elif '.ckpt' in data['DemucsModel_MDX'] and 'v2' in data['DemucsModel_MDX']:
demucs_model_set_name = data['DemucsModel_MDX']
elif '.ckpt' in data['DemucsModel_MDX'] and 'v1' in data['DemucsModel_MDX']:
demucs_model_set_name = data['DemucsModel_MDX']
else:
demucs_model_set_name = data['DemucsModel_MDX']
if data['mdx_ensem'] == "Demucs: Tasnet v1":
demucs_model_set_name_muilti_a = 'tasnet.th'
elif data['mdx_ensem'] == "Demucs: Tasnet_extra v1":
demucs_model_set_name_muilti_a = 'tasnet_extra.th'
elif data['mdx_ensem'] == "Demucs: Demucs v1":
demucs_model_set_name_muilti_a = 'demucs.th'
elif data['mdx_ensem'] == "Demucs: Demucs_extra v1":
demucs_model_set_name_muilti_a = 'demucs_extra.th'
elif data['mdx_ensem'] == "Demucs: Light v1":
demucs_model_set_name_muilti_a = 'light.th'
elif data['mdx_ensem'] == "Demucs: Light_extra v1":
demucs_model_set_name_muilti_a = 'light_extra.th'
elif data['mdx_ensem'] == "Demucs: Demucs v1.gz":
demucs_model_set_name_muilti_a = 'demucs.th.gz'
elif data['mdx_ensem'] == "Demucs: Demucs_extra v1.gz":
demucs_model_set_name_muilti_a = 'demucs_extra.th.gz'
elif data['mdx_ensem'] == "Demucs: Light v1.gz":
demucs_model_set_name_muilti_a = 'light.th.gz'
elif data['mdx_ensem'] == "Demucs: Light_extra v1.gz":
demucs_model_set_name_muilti_a = 'light_extra.th.gz'
elif data['mdx_ensem'] == "Demucs: Tasnet v2":
demucs_model_set_name_muilti_a = 'tasnet-beb46fac.th'
elif data['mdx_ensem'] == "Demucs: Tasnet_extra v2":
demucs_model_set_name_muilti_a = 'tasnet_extra-df3777b2.th'
elif data['mdx_ensem'] == "Demucs: Demucs48_hq v2":
demucs_model_set_name_muilti_a = 'demucs48_hq-28a1282c.th'
elif data['mdx_ensem'] == "Demucs: Demucs v2":
demucs_model_set_name_muilti_a = 'demucs-e07c671f.th'
elif data['mdx_ensem'] == "Demucs: Demucs_extra v2":
demucs_model_set_name_muilti_a = 'demucs_extra-3646af93.th'
elif data['mdx_ensem'] == "Demucs: Demucs_unittest v2":
demucs_model_set_name_muilti_a = 'demucs_unittest-09ebc15f.th'
elif data['mdx_ensem'] == "Demucs: mdx_extra":
demucs_model_set_name_muilti_a = 'mdx_extra'
elif data['mdx_ensem'] == "Demucs: mdx_extra_q":
demucs_model_set_name_muilti_a = 'mdx_extra_q'
elif data['mdx_ensem'] == "Demucs: mdx":
demucs_model_set_name_muilti_a = 'mdx'
elif data['mdx_ensem'] == "Demucs: mdx_q":
demucs_model_set_name_muilti_a = 'mdx_q'
elif data['mdx_ensem'] == "Demucs: UVR_Demucs_Model_1":
demucs_model_set_name_muilti_a = 'UVR_Demucs_Model_1'
elif data['mdx_ensem'] == "Demucs: UVR_Demucs_Model_2":
demucs_model_set_name_muilti_a = 'UVR_Demucs_Model_2'
elif data['mdx_ensem'] == "Demucs: UVR_Demucs_Model_Bag":
demucs_model_set_name_muilti_a = 'UVR_Demucs_Model_Bag'
else:
demucs_model_set_name_muilti_a = data['mdx_ensem']
if data['mdx_ensem_b'] == "Demucs: Tasnet v1":
demucs_model_set_name_muilti_b = 'tasnet.th'
elif data['mdx_ensem_b'] == "Demucs: Tasnet_extra v1":
demucs_model_set_name_muilti_b = 'tasnet_extra.th'
elif data['mdx_ensem_b'] == "Demucs: Demucs v1":
demucs_model_set_name_muilti_b = 'demucs.th'
elif data['mdx_ensem_b'] == "Demucs: Demucs_extra v1":
demucs_model_set_name_muilti_b = 'demucs_extra.th'
elif data['mdx_ensem_b'] == "Demucs: Light v1":
demucs_model_set_name_muilti_b = 'light.th'
elif data['mdx_ensem_b'] == "Demucs: Light_extra v1":
demucs_model_set_name_muilti_b = 'light_extra.th'
elif data['mdx_ensem_b'] == "Demucs: Demucs v1.gz":
demucs_model_set_name_muilti_b = 'demucs.th.gz'
elif data['mdx_ensem_b'] == "Demucs: Demucs_extra v1.gz":
demucs_model_set_name_muilti_b = 'demucs_extra.th.gz'
elif data['mdx_ensem_b'] == "Demucs: Light v1.gz":
demucs_model_set_name_muilti_b = 'light.th.gz'
elif data['mdx_ensem_b'] == "Demucs: Light_extra v1.gz":
demucs_model_set_name_muilti_b = 'light_extra.th.gz'
elif data['mdx_ensem_b'] == "Demucs: Tasnet v2":
demucs_model_set_name_muilti_b = 'tasnet-beb46fac.th'
elif data['mdx_ensem_b'] == "Demucs: Tasnet_extra v2":
demucs_model_set_name_muilti_b = 'tasnet_extra-df3777b2.th'
elif data['mdx_ensem_b'] == "Demucs: Demucs48_hq v2":
demucs_model_set_name_muilti_b = 'demucs48_hq-28a1282c.th'
elif data['mdx_ensem_b'] == "Demucs: Demucs v2":
demucs_model_set_name_muilti_b = 'demucs-e07c671f.th'
elif data['mdx_ensem_b'] == "Demucs: Demucs_extra v2":
demucs_model_set_name_muilti_b = 'demucs_extra-3646af93.th'
elif data['mdx_ensem_b'] == "Demucs: Demucs_unittest v2":
demucs_model_set_name_muilti_b = 'demucs_unittest-09ebc15f.th'
elif data['mdx_ensem_b'] == "Demucs: mdx_extra":
demucs_model_set_name_muilti_b = 'mdx_extra'
elif data['mdx_ensem_b'] == "Demucs: mdx_extra_q":
demucs_model_set_name_muilti_b = 'mdx_extra_q'
elif data['mdx_ensem_b'] == "Demucs: mdx":
demucs_model_set_name_muilti_b = 'mdx'
elif data['mdx_ensem_b'] == "Demucs: mdx_q":
demucs_model_set_name_muilti_b = 'mdx_q'
elif data['mdx_ensem_b'] == "Demucs: UVR_Demucs_Model_1":
demucs_model_set_name_muilti_b = 'UVR_Demucs_Model_1'
elif data['mdx_ensem_b'] == "Demucs: UVR_Demucs_Model_2":
demucs_model_set_name_muilti_b = 'UVR_Demucs_Model_2'
elif data['mdx_ensem_b'] == "Demucs: UVR_Demucs_Model_Bag":
demucs_model_set_name_muilti_b = 'UVR_Demucs_Model_Bag'
else:
demucs_model_set_name_muilti_b = data['mdx_ensem_b']
if data['mdx_only_ensem_a'] == "Demucs: Tasnet v1":
demucs_model_set_name_a = 'tasnet.th'
elif data['mdx_only_ensem_a'] == "Demucs: Tasnet_extra v1":
demucs_model_set_name_a = 'tasnet_extra.th'
elif data['mdx_only_ensem_a'] == "Demucs: Demucs v1":
demucs_model_set_name_a = 'demucs.th'
elif data['mdx_only_ensem_a'] == "Demucs: Demucs_extra v1":
demucs_model_set_name_a = 'demucs_extra.th'
elif data['mdx_only_ensem_a'] == "Demucs: Light v1":
demucs_model_set_name_a = 'light.th'
elif data['mdx_only_ensem_a'] == "Demucs: Light_extra v1":
demucs_model_set_name_a = 'light_extra.th'
elif data['mdx_only_ensem_a'] == "Demucs: Demucs v1.gz":
demucs_model_set_name_a = 'demucs.th.gz'
elif data['mdx_only_ensem_a'] == "Demucs: Demucs_extra v1.gz":
demucs_model_set_name_a = 'demucs_extra.th.gz'
elif data['mdx_only_ensem_a'] == "Demucs: Light v1.gz":
demucs_model_set_name_a = 'light.th.gz'
elif data['mdx_only_ensem_a'] == "Demucs: Light_extra v1.gz":
demucs_model_set_name_a = 'light_extra.th.gz'
elif data['mdx_only_ensem_a'] == "Demucs: Tasnet v2":
demucs_model_set_name_a = 'tasnet-beb46fac.th'
elif data['mdx_only_ensem_a'] == "Demucs: Tasnet_extra v2":
demucs_model_set_name_a = 'tasnet_extra-df3777b2.th'
elif data['mdx_only_ensem_a'] == "Demucs: Demucs48_hq v2":
demucs_model_set_name_a = 'demucs48_hq-28a1282c.th'
elif data['mdx_only_ensem_a'] == "Demucs: Demucs v2":
demucs_model_set_name_a = 'demucs-e07c671f.th'
elif data['mdx_only_ensem_a'] == "Demucs: Demucs_extra v2":
demucs_model_set_name_a = 'demucs_extra-3646af93.th'
elif data['mdx_only_ensem_a'] == "Demucs: Demucs_unittest v2":
demucs_model_set_name_a = 'demucs_unittest-09ebc15f.th'
elif data['mdx_only_ensem_a'] == "Demucs: mdx_extra":
demucs_model_set_name_a = 'mdx_extra'
elif data['mdx_only_ensem_a'] == "Demucs: mdx_extra_q":
demucs_model_set_name_a = 'mdx_extra_q'
elif data['mdx_only_ensem_a'] == "Demucs: mdx":
demucs_model_set_name_a = 'mdx'
elif data['mdx_only_ensem_a'] == "Demucs: mdx_q":
demucs_model_set_name_a = 'mdx_q'
elif data['mdx_only_ensem_a'] == "Demucs: UVR_Demucs_Model_1":
demucs_model_set_name_a = 'UVR_Demucs_Model_1'
elif data['mdx_only_ensem_a'] == "Demucs: UVR_Demucs_Model_2":
demucs_model_set_name_a = 'UVR_Demucs_Model_2'
elif data['mdx_only_ensem_a'] == "Demucs: UVR_Demucs_Model_Bag":
demucs_model_set_name_a = 'UVR_Demucs_Model_Bag'
else:
demucs_model_set_name_a = data['mdx_only_ensem_a']
if data['mdx_only_ensem_b'] == "Demucs: Tasnet v1":
demucs_model_set_name_b = 'tasnet.th'
elif data['mdx_only_ensem_b'] == "Demucs: Tasnet_extra v1":
demucs_model_set_name_b = 'tasnet_extra.th'
elif data['mdx_only_ensem_b'] == "Demucs: Demucs v1":
demucs_model_set_name_b = 'demucs.th'
elif data['mdx_only_ensem_b'] == "Demucs: Demucs_extra v1":
demucs_model_set_name_b = 'demucs_extra.th'
elif data['mdx_only_ensem_b'] == "Demucs: Light v1":
demucs_model_set_name_b = 'light.th'
elif data['mdx_only_ensem_b'] == "Demucs: Light_extra v1":
demucs_model_set_name_b = 'light_extra.th'
elif data['mdx_only_ensem_b'] == "Demucs: Demucs v1.gz":
demucs_model_set_name_b = 'demucs.th.gz'
elif data['mdx_only_ensem_b'] == "Demucs: Demucs_extra v1.gz":
demucs_model_set_name_b = 'demucs_extra.th.gz'
elif data['mdx_only_ensem_b'] == "Demucs: Light v1.gz":
demucs_model_set_name_b = 'light.th.gz'
elif data['mdx_only_ensem_b'] == "Demucs: Light_extra v1.gz":
demucs_model_set_name_b = 'light_extra.th.gz'
elif data['mdx_only_ensem_b'] == "Demucs: Tasnet v2":
demucs_model_set_name_b = 'tasnet-beb46fac.th'
elif data['mdx_only_ensem_b'] == "Demucs: Tasnet_extra v2":
demucs_model_set_name_b = 'tasnet_extra-df3777b2.th'
elif data['mdx_only_ensem_b'] == "Demucs: Demucs48_hq v2":
demucs_model_set_name_b = 'demucs48_hq-28a1282c.th'
elif data['mdx_only_ensem_b'] == "Demucs: Demucs v2":
demucs_model_set_name_b = 'demucs-e07c671f.th'
elif data['mdx_only_ensem_b'] == "Demucs: Demucs_extra v2":
demucs_model_set_name_b = 'demucs_extra-3646af93.th'
elif data['mdx_only_ensem_b'] == "Demucs: Demucs_unittest v2":
demucs_model_set_name_b = 'demucs_unittest-09ebc15f.th'
elif data['mdx_only_ensem_b'] == "Demucs: mdx_extra":
demucs_model_set_name_b = 'mdx_extra'
elif data['mdx_only_ensem_b'] == "Demucs: mdx_extra_q":
demucs_model_set_name_b = 'mdx_extra_q'
elif data['mdx_only_ensem_b'] == "Demucs: mdx":
demucs_model_set_name_b = 'mdx'
elif data['mdx_only_ensem_b'] == "Demucs: mdx_q":
demucs_model_set_name_b = 'mdx_q'
elif data['mdx_only_ensem_b'] == "Demucs: UVR_Demucs_Model_1":
demucs_model_set_name_b = 'UVR_Demucs_Model_1'
elif data['mdx_only_ensem_b'] == "Demucs: UVR_Demucs_Model_2":
demucs_model_set_name_b = 'UVR_Demucs_Model_2'
elif data['mdx_only_ensem_b'] == "Demucs: UVR_Demucs_Model_Bag":
demucs_model_set_name_b = 'UVR_Demucs_Model_Bag'
else:
demucs_model_set_name_b = data['mdx_only_ensem_b']
if data['mdx_only_ensem_c'] == "Demucs: Tasnet v1":
demucs_model_set_name_c = 'tasnet.th'
elif data['mdx_only_ensem_c'] == "Demucs: Tasnet_extra v1":
demucs_model_set_name_c = 'tasnet_extra.th'
elif data['mdx_only_ensem_c'] == "Demucs: Demucs v1":
demucs_model_set_name_c = 'demucs.th'
elif data['mdx_only_ensem_c'] == "Demucs: Demucs_extra v1":
demucs_model_set_name_c = 'demucs_extra.th'
elif data['mdx_only_ensem_c'] == "Demucs: Light v1":
demucs_model_set_name_c = 'light.th'
elif data['mdx_only_ensem_c'] == "Demucs: Light_extra v1":
demucs_model_set_name_c = 'light_extra.th'
elif data['mdx_only_ensem_c'] == "Demucs: Demucs v1.gz":
demucs_model_set_name_c = 'demucs.th.gz'
elif data['mdx_only_ensem_c'] == "Demucs: Demucs_extra v1.gz":
demucs_model_set_name_c = 'demucs_extra.th.gz'
elif data['mdx_only_ensem_c'] == "Demucs: Light v1.gz":
demucs_model_set_name_c = 'light.th.gz'
elif data['mdx_only_ensem_c'] == "Demucs: Light_extra v1.gz":
demucs_model_set_name_c = 'light_extra.th.gz'
elif data['mdx_only_ensem_c'] == "Demucs: Tasnet v2":
demucs_model_set_name_c = 'tasnet-beb46fac.th'
elif data['mdx_only_ensem_c'] == "Demucs: Tasnet_extra v2":
demucs_model_set_name_c = 'tasnet_extra-df3777b2.th'
elif data['mdx_only_ensem_c'] == "Demucs: Demucs48_hq v2":
demucs_model_set_name_c = 'demucs48_hq-28a1282c.th'
elif data['mdx_only_ensem_c'] == "Demucs: Demucs v2":
demucs_model_set_name_c = 'demucs-e07c671f.th'
elif data['mdx_only_ensem_c'] == "Demucs: Demucs_extra v2":
demucs_model_set_name_c = 'demucs_extra-3646af93.th'
elif data['mdx_only_ensem_c'] == "Demucs: Demucs_unittest v2":
demucs_model_set_name_c = 'demucs_unittest-09ebc15f.th'
elif data['mdx_only_ensem_c'] == "Demucs: mdx_extra":
demucs_model_set_name_c = 'mdx_extra'
elif data['mdx_only_ensem_c'] == "Demucs: mdx_extra_q":
demucs_model_set_name_c = 'mdx_extra_q'
elif data['mdx_only_ensem_c'] == "Demucs: mdx":
demucs_model_set_name_c = 'mdx'
elif data['mdx_only_ensem_c'] == "Demucs: mdx_q":
demucs_model_set_name_c = 'mdx_q'
elif data['mdx_only_ensem_c'] == "Demucs: UVR_Demucs_Model_1":
demucs_model_set_name_c = 'UVR_Demucs_Model_1'
elif data['mdx_only_ensem_c'] == "Demucs: UVR_Demucs_Model_2":
demucs_model_set_name_c = 'UVR_Demucs_Model_2'
elif data['mdx_only_ensem_c'] == "Demucs: UVR_Demucs_Model_Bag":
demucs_model_set_name_c = 'UVR_Demucs_Model_Bag'
else:
demucs_model_set_name_c = data['mdx_only_ensem_c']
if data['mdx_only_ensem_d'] == "Demucs: Tasnet v1":
demucs_model_set_name_d = 'tasnet.th'
elif data['mdx_only_ensem_d'] == "Demucs: Tasnet_extra v1":
demucs_model_set_name_d = 'tasnet_extra.th'
elif data['mdx_only_ensem_d'] == "Demucs: Demucs v1":
demucs_model_set_name_d = 'demucs.th'
elif data['mdx_only_ensem_d'] == "Demucs: Demucs_extra v1":
demucs_model_set_name_d = 'demucs_extra.th'
elif data['mdx_only_ensem_d'] == "Demucs: Light v1":
demucs_model_set_name_d = 'light.th'
elif data['mdx_only_ensem_d'] == "Demucs: Light_extra v1":
demucs_model_set_name_d = 'light_extra.th'
elif data['mdx_only_ensem_d'] == "Demucs: Demucs v1.gz":
demucs_model_set_name_d = 'demucs.th.gz'
elif data['mdx_only_ensem_d'] == "Demucs: Demucs_extra v1.gz":
demucs_model_set_name_d = 'demucs_extra.th.gz'
elif data['mdx_only_ensem_d'] == "Demucs: Light v1.gz":
demucs_model_set_name_d = 'light.th.gz'
elif data['mdx_only_ensem_d'] == "Demucs: Light_extra v1.gz":
demucs_model_set_name_d = 'light_extra.th.gz'
elif data['mdx_only_ensem_d'] == "Demucs: Tasnet v2":
demucs_model_set_name_d = 'tasnet-beb46fac.th'
elif data['mdx_only_ensem_d'] == "Demucs: Tasnet_extra v2":
demucs_model_set_name_d = 'tasnet_extra-df3777b2.th'
elif data['mdx_only_ensem_d'] == "Demucs: Demucs48_hq v2":
demucs_model_set_name_d = 'demucs48_hq-28a1282c.th'
elif data['mdx_only_ensem_d'] == "Demucs: Demucs v2":
demucs_model_set_name_d = 'demucs-e07c671f.th'
elif data['mdx_only_ensem_d'] == "Demucs: Demucs_extra v2":
demucs_model_set_name_d = 'demucs_extra-3646af93.th'
elif data['mdx_only_ensem_d'] == "Demucs: Demucs_unittest v2":
demucs_model_set_name_d = 'demucs_unittest-09ebc15f.th'
elif data['mdx_only_ensem_d'] == "Demucs: mdx_extra":
demucs_model_set_name_d = 'mdx_extra'
elif data['mdx_only_ensem_d'] == "Demucs: mdx_extra_q":
demucs_model_set_name_d = 'mdx_extra_q'
elif data['mdx_only_ensem_d'] == "Demucs: mdx":
demucs_model_set_name_d = 'mdx'
elif data['mdx_only_ensem_d'] == "Demucs: mdx_q":
demucs_model_set_name_d = 'mdx_q'
elif data['mdx_only_ensem_d'] == "Demucs: UVR_Demucs_Model_1":
demucs_model_set_name_d = 'UVR_Demucs_Model_1'
elif data['mdx_only_ensem_d'] == "Demucs: UVR_Demucs_Model_2":
demucs_model_set_name_d = 'UVR_Demucs_Model_2'
elif data['mdx_only_ensem_d'] == "Demucs: UVR_Demucs_Model_Bag":
demucs_model_set_name_d = 'UVR_Demucs_Model_Bag'
else:
demucs_model_set_name_d = data['mdx_only_ensem_d']
if data['mdx_only_ensem_e'] == "Demucs: Tasnet v1":
demucs_model_set_name_e = 'tasnet.th'
elif data['mdx_only_ensem_e'] == "Demucs: Tasnet_extra v1":
demucs_model_set_name_e = 'tasnet_extra.th'
elif data['mdx_only_ensem_e'] == "Demucs: Demucs v1":
demucs_model_set_name_e = 'demucs.th'
elif data['mdx_only_ensem_e'] == "Demucs: Demucs_extra v1":
demucs_model_set_name_e = 'demucs_extra.th'
elif data['mdx_only_ensem_e'] == "Demucs: Light v1":
demucs_model_set_name_e = 'light.th'
elif data['mdx_only_ensem_e'] == "Demucs: Light_extra v1":
demucs_model_set_name_e = 'light_extra.th'
elif data['mdx_only_ensem_e'] == "Demucs: Demucs v1.gz":
demucs_model_set_name_e = 'demucs.th.gz'
elif data['mdx_only_ensem_e'] == "Demucs: Demucs_extra v1.gz":
demucs_model_set_name_e = 'demucs_extra.th.gz'
elif data['mdx_only_ensem_e'] == "Demucs: Light v1.gz":
demucs_model_set_name_e = 'light.th.gz'
elif data['mdx_only_ensem_e'] == "Demucs: Light_extra v1.gz":
demucs_model_set_name_e = 'light_extra.th.gz'
elif data['mdx_only_ensem_e'] == "Demucs: Tasnet v2":
demucs_model_set_name_e = 'tasnet-beb46fac.th'
elif data['mdx_only_ensem_e'] == "Demucs: Tasnet_extra v2":
demucs_model_set_name_e = 'tasnet_extra-df3777b2.th'
elif data['mdx_only_ensem_e'] == "Demucs: Demucs48_hq v2":
demucs_model_set_name_e = 'demucs48_hq-28a1282c.th'
elif data['mdx_only_ensem_e'] == "Demucs: Demucs v2":
demucs_model_set_name_e = 'demucs-e07c671f.th'
elif data['mdx_only_ensem_e'] == "Demucs: Demucs_extra v2":
demucs_model_set_name_e = 'demucs_extra-3646af93.th'
elif data['mdx_only_ensem_e'] == "Demucs: Demucs_unittest v2":
demucs_model_set_name_e = 'demucs_unittest-09ebc15f.th'
elif data['mdx_only_ensem_e'] == "Demucs: mdx_extra":
demucs_model_set_name_e = 'mdx_extra'
elif data['mdx_only_ensem_e'] == "Demucs: mdx_extra_q":
demucs_model_set_name_e = 'mdx_extra_q'
elif data['mdx_only_ensem_e'] == "Demucs: mdx":
demucs_model_set_name_e = 'mdx'
elif data['mdx_only_ensem_e'] == "Demucs: mdx_q":
demucs_model_set_name_e = 'mdx_q'
elif data['mdx_only_ensem_e'] == "Demucs: UVR_Demucs_Model_1":
demucs_model_set_name_e = 'UVR_Demucs_Model_1'
elif data['mdx_only_ensem_e'] == "Demucs: UVR_Demucs_Model_2":
demucs_model_set_name_e = 'UVR_Demucs_Model_2'
elif data['mdx_only_ensem_e'] == "Demucs: UVR_Demucs_Model_Bag":
demucs_model_set_name_e = 'UVR_Demucs_Model_Bag'
else:
demucs_model_set_name_e = data['mdx_only_ensem_e']
# Update default settings
global default_window_size
global default_agg
global normalization_set
default_window_size = data['window_size']
default_agg = data['agg']
if data['wavtype'] == '32-bit Float':
wav_type_set = 'FLOAT'
elif data['wavtype'] == '64-bit Float':
wav_type_set = 'DOUBLE'
else:
wav_type_set = data['wavtype']
flac_type_set = data['flactype']
mp3_bit_set = data['mp3bit']
if data['normalize'] == True:
normalization_set = spec_utils.normalize
print('normalization on')
else:
normalization_set = spec_utils.nonormalize
print('normalization off')
stime = time.perf_counter()
progress_var.set(0)
text_widget.clear()
button_widget.configure(state=tk.DISABLED) # Disable Button
if os.path.exists('models/Main_Models/7_HP2-UVR.pth') \
or os.path.exists('models/Main_Models/8_HP2-UVR.pth') \
or os.path.exists('models/Main_Models/9_HP2-UVR.pth'):
hp2_ens = 'on'
else:
hp2_ens = 'off'
timestampnum = round(datetime.utcnow().timestamp())
randomnum = randrange(100000, 1000000)
#print('Do all of the HP models exist? ' + hp2_ens)
# Separation Preperation
try: #Ensemble Dictionary
overlap_set = float(data['overlap'])
channel_set = int(data['channel'])
margin_set = int(data['margin'])
shift_set = int(data['shifts'])
demucs_model_set = demucs_model_set_name
split_mode = data['split_mode']
if data['wavtype'] == '64-bit Float':
if data['saveFormat'] == 'Flac':
text_widget.write('Please select \"WAV\" as your save format to use 64-bit Float.\n')
text_widget.write(f'Time Elapsed: {time.strftime("%H:%M:%S", time.gmtime(int(time.perf_counter() - stime)))}')
progress_var.set(0)
button_widget.configure(state=tk.NORMAL) # Enable Button
return
if data['wavtype'] == '64-bit Float':
if data['saveFormat'] == 'Mp3':
text_widget.write('Please select \"WAV\" as your save format to use 64-bit Float.\n')
text_widget.write(f'Time Elapsed: {time.strftime("%H:%M:%S", time.gmtime(int(time.perf_counter() - stime)))}')
progress_var.set(0)
button_widget.configure(state=tk.NORMAL) # Enable Button
return
if not data['ensChoose'] == 'Manual Ensemble':
##### Basic VR Ensemble #####
#1st Model
vr_ensem_a_name = data['vr_ensem_a']
vr_ensem_a = f'models/Main_Models/{vr_ensem_a_name}.pth'
vr_param_ens_a = data['vr_basic_USER_model_param_1']
#2nd Model
vr_ensem_b_name = data['vr_ensem_b']
vr_ensem_b = f'models/Main_Models/{vr_ensem_b_name}.pth'
vr_param_ens_b = data['vr_basic_USER_model_param_2']
#3rd Model
vr_ensem_c_name = data['vr_ensem_c']
vr_ensem_c = f'models/Main_Models/{vr_ensem_c_name}.pth'
vr_param_ens_c = data['vr_basic_USER_model_param_3']
#4th Model
vr_ensem_d_name = data['vr_ensem_d']
vr_ensem_d = f'models/Main_Models/{vr_ensem_d_name}.pth'
vr_param_ens_d = data['vr_basic_USER_model_param_4']
# 5th Model
vr_ensem_e_name = data['vr_ensem_e']
vr_ensem_e = f'models/Main_Models/{vr_ensem_e_name}.pth'
vr_param_ens_e = data['vr_basic_USER_model_param_5']
if data['vr_ensem_c'] == 'No Model' and data['vr_ensem_d'] == 'No Model' and data['vr_ensem_e'] == 'No Model':
Basic_Ensem = [
{
'model_name': vr_ensem_a_name,
'model_name_c':vr_ensem_a_name,
'model_param': vr_param_ens_a,
'model_location': vr_ensem_a,
'loop_name': 'Ensemble Mode - Model 1/2'
},
{
'model_name': vr_ensem_b_name,
'model_name_c':vr_ensem_b_name,
'model_param': vr_param_ens_b,
'model_location': vr_ensem_b,
'loop_name': 'Ensemble Mode - Model 2/2'
}
]
elif data['vr_ensem_c'] == 'No Model' and data['vr_ensem_d'] == 'No Model':
Basic_Ensem = [
{
'model_name': vr_ensem_a_name,
'model_name_c':vr_ensem_a_name,
'model_param': vr_param_ens_a,
'model_location': vr_ensem_a,
'loop_name': 'Ensemble Mode - Model 1/3'
},
{
'model_name': vr_ensem_b_name,
'model_name_c':vr_ensem_b_name,
'model_param': vr_param_ens_b,
'model_location': vr_ensem_b,
'loop_name': 'Ensemble Mode - Model 2/3'
},
{
'model_name': vr_ensem_e_name,
'model_name_c':vr_ensem_e_name,
'model_param': vr_param_ens_e,
'model_location': vr_ensem_e,
'loop_name': 'Ensemble Mode - Model 3/3'
}
]
elif data['vr_ensem_c'] == 'No Model' and data['vr_ensem_e'] == 'No Model':
Basic_Ensem = [
{
'model_name': vr_ensem_a_name,
'model_name_c':vr_ensem_a_name,
'model_param': vr_param_ens_a,
'model_location': vr_ensem_a,
'loop_name': 'Ensemble Mode - Model 1/3'
},
{
'model_name': vr_ensem_b_name,
'model_name_c':vr_ensem_b_name,
'model_param': vr_param_ens_b,
'model_location': vr_ensem_b,
'loop_name': 'Ensemble Mode - Model 2/3'
},
{
'model_name': vr_ensem_d_name,
'model_name_c':vr_ensem_d_name,
'model_param': vr_param_ens_d,
'model_location': vr_ensem_d,
'loop_name': 'Ensemble Mode - Model 3/3'
}
]
elif data['vr_ensem_d'] == 'No Model' and data['vr_ensem_e'] == 'No Model':
Basic_Ensem = [
{
'model_name': vr_ensem_a_name,
'model_name_c':vr_ensem_a_name,
'model_param': vr_param_ens_a,
'model_location': vr_ensem_a,
'loop_name': 'Ensemble Mode - Model 1/3'
},
{
'model_name': vr_ensem_b_name,
'model_name_c':vr_ensem_b_name,
'model_param': vr_param_ens_b,
'model_location': vr_ensem_b,
'loop_name': 'Ensemble Mode - Model 2/3'
},
{
'model_name': vr_ensem_c_name,
'model_name_c':vr_ensem_c_name,
'model_param': vr_param_ens_c,
'model_location': vr_ensem_c,
'loop_name': 'Ensemble Mode - Model 3/3'
}
]
elif data['vr_ensem_d'] == 'No Model':
Basic_Ensem = [
{
'model_name': vr_ensem_a_name,
'model_name_c':vr_ensem_a_name,
'model_param': vr_param_ens_a,
'model_location': vr_ensem_a,
'loop_name': 'Ensemble Mode - Model 1/4'
},
{
'model_name': vr_ensem_b_name,
'model_name_c':vr_ensem_b_name,
'model_param': vr_param_ens_b,
'model_location': vr_ensem_b,
'loop_name': 'Ensemble Mode - Model 2/4'
},
{
'model_name': vr_ensem_c_name,
'model_name_c':vr_ensem_c_name,
'model_param': vr_param_ens_c,
'model_location': vr_ensem_c,
'loop_name': 'Ensemble Mode - Model 3/4'
},
{
'model_name': vr_ensem_e_name,
'model_name_c':vr_ensem_e_name,
'model_param': vr_param_ens_e,
'model_location': vr_ensem_e,
'loop_name': 'Ensemble Mode - Model 4/4'
}
]
elif data['vr_ensem_c'] == 'No Model':
Basic_Ensem = [
{
'model_name': vr_ensem_a_name,
'model_name_c':vr_ensem_a_name,
'model_param': vr_param_ens_a,
'model_location': vr_ensem_a,
'loop_name': 'Ensemble Mode - Model 1/4'
},
{
'model_name': vr_ensem_b_name,
'model_name_c':vr_ensem_b_name,
'model_param': vr_param_ens_b,
'model_location': vr_ensem_b,
'loop_name': 'Ensemble Mode - Model 2/4'
},
{
'model_name': vr_ensem_d_name,
'model_name_c':vr_ensem_d_name,
'model_param': vr_param_ens_d,
'model_location': vr_ensem_d,
'loop_name': 'Ensemble Mode - Model 3/4'
},
{
'model_name': vr_ensem_e_name,
'model_name_c':vr_ensem_e_name,
'model_param': vr_param_ens_e,
'model_location': vr_ensem_e,
'loop_name': 'Ensemble Mode - Model 4/4'
}
]
elif data['vr_ensem_e'] == 'No Model':
Basic_Ensem = [
{
'model_name': vr_ensem_a_name,
'model_name_c':vr_ensem_a_name,
'model_param': vr_param_ens_a,
'model_location': vr_ensem_a,
'loop_name': 'Ensemble Mode - Model 1/4'
},
{
'model_name': vr_ensem_b_name,
'model_name_c':vr_ensem_b_name,
'model_param': vr_param_ens_b,
'model_location': vr_ensem_b,
'loop_name': 'Ensemble Mode - Model 2/4'
},
{
'model_name': vr_ensem_c_name,
'model_name_c':vr_ensem_c_name,
'model_param': vr_param_ens_c,
'model_location': vr_ensem_c,
'loop_name': 'Ensemble Mode - Model 3/4'
},
{
'model_name': vr_ensem_d_name,
'model_name_c':vr_ensem_d_name,
'model_param': vr_param_ens_d,
'model_location': vr_ensem_d,
'loop_name': 'Ensemble Mode - Model 4/4'
}
]
else:
Basic_Ensem = [
{
'model_name': vr_ensem_a_name,
'model_name_c':vr_ensem_a_name,
'model_param': vr_param_ens_a,
'model_location': vr_ensem_a,
'loop_name': 'Ensemble Mode - Model 1/5'
},
{
'model_name': vr_ensem_b_name,
'model_name_c':vr_ensem_b_name,
'model_param': vr_param_ens_b,
'model_location': vr_ensem_b,
'loop_name': 'Ensemble Mode - Model 2/5'
},
{
'model_name': vr_ensem_c_name,
'model_name_c':vr_ensem_c_name,
'model_param': vr_param_ens_c,
'model_location': vr_ensem_c,
'loop_name': 'Ensemble Mode - Model 3/5'
},
{
'model_name': vr_ensem_d_name,
'model_name_c':vr_ensem_d_name,
'model_param': vr_param_ens_d,
'model_location': vr_ensem_d,
'loop_name': 'Ensemble Mode - Model 4/5'
},
{
'model_name': vr_ensem_e_name,
'model_name_c':vr_ensem_e_name,
'model_param': vr_param_ens_e,
'model_location': vr_ensem_e,
'loop_name': 'Ensemble Mode - Model 5/5'
}
]
##### Multi-AI Ensemble #####
#VR Model 1
vr_ensem_name = data['vr_ensem']
vr_ensem = f'models/Main_Models/{vr_ensem_name}.pth'
vr_param_ens_multi = data['vr_multi_USER_model_param_1']
#VR Model 2
vr_ensem_mdx_a_name = data['vr_ensem_mdx_a']
vr_ensem_mdx_a = f'models/Main_Models/{vr_ensem_mdx_a_name}.pth'
vr_param_ens_multi_a = data['vr_multi_USER_model_param_2']
#VR Model 3
vr_ensem_mdx_b_name = data['vr_ensem_mdx_b']
vr_ensem_mdx_b = f'models/Main_Models/{vr_ensem_mdx_b_name}.pth'
vr_param_ens_multi_b = data['vr_multi_USER_model_param_3']
#VR Model 4
vr_ensem_mdx_c_name = data['vr_ensem_mdx_c']
vr_ensem_mdx_c = f'models/Main_Models/{vr_ensem_mdx_c_name}.pth'
vr_param_ens_multi_c = data['vr_multi_USER_model_param_4']
#MDX-Net/Demucs Model 1
if 'MDX-Net:' in data['mdx_ensem']:
mdx_model_run_mul_a = 'yes'
mdx_net_model_name = data['mdx_ensem']
head, sep, tail = mdx_net_model_name.partition('MDX-Net: ')
mdx_net_model_name = tail
#mdx_ensem = mdx_net_model_name
if mdx_net_model_name == 'UVR-MDX-NET 1':
if os.path.isfile('models/MDX_Net_Models/UVR_MDXNET_1_9703.onnx'):
mdx_ensem = 'UVR_MDXNET_1_9703'
else:
mdx_ensem = 'UVR_MDXNET_9703'
elif mdx_net_model_name == 'UVR-MDX-NET 2':
if os.path.isfile('models/MDX_Net_Models/UVR_MDXNET_2_9682.onnx'):
mdx_ensem = 'UVR_MDXNET_2_9682'
else:
mdx_ensem = 'UVR_MDXNET_9682'
elif mdx_net_model_name == 'UVR-MDX-NET 3':
if os.path.isfile('models/MDX_Net_Models/UVR_MDXNET_3_9662.onnx'):
mdx_ensem = 'UVR_MDXNET_3_9662'
else:
mdx_ensem = 'UVR_MDXNET_9662'
elif mdx_net_model_name == 'UVR-MDX-NET Karaoke':
mdx_ensem = 'UVR_MDXNET_KARA'
elif mdx_net_model_name == 'UVR-MDX-NET Main':
mdx_ensem = 'UVR_MDXNET_Main'
else:
mdx_ensem = mdx_net_model_name
if 'Demucs:' in data['mdx_ensem']:
mdx_model_run_mul_a = 'no'
mdx_ensem = demucs_model_set_name_muilti_a
if data['mdx_ensem'] == 'No Model':
mdx_ensem = 'pass'
mdx_model_run_mul_a = 'pass'
#MDX-Net/Demucs Model 2
if 'MDX-Net:' in data['mdx_ensem_b']:
mdx_model_run_mul_b = 'yes'
mdx_net_model_name = data['mdx_ensem_b']
head, sep, tail = mdx_net_model_name.partition('MDX-Net: ')
mdx_net_model_name = tail
#mdx_ensem_b = mdx_net_model_name
if mdx_net_model_name == 'UVR-MDX-NET 1':
if os.path.isfile('models/MDX_Net_Models/UVR_MDXNET_1_9703.onnx'):
mdx_ensem_b = 'UVR_MDXNET_1_9703'
else:
mdx_ensem_b = 'UVR_MDXNET_9703'
elif mdx_net_model_name == 'UVR-MDX-NET 2':
if os.path.isfile('models/MDX_Net_Models/UVR_MDXNET_2_9682.onnx'):
mdx_ensem_b = 'UVR_MDXNET_2_9682'
else:
mdx_ensem_b = 'UVR_MDXNET_9682'
elif mdx_net_model_name == 'UVR-MDX-NET 3':
if os.path.isfile('models/MDX_Net_Models/UVR_MDXNET_3_9662.onnx'):
mdx_ensem_b = 'UVR_MDXNET_3_9662'
else:
mdx_ensem_b = 'UVR_MDXNET_9662'
elif mdx_net_model_name == 'UVR-MDX-NET Karaoke':
mdx_ensem_b = 'UVR_MDXNET_KARA'
elif mdx_net_model_name == 'UVR-MDX-NET Main':
mdx_ensem_b = 'UVR_MDXNET_Main'
else:
mdx_ensem_b = mdx_net_model_name
if 'Demucs:' in data['mdx_ensem_b']:
mdx_model_run_mul_b = 'no'
mdx_ensem_b = demucs_model_set_name_muilti_b
if data['mdx_ensem_b'] == 'No Model':
mdx_ensem_b = 'pass'
mdx_model_run_mul_b = 'pass'
if data['vr_ensem'] == 'No Model' and data['vr_ensem_mdx_a'] == 'No Model' and data['vr_ensem_mdx_b'] == 'No Model' and data['vr_ensem_mdx_c'] == 'No Model':
mdx_vr = [
{
'model_name': vr_ensem_name,
'mdx_model_name': mdx_ensem,
'mdx_model_run': mdx_model_run_mul_a,
'model_name_c': vr_ensem_name,
'model_param': vr_param_ens_multi,
'model_location':vr_ensem,
'loop_name': f'Ensemble Mode - Running Model - {mdx_ensem}',
},
{
'model_name': 'pass',
'mdx_model_name': mdx_ensem_b,
'mdx_model_run': mdx_model_run_mul_b,
'model_name_c': 'pass',
'model_param': 'pass',
'model_location':'pass',
'loop_name': f'Ensemble Mode - Last Model - {mdx_ensem_b}',
}
]
elif data['vr_ensem_mdx_a'] == 'No Model' and data['vr_ensem_mdx_b'] == 'No Model' and data['vr_ensem_mdx_c'] == 'No Model':
mdx_vr = [
{
'model_name': vr_ensem_name,
'mdx_model_name': mdx_ensem,
'mdx_model_run': mdx_model_run_mul_a,
'model_name_c': vr_ensem_name,
'model_param': vr_param_ens_multi,
'model_location':vr_ensem,
'loop_name': f'Ensemble Mode - Running Model - {vr_ensem_name}',
},
{
'model_name': 'pass',
'mdx_model_name': mdx_ensem_b,
'mdx_model_run': mdx_model_run_mul_b,
'model_name_c': 'pass',
'model_param': 'pass',
'model_location':'pass',
'loop_name': 'Ensemble Mode - Last Model',
}
]
elif data['vr_ensem_mdx_a'] == 'No Model' and data['vr_ensem_mdx_b'] == 'No Model':
mdx_vr = [
{
'model_name': vr_ensem_name,
'mdx_model_name': mdx_ensem_b,
'mdx_model_run': mdx_model_run_mul_b,
'model_name_c': vr_ensem_name,
'model_param': vr_param_ens_multi,
'model_location':vr_ensem,
'loop_name': f'Ensemble Mode - Running Model - {vr_ensem_name}'
},
{
'model_name': vr_ensem_mdx_c_name,
'mdx_model_name': mdx_ensem,
'mdx_model_run': mdx_model_run_mul_a,
'model_name_c': vr_ensem_mdx_c_name,
'model_param': vr_param_ens_multi_c,
'model_location':vr_ensem_mdx_c,
'loop_name': f'Ensemble Mode - Running Model - {vr_ensem_mdx_c_name}'
}
]
elif data['vr_ensem_mdx_a'] == 'No Model' and data['vr_ensem_mdx_c'] == 'No Model':
mdx_vr = [
{
'model_name': vr_ensem_name,
'mdx_model_name': mdx_ensem_b,
'mdx_model_run': mdx_model_run_mul_b,
'model_name_c': vr_ensem_name,
'model_param': vr_param_ens_multi,
'model_location':vr_ensem,
'loop_name': f'Ensemble Mode - Running Model - {vr_ensem_name}'
},
{
'model_name': vr_ensem_mdx_b_name,
'mdx_model_name': mdx_ensem,
'mdx_model_run': mdx_model_run_mul_a,
'model_name_c': vr_ensem_mdx_b_name,
'model_param': vr_param_ens_multi_b,
'model_location':vr_ensem_mdx_b,
'loop_name': f'Ensemble Mode - Running Model - {vr_ensem_mdx_b_name}'
},
]
elif data['vr_ensem_mdx_b'] == 'No Model' and data['vr_ensem_mdx_c'] == 'No Model':
mdx_vr = [
{
'model_name': vr_ensem_name,
'mdx_model_name': mdx_ensem_b,
'mdx_model_run': mdx_model_run_mul_b,
'model_name_c': vr_ensem_name,
'model_param': vr_param_ens_multi,
'model_location':vr_ensem,
'loop_name': f'Ensemble Mode - Running Model - {vr_ensem_name}'
},
{
'model_name': vr_ensem_mdx_a_name,
'mdx_model_name': mdx_ensem,
'mdx_model_run': mdx_model_run_mul_a,
'model_name_c': vr_ensem_mdx_a_name,
'model_param': vr_param_ens_multi_a,
'model_location':vr_ensem_mdx_a,
'loop_name': f'Ensemble Mode - Running Model - {vr_ensem_mdx_a_name}'
}
]
elif data['vr_ensem_mdx_a'] == 'No Model':
mdx_vr = [
{
'model_name': vr_ensem_name,
'mdx_model_name': 'pass',
'mdx_model_run': 'pass',
'model_name_c': vr_ensem_name,
'model_param': vr_param_ens_multi,
'model_location':vr_ensem,
'loop_name': f'Ensemble Mode - Running Model - {vr_ensem_name}'
},
{
'model_name': vr_ensem_mdx_b_name,
'mdx_model_name': mdx_ensem_b,
'mdx_model_run': mdx_model_run_mul_b,
'model_name_c': vr_ensem_mdx_b_name,
'model_param': vr_param_ens_multi_b,
'model_location':vr_ensem_mdx_b,
'loop_name': f'Ensemble Mode - Running Model - {vr_ensem_mdx_b_name}'
},
{
'model_name': vr_ensem_mdx_c_name,
'mdx_model_name': mdx_ensem,
'mdx_model_run': mdx_model_run_mul_a,
'model_name_c': vr_ensem_mdx_c_name,
'model_param': vr_param_ens_multi_c,
'model_location':vr_ensem_mdx_c,
'loop_name': f'Ensemble Mode - Running Model - {vr_ensem_mdx_c_name}'
}
]
elif data['vr_ensem_mdx_b'] == 'No Model':
mdx_vr = [
{
'model_name': vr_ensem_name,
'mdx_model_name': 'pass',
'mdx_model_run': 'pass',
'model_name_c': vr_ensem_name,
'model_param': vr_param_ens_multi,
'model_location':vr_ensem,
'loop_name': f'Ensemble Mode - Running Model - {vr_ensem_name}'
},
{
'model_name': vr_ensem_mdx_a_name,
'mdx_model_name': mdx_ensem_b,
'mdx_model_run': mdx_model_run_mul_b,
'model_name_c': vr_ensem_mdx_a_name,
'model_param': vr_param_ens_multi_a,
'model_location':vr_ensem_mdx_a,
'loop_name': f'Ensemble Mode - Running Model - {vr_ensem_mdx_a_name}'
},
{
'model_name': vr_ensem_mdx_c_name,
'mdx_model_name': mdx_ensem,
'mdx_model_run': mdx_model_run_mul_a,
'model_name_c': vr_ensem_mdx_c_name,
'model_param': vr_param_ens_multi_c,
'model_location':vr_ensem_mdx_c,
'loop_name': f'Ensemble Mode - Running Model - {vr_ensem_mdx_c_name}'
}
]
elif data['vr_ensem_mdx_c'] == 'No Model':
mdx_vr = [
{
'model_name': vr_ensem_name,
'mdx_model_name': 'pass',
'mdx_model_run': 'pass',
'model_name_c': vr_ensem_name,
'model_param': vr_param_ens_multi,
'model_location':vr_ensem,
'loop_name': f'Ensemble Mode - Running Model - {vr_ensem_name}'
},
{
'model_name': vr_ensem_mdx_a_name,
'mdx_model_name': mdx_ensem_b,
'mdx_model_run': mdx_model_run_mul_b,
'model_name_c': vr_ensem_mdx_a_name,
'model_param': vr_param_ens_multi_a,
'model_location':vr_ensem_mdx_a,
'loop_name': f'Ensemble Mode - Running Model - {vr_ensem_mdx_a_name}'
},
{
'model_name': vr_ensem_mdx_b_name,
'mdx_model_name': mdx_ensem,
'mdx_model_run': mdx_model_run_mul_a,
'model_name_c': vr_ensem_mdx_b_name,
'model_param': vr_param_ens_multi_b,
'model_location':vr_ensem_mdx_b,
'loop_name': f'Ensemble Mode - Running Model - {vr_ensem_mdx_b_name}'
}
]
else:
mdx_vr = [
{
'model_name': vr_ensem_name,
'mdx_model_name': 'pass',
'mdx_model_run': 'pass',
'model_name_c': vr_ensem_name,
'model_param': vr_param_ens_multi,
'model_location':vr_ensem,
'loop_name': f'Ensemble Mode - Running Model - {vr_ensem_name}'
},
{
'model_name': vr_ensem_mdx_a_name,
'mdx_model_name': 'pass',
'mdx_model_run': 'pass',
'model_name_c': vr_ensem_mdx_a_name,
'model_param': vr_param_ens_multi_a,
'model_location':vr_ensem_mdx_a,
'loop_name': f'Ensemble Mode - Running Model - {vr_ensem_mdx_a_name}'
},
{
'model_name': vr_ensem_mdx_b_name,
'mdx_model_name': mdx_ensem_b,
'mdx_model_run': mdx_model_run_mul_b,
'model_name_c': vr_ensem_mdx_b_name,
'model_param': vr_param_ens_multi_b,
'model_location':vr_ensem_mdx_b,
'loop_name': f'Ensemble Mode - Running Model - {vr_ensem_mdx_b_name}'
},
{
'model_name': vr_ensem_mdx_c_name,
'mdx_model_name': mdx_ensem,
'mdx_model_run': mdx_model_run_mul_a,
'model_name_c': vr_ensem_mdx_c_name,
'model_param': vr_param_ens_multi_c,
'model_location':vr_ensem_mdx_c,
'loop_name': f'Ensemble Mode - Running Model - {vr_ensem_mdx_c_name}'
}
]
##### Basic MD Ensemble #####
#MDX-Net/Demucs Model 1
if 'MDX-Net:' in data['mdx_only_ensem_a']:
mdx_model_run_a = 'yes'
mdx_net_model_name = str(data['mdx_only_ensem_a'])
head, sep, tail = mdx_net_model_name.partition('MDX-Net: ')
mdx_net_model_name = tail
#print('mdx_net_model_name ', mdx_net_model_name)
#mdx_only_ensem_a = mdx_net_model_name
if mdx_net_model_name == 'UVR-MDX-NET 1':
if os.path.isfile('models/MDX_Net_Models/UVR_MDXNET_1_9703.onnx'):
mdx_only_ensem_a = 'UVR_MDXNET_1_9703'
else:
mdx_only_ensem_a = 'UVR_MDXNET_9703'
elif mdx_net_model_name == 'UVR-MDX-NET 2':
if os.path.isfile('models/MDX_Net_Models/UVR_MDXNET_2_9682.onnx'):
mdx_only_ensem_a = 'UVR_MDXNET_2_9682'
else:
mdx_only_ensem_a = 'UVR_MDXNET_9682'
elif mdx_net_model_name == 'UVR-MDX-NET 3':
if os.path.isfile('models/MDX_Net_Models/UVR_MDXNET_3_9662.onnx'):
mdx_only_ensem_a = 'UVR_MDXNET_3_9662'
else:
mdx_only_ensem_a = 'UVR_MDXNET_9662'
elif mdx_net_model_name == 'UVR-MDX-NET Karaoke':
mdx_only_ensem_a = 'UVR_MDXNET_KARA'
elif mdx_net_model_name == 'UVR-MDX-NET Main':
mdx_only_ensem_a = 'UVR_MDXNET_Main'
else:
mdx_only_ensem_a = mdx_net_model_name
if 'Demucs:' in data['mdx_only_ensem_a']:
mdx_model_run_a = 'no'
mdx_only_ensem_a = demucs_model_set_name_a
if data['mdx_only_ensem_a'] == 'No Model':
mdx_model_run_a = 'no'
mdx_only_ensem_a = 'pass'
#MDX-Net/Demucs Model 2
if 'MDX-Net:' in data['mdx_only_ensem_b']:
mdx_model_run_b = 'yes'
mdx_net_model_name = str(data['mdx_only_ensem_b'])
head, sep, tail = mdx_net_model_name.partition('MDX-Net: ')
mdx_net_model_name = tail
#mdx_only_ensem_b = mdx_net_model_name
if mdx_net_model_name == 'UVR-MDX-NET 1':
if os.path.isfile('models/MDX_Net_Models/UVR_MDXNET_1_9703.onnx'):
mdx_only_ensem_b = 'UVR_MDXNET_1_9703'
else:
mdx_only_ensem_b = 'UVR_MDXNET_9703'
elif mdx_net_model_name == 'UVR-MDX-NET 2':
if os.path.isfile('models/MDX_Net_Models/UVR_MDXNET_2_9682.onnx'):
mdx_only_ensem_b = 'UVR_MDXNET_2_9682'
else:
mdx_only_ensem_b = 'UVR_MDXNET_9682'
elif mdx_net_model_name == 'UVR-MDX-NET 3':
if os.path.isfile('models/MDX_Net_Models/UVR_MDXNET_3_9662.onnx'):
mdx_only_ensem_b = 'UVR_MDXNET_3_9662'
else:
mdx_only_ensem_b = 'UVR_MDXNET_9662'
elif mdx_net_model_name == 'UVR-MDX-NET Karaoke':
mdx_only_ensem_b = 'UVR_MDXNET_KARA'
elif mdx_net_model_name == 'UVR-MDX-NET Main':
mdx_only_ensem_b = 'UVR_MDXNET_Main'
else:
mdx_only_ensem_b = mdx_net_model_name
if 'Demucs:' in data['mdx_only_ensem_b']:
mdx_model_run_b = 'no'
mdx_only_ensem_b = demucs_model_set_name_b
if data['mdx_only_ensem_b'] == 'No Model':
mdx_model_run_b = 'no'
mdx_only_ensem_b = 'pass'
#MDX-Net/Demucs Model 3
if 'MDX-Net:' in data['mdx_only_ensem_c']:
mdx_model_run_c = 'yes'
mdx_net_model_name = data['mdx_only_ensem_c']
head, sep, tail = mdx_net_model_name.partition('MDX-Net: ')
mdx_net_model_name = tail
#mdx_only_ensem_c = mdx_net_model_name
if mdx_net_model_name == 'UVR-MDX-NET 1':
if os.path.isfile('models/MDX_Net_Models/UVR_MDXNET_1_9703.onnx'):
mdx_only_ensem_c = 'UVR_MDXNET_1_9703'
else:
mdx_only_ensem_c = 'UVR_MDXNET_9703'
elif mdx_net_model_name == 'UVR-MDX-NET 2':
if os.path.isfile('models/MDX_Net_Models/UVR_MDXNET_2_9682.onnx'):
mdx_only_ensem_c = 'UVR_MDXNET_2_9682'
else:
mdx_only_ensem_c = 'UVR_MDXNET_9682'
elif mdx_net_model_name == 'UVR-MDX-NET 3':
if os.path.isfile('models/MDX_Net_Models/UVR_MDXNET_3_9662.onnx'):
mdx_only_ensem_c = 'UVR_MDXNET_3_9662'
else:
mdx_only_ensem_c = 'UVR_MDXNET_9662'
elif mdx_net_model_name == 'UVR-MDX-NET Karaoke':
mdx_only_ensem_c = 'UVR_MDXNET_KARA'
elif mdx_net_model_name == 'UVR-MDX-NET Main':
mdx_only_ensem_c = 'UVR_MDXNET_Main'
else:
mdx_only_ensem_c = mdx_net_model_name
if 'Demucs:' in data['mdx_only_ensem_c']:
mdx_model_run_c = 'no'
mdx_only_ensem_c = demucs_model_set_name_c
if data['mdx_only_ensem_c'] == 'No Model':
mdx_model_run_c = 'no'
mdx_only_ensem_c = 'pass'
#MDX-Net/Demucs Model 4
if 'MDX-Net:' in data['mdx_only_ensem_d']:
mdx_model_run_d = 'yes'
mdx_net_model_name = data['mdx_only_ensem_d']
head, sep, tail = mdx_net_model_name.partition('MDX-Net: ')
mdx_net_model_name = tail
#mdx_only_ensem_d = mdx_net_model_name
if mdx_net_model_name == 'UVR-MDX-NET 1':
if os.path.isfile('models/MDX_Net_Models/UVR_MDXNET_1_9703.onnx'):
mdx_only_ensem_d = 'UVR_MDXNET_1_9703'
else:
mdx_only_ensem_d = 'UVR_MDXNET_9703'
elif mdx_net_model_name == 'UVR-MDX-NET 2':
if os.path.isfile('models/MDX_Net_Models/UVR_MDXNET_2_9682.onnx'):
mdx_only_ensem_d = 'UVR_MDXNET_2_9682'
else:
mdx_only_ensem_d = 'UVR_MDXNET_9682'
elif mdx_net_model_name == 'UVR-MDX-NET 3':
if os.path.isfile('models/MDX_Net_Models/UVR_MDXNET_3_9662.onnx'):
mdx_only_ensem_d = 'UVR_MDXNET_3_9662'
else:
mdx_only_ensem_d = 'UVR_MDXNET_9662'
elif mdx_net_model_name == 'UVR-MDX-NET Karaoke':
mdx_only_ensem_d = 'UVR_MDXNET_KARA'
elif mdx_net_model_name == 'UVR-MDX-NET Main':
mdx_only_ensem_d = 'UVR_MDXNET_Main'
else:
mdx_only_ensem_d = mdx_net_model_name
if 'Demucs:' in data['mdx_only_ensem_d']:
mdx_model_run_d = 'no'
mdx_only_ensem_d = demucs_model_set_name_d
if data['mdx_only_ensem_d'] == 'No Model':
mdx_model_run_d = 'no'
mdx_only_ensem_d = 'pass'
#MDX-Net/Demucs Model 5
if 'MDX-Net:' in data['mdx_only_ensem_e']:
mdx_model_run_e = 'yes'
mdx_net_model_name = data['mdx_only_ensem_e']
head, sep, tail = mdx_net_model_name.partition('MDX-Net: ')
mdx_net_model_name = tail
#mdx_only_ensem_e = mdx_net_model_name
if mdx_net_model_name == 'UVR-MDX-NET 1':
if os.path.isfile('models/MDX_Net_Models/UVR_MDXNET_1_9703.onnx'):
mdx_only_ensem_e = 'UVR_MDXNET_1_9703'
else:
mdx_only_ensem_e = 'UVR_MDXNET_9703'
elif mdx_net_model_name == 'UVR-MDX-NET 2':
if os.path.isfile('models/MDX_Net_Models/UVR_MDXNET_2_9682.onnx'):
mdx_only_ensem_e = 'UVR_MDXNET_2_9682'
else:
mdx_only_ensem_e = 'UVR_MDXNET_9682'
elif mdx_net_model_name == 'UVR-MDX-NET 3':
if os.path.isfile('models/MDX_Net_Models/UVR_MDXNET_3_9662.onnx'):
mdx_only_ensem_e = 'UVR_MDXNET_3_9662'
else:
mdx_only_ensem_e = 'UVR_MDXNET_9662'
elif mdx_net_model_name == 'UVR-MDX-NET Karaoke':
mdx_only_ensem_e = 'UVR_MDXNET_KARA'
elif mdx_net_model_name == 'UVR-MDX-NET Main':
mdx_only_ensem_e = 'UVR_MDXNET_Main'
else:
mdx_only_ensem_e = mdx_net_model_name
if 'Demucs:' in data['mdx_only_ensem_e']:
mdx_model_run_e = 'no'
mdx_only_ensem_e = demucs_model_set_name_e
if data['mdx_only_ensem_e'] == 'No Model':
mdx_model_run_e = 'no'
mdx_only_ensem_e = 'pass'
if data['mdx_only_ensem_c'] == 'No Model' and data['mdx_only_ensem_d'] == 'No Model' and data['mdx_only_ensem_e'] == 'No Model':
mdx_demuc_only = [
{
'model_name': 'pass',
'model_name_c':'pass',
'mdx_model_name': mdx_only_ensem_a,
'mdx_model_run': mdx_model_run_a,
'model_location': 'pass',
'loop_name': f'Ensemble Mode - Running Model - {mdx_only_ensem_a}'
},
{
'model_name': 'pass',
'model_name_c':'pass',
'mdx_model_name': mdx_only_ensem_b,
'mdx_model_run': mdx_model_run_b,
'model_location': 'pass',
'loop_name': f'Ensemble Mode - Running Model - {mdx_only_ensem_b}'
}
]
elif data['mdx_only_ensem_c'] == 'No Model' and data['mdx_only_ensem_d'] == 'No Model':
mdx_demuc_only = [
{
'model_name': 'pass',
'model_name_c':'pass',
'mdx_model_name': mdx_only_ensem_a,
'mdx_model_run': mdx_model_run_a,
'model_location': 'pass',
'loop_name': f'Ensemble Mode - Running Model - {mdx_only_ensem_a}'
},
{
'model_name': 'pass',
'model_name_c':'pass',
'mdx_model_name': mdx_only_ensem_b,
'mdx_model_run': mdx_model_run_b,
'model_location': 'pass',
'loop_name': f'Ensemble Mode - Running Model - {mdx_only_ensem_b}'
},
{
'model_name': 'pass',
'model_name_c':'pass',
'mdx_model_name': mdx_only_ensem_e,
'mdx_model_run': mdx_model_run_e,
'model_location': 'pass',
'loop_name': f'Ensemble Mode - Running Model - {mdx_only_ensem_e}'
}
]
elif data['mdx_only_ensem_c'] == 'No Model' and data['mdx_only_ensem_e'] == 'No Model':
mdx_demuc_only = [
{
'model_name': 'pass',
'model_name_c':'pass',
'mdx_model_name': mdx_only_ensem_a,
'mdx_model_run': mdx_model_run_a,
'model_location': 'pass',
'loop_name': f'Ensemble Mode - Running Model - {mdx_only_ensem_a}'
},
{
'model_name': 'pass',
'model_name_c':'pass',
'mdx_model_name': mdx_only_ensem_b,
'mdx_model_run': mdx_model_run_b,
'model_location': 'pass',
'loop_name': f'Ensemble Mode - Running Model - {mdx_only_ensem_b}'
},
{
'model_name': 'pass',
'model_name_c':'pass',
'mdx_model_name': mdx_only_ensem_d,
'mdx_model_run': mdx_model_run_d,
'model_location': 'pass',
'loop_name': f'Ensemble Mode - Running Model - {mdx_only_ensem_d}'
}
]
elif data['mdx_only_ensem_d'] == 'No Model' and data['mdx_only_ensem_e'] == 'No Model':
mdx_demuc_only = [
{
'model_name': 'pass',
'model_name_c':'pass',
'mdx_model_name': mdx_only_ensem_a,
'mdx_model_run': mdx_model_run_a,
'model_location': 'pass',
'loop_name': f'Ensemble Mode - Running Model - {mdx_only_ensem_a}'
},
{
'model_name': 'pass',
'model_name_c':'pass',
'mdx_model_name': mdx_only_ensem_b,
'mdx_model_run': mdx_model_run_b,
'model_location': 'pass',
'loop_name': f'Ensemble Mode - Running Model - {mdx_only_ensem_b}'
},
{
'model_name': 'pass',
'model_name_c':'pass',
'mdx_model_name': mdx_only_ensem_c,
'mdx_model_run': mdx_model_run_c,
'model_location': 'pass',
'loop_name': f'Ensemble Mode - Running Model - {mdx_only_ensem_c}'
}
]
elif data['mdx_only_ensem_d'] == 'No Model':
mdx_demuc_only = [
{
'model_name': 'pass',
'model_name_c':'pass',
'mdx_model_name': mdx_only_ensem_a,
'mdx_model_run': mdx_model_run_a,
'model_location': 'pass',
'loop_name': f'Ensemble Mode - Running Model - {mdx_only_ensem_a}'
},
{
'model_name': 'pass',
'model_name_c':'pass',
'mdx_model_name': mdx_only_ensem_b,
'mdx_model_run': mdx_model_run_b,
'model_location': 'pass',
'loop_name': f'Ensemble Mode - Running Model - {mdx_only_ensem_b}'
},
{
'model_name': 'pass',
'model_name_c':'pass',
'mdx_model_name': mdx_only_ensem_c,
'mdx_model_run': mdx_model_run_c,
'model_location': 'pass',
'loop_name': f'Ensemble Mode - Running Model - {mdx_only_ensem_c}'
},
{
'model_name': 'pass',
'model_name_c':'pass',
'mdx_model_name': mdx_only_ensem_e,
'mdx_model_run': mdx_model_run_e,
'model_location': 'pass',
'loop_name': f'Ensemble Mode - Running Model - {mdx_only_ensem_e}'
}
]
elif data['mdx_only_ensem_c'] == 'No Model':
mdx_demuc_only = [
{
'model_name': 'pass',
'model_name_c':'pass',
'mdx_model_name': mdx_only_ensem_a,
'mdx_model_run': mdx_model_run_a,
'model_location': 'pass',
'loop_name': f'Ensemble Mode - Running Model - {mdx_only_ensem_a}'
},
{
'model_name': 'pass',
'model_name_c':'pass',
'mdx_model_name': mdx_only_ensem_b,
'mdx_model_run': mdx_model_run_b,
'model_location': 'pass',
'loop_name': f'Ensemble Mode - Running Model - {mdx_only_ensem_b}'
},
{
'model_name': 'pass',
'model_name_c':'pass',
'mdx_model_name': mdx_only_ensem_d,
'mdx_model_run': mdx_model_run_d,
'model_location': 'pass',
'loop_name': f'Ensemble Mode - Running Model - {mdx_only_ensem_d}'
},
{
'model_name': 'pass',
'model_name_c':'pass',
'mdx_model_name': mdx_only_ensem_e,
'mdx_model_run': mdx_model_run_e,
'model_location': 'pass',
'loop_name': f'Ensemble Mode - Running Model - {mdx_only_ensem_e}'
}
]
elif data['mdx_only_ensem_e'] == 'No Model':
mdx_demuc_only = [
{
'model_name': 'pass',
'model_name_c':'pass',
'mdx_model_name': mdx_only_ensem_a,
'mdx_model_run': mdx_model_run_a,
'model_location': 'pass',
'loop_name': f'Ensemble Mode - Running Model - {mdx_only_ensem_a}'
},
{
'model_name': 'pass',
'model_name_c':'pass',
'mdx_model_name': mdx_only_ensem_b,
'mdx_model_run': mdx_model_run_b,
'model_location': 'pass',
'loop_name': f'Ensemble Mode - Running Model - {mdx_only_ensem_b}'
},
{
'model_name': 'pass',
'model_name_c':'pass',
'mdx_model_name': mdx_only_ensem_c,
'mdx_model_run': mdx_model_run_c,
'model_location': 'pass',
'loop_name': f'Ensemble Mode - Running Model - {mdx_only_ensem_c}'
},
{
'model_name': 'pass',
'model_name_c':'pass',
'mdx_model_name': mdx_only_ensem_d,
'mdx_model_run': mdx_model_run_d,
'model_location': 'pass',
'loop_name': f'Ensemble Mode - Running Model - {mdx_only_ensem_d}'
}
]
else:
mdx_demuc_only = [
{
'model_name': 'pass',
'model_name_c':'pass',
'mdx_model_name': mdx_only_ensem_a,
'mdx_model_run': mdx_model_run_a,
'model_location': 'pass',
'loop_name': f'Ensemble Mode - Running Model - {mdx_only_ensem_a}'
},
{
'model_name': 'pass',
'model_name_c':'pass',
'mdx_model_name': mdx_only_ensem_b,
'mdx_model_run': mdx_model_run_b,
'model_location': 'pass',
'loop_name': f'Ensemble Mode - Running Model - {mdx_only_ensem_b}'
},
{
'model_name': 'pass',
'model_name_c':'pass',
'mdx_model_name': mdx_only_ensem_c,
'mdx_model_run': mdx_model_run_c,
'model_location': 'pass',
'loop_name': f'Ensemble Mode - Running Model - {mdx_only_ensem_c}'
},
{
'model_name': 'pass',
'model_name_c':'pass',
'mdx_model_name': mdx_only_ensem_d,
'mdx_model_run': mdx_model_run_d,
'model_location': 'pass',
'loop_name': f'Ensemble Mode - Running Model - {mdx_only_ensem_d}'
},
{
'model_name': 'pass',
'model_name_c':'pass',
'mdx_model_name': mdx_only_ensem_e,
'mdx_model_run': mdx_model_run_e,
'model_location': 'pass',
'loop_name': f'Ensemble Mode - Running Model - {mdx_only_ensem_e}'
}
]
if data['ensChoose'] == 'Multi-AI Ensemble':
loops = mdx_vr
ensefolder = 'Multi_AI_Ensemble_Outputs'
ensemode = 'Multi_AI_Ensemble'
if data['ensChoose'] == 'Basic VR Ensemble':
loops = Basic_Ensem
ensefolder = 'Basic_VR_Outputs'
ensemode = 'Multi_VR_Ensemble'
if data['ensChoose'] == 'Basic MD Ensemble':
loops = mdx_demuc_only
ensefolder = 'Basic_MDX_Net_Demucs_Ensemble'
ensemode = 'Basic_MDX_Net_Demucs_Ensemble'
#Prepare Audiofile(s)
for file_num, music_file in enumerate(data['input_paths'], start=1):
# -Get text and update progress-
base_text = get_baseText(total_files=len(data['input_paths']),
file_num=file_num)
progress_kwargs = {'progress_var': progress_var,
'total_files': len(data['input_paths']),
'file_num': file_num}
update_progress(**progress_kwargs,
step=0)
try:
if float(data['noisereduc_s']) >= 11:
text_widget.write('Error: Noise Reduction only supports values between 0-10.\nPlease set a value between 0-10 (with or without decimals) and try again.')
progress_var.set(0)
button_widget.configure(state=tk.NORMAL) # Enable Button
return
total, used, free = shutil.disk_usage("/")
total_space = int(total/1.074e+9)
used_space = int(used/1.074e+9)
free_space = int(free/1.074e+9)
if int(free/1.074e+9) <= int(2):
text_widget.write('Error: Not enough storage on main drive to continue. Your main drive must have \nat least 3 GB\'s of storage in order for this application function properly. \n\nPlease ensure your main drive has at least 3 GB\'s of storage and try again.\n\n')
text_widget.write('Detected Total Space: ' + str(total_space) + ' GB' + '\n')
text_widget.write('Detected Used Space: ' + str(used_space) + ' GB' + '\n')
text_widget.write('Detected Free Space: ' + str(free_space) + ' GB' + '\n')
progress_var.set(0)
button_widget.configure(state=tk.NORMAL) # Enable Button
return
if int(free/1.074e+9) in [3, 4, 5, 6, 7, 8]:
text_widget.write('Warning: Your main drive is running low on storage. Your main drive must have \nat least 3 GB\'s of storage in order for this application function properly.\n\n')
text_widget.write('Detected Total Space: ' + str(total_space) + ' GB' + '\n')
text_widget.write('Detected Used Space: ' + str(used_space) + ' GB' + '\n')
text_widget.write('Detected Free Space: ' + str(free_space) + ' GB' + '\n\n')
except:
pass
#Prepare to loop models
for i, c in tqdm(enumerate(loops), disable=True, desc='Iterations..'):
try:
if c['mdx_model_name'] == 'tasnet.th':
ModelName_2 = "Tasnet_v1"
elif c['mdx_model_name'] == 'tasnet_extra.th':
ModelName_2 = "Tasnet_extra_v1"
elif c['mdx_model_name'] == 'demucs.th':
ModelName_2 = "Demucs_v1"
elif c['mdx_model_name'] == 'demucs_extra.th':
ModelName_2 = "Demucs_extra_v1"
elif c['mdx_model_name'] == 'light_extra.th':
ModelName_2 = "Light_v1"
elif c['mdx_model_name'] == 'light_extra.th':
ModelName_2 = "Light_extra_v1"
elif c['mdx_model_name'] == 'tasnet-beb46fac.th':
ModelName_2 = "Tasnet_v2"
elif c['mdx_model_name'] == 'tasnet_extra-df3777b2.th':
ModelName_2 = "Tasnet_extra_v2"
elif c['mdx_model_name'] == 'demucs48_hq-28a1282c.th':
ModelName_2 = "Demucs48_hq_v2"
elif c['mdx_model_name'] == 'demucs-e07c671f.th':
ModelName_2 = "Demucs_v2"
elif c['mdx_model_name'] == 'demucs_extra-3646af93.th':
ModelName_2 = "Demucs_extra_v2"
elif c['mdx_model_name'] == 'demucs_unittest-09ebc15f.th':
ModelName_2 = "Demucs_unittest_v2"
else:
ModelName_2 = c['mdx_model_name']
except:
pass
def determineenseFolderName():
"""
Determine the name that is used for the folder and appended
to the back of the music files
"""
enseFolderName = ''
if str(ensefolder):
enseFolderName += os.path.splitext(os.path.basename(ensefolder))[0]
if enseFolderName:
try:
enseFolderName = '/' + enseFolderName + '_' + str(timestampnum)
except:
enseFolderName = '/' + enseFolderName + '_' + str(randomnum)
return enseFolderName
enseFolderName = determineenseFolderName()
if enseFolderName:
folder_path = f'{data["export_path"]}{enseFolderName}'
if not os.path.isdir(folder_path):
os.mkdir(folder_path)
# Determine File Name
base_name = f'{data["export_path"]}{enseFolderName}/{file_num}_{os.path.splitext(os.path.basename(music_file))[0]}'
enseExport = f'{data["export_path"]}{enseFolderName}/'
trackname = f'{file_num}_{os.path.splitext(os.path.basename(music_file))[0]}'
def get_numbers_from_filename(filename):
return re.search(r'\d+', filename).group(0)
foldernum = get_numbers_from_filename(enseFolderName)
if c['model_location'] == 'pass':
pass
else:
presentmodel = Path(c['model_location'])
if presentmodel.is_file():
print(f'The file {presentmodel} exists')
else:
if data['ensChoose'] == 'Multi-AI Ensemble':
text_widget.write(base_text + 'Model "' + c['model_name'] + '.pth" is missing.\n')
text_widget.write(base_text + 'This model can be downloaded straight from the \"Settings\" options.\n')
text_widget.write(base_text + f'If the error persists, please verify all models are present.\n\n')
text_widget.write(f'Time Elapsed: {time.strftime("%H:%M:%S", time.gmtime(int(time.perf_counter() - stime)))}')
torch.cuda.empty_cache()
progress_var.set(0)
button_widget.configure(state=tk.NORMAL) # Enable Button
return
else:
text_widget.write(base_text + 'Model "' + c['model_name'] + '.pth" is missing.\n')
text_widget.write(base_text + 'Installation of v5 Model Expansion Pack required to use this model.\n\n')
continue
text_widget.write(c['loop_name'] + '\n\n')
text_widget.write(base_text + 'Loading ' + c['model_name_c'] + '... ')
aggresive_set = float(data['agg']/100)
model_size = math.ceil(os.stat(c['model_location']).st_size / 1024)
nn_architecture = '{}KB'.format(min(nn_arch_sizes, key=lambda x:abs(x-model_size)))
nets = importlib.import_module('lib_v5.nets' + f'_{nn_architecture}'.replace('_{}KB'.format(nn_arch_sizes[0]), ''), package=None)
text_widget.write('Done!\n')
ModelName=(c['model_location'])
ModelParamSettings=(c['model_param'])
#Package Models
if ModelParamSettings == 'Auto':
model_hash = hashlib.md5(open(ModelName,'rb').read()).hexdigest()
model_params = []
model_params = lib_v5.filelist.provide_model_param_hash(model_hash)
#print(model_params)
if model_params[0] == 'Not Found Using Hash':
model_params = []
model_params = lib_v5.filelist.provide_model_param_name(ModelName)
if model_params[0] == 'Not Found Using Name':
text_widget.write(base_text + f'Unable to set model parameters automatically with the selected model. Continue?\n')
confirm = tk.messagebox.askyesno(title='Unrecognized Model Detected',
message=f'\nThe application could not automatically set the model param for the selected model.\n\n' +
f'Would you like to select the Model Param file for this model?\n\n' +
f'This model will be skipped if no Model Param is selected.')
if confirm:
model_param_selection = filedialog.askopenfilename(initialdir='lib_v5/modelparams',
title=f'Select Model Param',
filetypes=[("Model Param", "*.json")])
model_param_file_path = str(model_param_selection)
model_param_file = os.path.splitext(os.path.basename(model_param_file_path))[0] + '.json'
model_params = [model_param_file_path, model_param_file]
with open(f"lib_v5/filelists/model_cache/vr_param_cache/{model_hash}.txt", 'w') as f:
f.write(model_param_file)
if model_params[0] == '':
text_widget.write(base_text + f'Model param not selected.\n')
text_widget.write(base_text + f'Moving on to next model...\n\n')
continue
else:
pass
else:
text_widget.write(base_text + f'Model param not selected.\n')
text_widget.write(base_text + f'Moving on to next model...\n\n')
continue
else:
model_param_file_path = f'lib_v5/modelparams/{ModelParamSettings}'
model_params = [model_param_file_path, ModelParamSettings]
ModelName_1=(c['model_name'])
#print('model param function output ', model_params)
print('Model Parameters:', model_params[0])
text_widget.write(base_text + 'Loading assigned model parameters ' + '\"' + model_params[1] + '\"... ')
mp = ModelParameters(model_params[0])
text_widget.write('Done!\n')
#Load model
if os.path.isfile(c['model_location']):
device = torch.device('cpu')
model = nets.CascadedASPPNet(mp.param['bins'] * 2)
model.load_state_dict(torch.load(c['model_location'],
map_location=device))
if torch.cuda.is_available() and data['gpu'] >= 0:
device = torch.device('cuda:{}'.format(data['gpu']))
model.to(device)
model_name = os.path.basename(c["model_name"])
# -Go through the different steps of Separation-
# Wave source
text_widget.write(base_text + 'Loading audio source... ')
X_wave, y_wave, X_spec_s, y_spec_s = {}, {}, {}, {}
bands_n = len(mp.param['band'])
for d in range(bands_n, 0, -1):
bp = mp.param['band'][d]
if d == bands_n: # high-end band
X_wave[d], _ = librosa.load(
music_file, bp['sr'], False, dtype=np.float32, res_type=bp['res_type'])
if X_wave[d].ndim == 1:
X_wave[d] = np.asarray([X_wave[d], X_wave[d]])
else: # lower bands
X_wave[d] = librosa.resample(X_wave[d+1], mp.param['band'][d+1]['sr'], bp['sr'], res_type=bp['res_type'])
# Stft of wave source
X_spec_s[d] = spec_utils.wave_to_spectrogram_mt(X_wave[d], bp['hl'], bp['n_fft'], mp.param['mid_side'],
mp.param['mid_side_b2'], mp.param['reverse'])
if d == bands_n and data['high_end_process'] != 'none':
input_high_end_h = (bp['n_fft']//2 - bp['crop_stop']) + (mp.param['pre_filter_stop'] - mp.param['pre_filter_start'])
input_high_end = X_spec_s[d][:, bp['n_fft']//2-input_high_end_h:bp['n_fft']//2, :]
text_widget.write('Done!\n')
update_progress(**progress_kwargs,
step=0.1)
text_widget.write(base_text + 'Loading the stft of audio source... ')
text_widget.write('Done!\n')
text_widget.write(base_text + "Please Wait...\n")
X_spec_m = spec_utils.combine_spectrograms(X_spec_s, mp)
del X_wave, X_spec_s
def inference(X_spec, device, model, aggressiveness):
def _execute(X_mag_pad, roi_size, n_window, device, model, aggressiveness):
model.eval()
with torch.no_grad():
preds = []
iterations = [n_window]
total_iterations = sum(iterations)
text_widget.write(base_text + "Processing "f"{total_iterations} Slices... ")
for i in tqdm(range(n_window)):
update_progress(**progress_kwargs,
step=(0.1 + (0.8/n_window * i)))
start = i * roi_size
X_mag_window = X_mag_pad[None, :, :, start:start + data['window_size']]
X_mag_window = torch.from_numpy(X_mag_window).to(device)
pred = model.predict(X_mag_window, aggressiveness)
pred = pred.detach().cpu().numpy()
preds.append(pred[0])
pred = np.concatenate(preds, axis=2)
text_widget.write('Done!\n')
return pred
def preprocess(X_spec):
X_mag = np.abs(X_spec)
X_phase = np.angle(X_spec)
return X_mag, X_phase
X_mag, X_phase = preprocess(X_spec)
coef = X_mag.max()
X_mag_pre = X_mag / coef
n_frame = X_mag_pre.shape[2]
pad_l, pad_r, roi_size = dataset.make_padding(n_frame,
data['window_size'], model.offset)
n_window = int(np.ceil(n_frame / roi_size))
X_mag_pad = np.pad(
X_mag_pre, ((0, 0), (0, 0), (pad_l, pad_r)), mode='constant')
pred = _execute(X_mag_pad, roi_size, n_window,
device, model, aggressiveness)
pred = pred[:, :, :n_frame]
if data['tta']:
pad_l += roi_size // 2
pad_r += roi_size // 2
n_window += 1
X_mag_pad = np.pad(
X_mag_pre, ((0, 0), (0, 0), (pad_l, pad_r)), mode='constant')
pred_tta = _execute(X_mag_pad, roi_size, n_window,
device, model, aggressiveness)
pred_tta = pred_tta[:, :, roi_size // 2:]
pred_tta = pred_tta[:, :, :n_frame]
return (pred + pred_tta) * 0.5 * coef, X_mag, np.exp(1.j * X_phase)
else:
return pred * coef, X_mag, np.exp(1.j * X_phase)
aggressiveness = {'value': aggresive_set, 'split_bin': mp.param['band'][1]['crop_stop']}
if data['tta']:
text_widget.write(base_text + "Running Inferences (TTA)... \n")
else:
text_widget.write(base_text + "Running Inference... \n")
pred, X_mag, X_phase = inference(X_spec_m,
device,
model, aggressiveness)
# update_progress(**progress_kwargs,
# step=0.8)
# Postprocess
if data['postprocess']:
try:
text_widget.write(base_text + 'Post processing...')
pred_inv = np.clip(X_mag - pred, 0, np.inf)
pred = spec_utils.mask_silence(pred, pred_inv)
text_widget.write(' Done!\n')
except Exception as e:
text_widget.write('\n' + base_text + 'Post process failed, check error log.\n')
text_widget.write(base_text + 'Moving on...\n')
traceback_text = ''.join(traceback.format_tb(e.__traceback__))
errmessage = f'Traceback Error: "{traceback_text}"\n{type(e).__name__}: "{e}"\n'
try:
with open('errorlog.txt', 'w') as f:
f.write(f'Last Error Received:\n\n' +
f'Error Received while attempting to run Post Processing on "{os.path.basename(music_file)}":\n' +
f'Process Method: Ensemble Mode\n\n' +
f'If this error persists, please contact the developers.\n\n' +
f'Raw error details:\n\n' +
errmessage + f'\nError Time Stamp: [{datetime.now().strftime("%Y-%m-%d %H:%M:%S")}]\n')
except:
pass
# Inverse stft
# nopep8
y_spec_m = pred * X_phase
v_spec_m = X_spec_m - y_spec_m
if data['voc_only']:
pass
else:
text_widget.write(base_text + 'Saving Instrumental... ')
if data['high_end_process'].startswith('mirroring'):
input_high_end_ = spec_utils.mirroring(data['high_end_process'], y_spec_m, input_high_end, mp)
wav_instrument = spec_utils.cmb_spectrogram_to_wave(y_spec_m, mp, input_high_end_h, input_high_end_)
if data['voc_only']:
pass
else:
text_widget.write('Done!\n')
else:
wav_instrument = spec_utils.cmb_spectrogram_to_wave(y_spec_m, mp)
if data['voc_only']:
pass
else:
text_widget.write('Done!\n')
if data['inst_only']:
pass
else:
text_widget.write(base_text + 'Saving Vocals... ')
if data['high_end_process'].startswith('mirroring'):
input_high_end_ = spec_utils.mirroring(data['high_end_process'], v_spec_m, input_high_end, mp)
wav_vocals = spec_utils.cmb_spectrogram_to_wave(v_spec_m, mp, input_high_end_h, input_high_end_)
if data['inst_only']:
pass
else:
text_widget.write('Done!\n')
else:
wav_vocals = spec_utils.cmb_spectrogram_to_wave(v_spec_m, mp)
if data['inst_only']:
pass
else:
text_widget.write('Done!\n')
update_progress(**progress_kwargs,
step=1)
# Save output music files
save_files(wav_instrument, wav_vocals)
# Save output image
if data['output_image']:
with open('{}_{}_Instruments.jpg'.format(base_name, c['model_name']), mode='wb') as f:
image = spec_utils.spectrogram_to_image(y_spec_m)
_, bin_image = cv2.imencode('.jpg', image)
bin_image.tofile(f)
with open('{}_{}_Vocals.jpg'.format(base_name, c['model_name']), mode='wb') as f:
image = spec_utils.spectrogram_to_image(v_spec_m)
_, bin_image = cv2.imencode('.jpg', image)
bin_image.tofile(f)
text_widget.write(base_text + 'Completed Separation!\n\n')
###################################
if data['ensChoose'] == 'Multi-AI Ensemble' or data['ensChoose'] == 'Basic MD Ensemble':
if data['demucsmodel']:
demucs_switch = 'on'
else:
demucs_switch = 'off'
if data['demucs_only']:
demucs_only = 'on'
else:
demucs_only = 'off'
if c['mdx_model_name'] == 'tasnet.th':
post_mdx_name = "Tasnet v1"
elif c['mdx_model_name'] == 'tasnet_extra.th':
post_mdx_name = "Tasnet_extra v1"
elif c['mdx_model_name'] == 'demucs.th':
post_mdx_name = "Demucs v1"
elif c['mdx_model_name'] == 'demucs_extra.th':
post_mdx_name = "Demucs_extra v1"
elif c['mdx_model_name'] == 'light_extra.th':
post_mdx_name = "Light v1"
elif c['mdx_model_name'] == 'light_extra.th':
post_mdx_name = "Light_extra v1"
elif c['mdx_model_name'] == 'tasnet-beb46fac.th':
post_mdx_name = "Tasnet v2"
elif c['mdx_model_name'] == 'tasnet_extra-df3777b2.th':
post_mdx_name = "Tasnet_extra v2"
elif c['mdx_model_name'] == 'demucs48_hq-28a1282c.th':
post_mdx_name = "Demucs48_hq v2"
elif c['mdx_model_name'] == 'demucs-e07c671f.th':
post_mdx_name = "Demucs v2"
elif c['mdx_model_name'] == 'demucs_extra-3646af93.th':
post_mdx_name = "Demucs_extra v2"
elif c['mdx_model_name'] == 'demucs_unittest-09ebc15f.th':
post_mdx_name = "Demucs_unittest v2"
else:
post_mdx_name = c['mdx_model_name']
mdx_name = c['mdx_model_name']
if c['mdx_model_name'] == 'pass':
pass
else:
text_widget.write('Ensemble Mode - Running Model - ' + post_mdx_name + '\n\n')
if c['mdx_model_run'] == 'no':
if 'UVR' in mdx_name:
demucs_only = 'on'
demucs_switch = 'on'
demucs_model_set = mdx_name
model_set = ''
model_set_name = 'UVR'
modeltype = 'v'
noise_pro = 'MDX-NET_Noise_Profile_14_kHz'
stemset_n = '(Vocals)'
else:
demucs_only = 'on'
demucs_switch = 'on'
demucs_model_set = mdx_name
model_set = ''
model_set_name = 'extra'
modeltype = 'v'
noise_pro = 'MDX-NET_Noise_Profile_14_kHz'
stemset_n = '(Vocals)'
if c['mdx_model_run'] == 'yes':
demucs_only = 'off'
model_set = f"{mdx_name}.onnx"
model_set_name = mdx_name
demucs_model_set = demucs_model_set_name
mdx_model_path = f'models/MDX_Net_Models/{mdx_name}.onnx'
model_hash = hashlib.md5(open(mdx_model_path,'rb').read()).hexdigest()
model_params_mdx = []
model_params_mdx = lib_v5.filelist.provide_mdx_model_param_name(model_hash)
modeltype = model_params_mdx[0]
noise_pro = model_params_mdx[1]
stemset_n = model_params_mdx[2]
if autocompensate:
compensate = model_params_mdx[3]
else:
compensate = data['compensate']
source_val = model_params_mdx[4]
n_fft_scale_set = model_params_mdx[5]
dim_f_set = model_params_mdx[6]
#print(model_params_mdx)
print('demucs_only? ', demucs_only)
if data['noise_pro_select'] == 'Auto Select':
noise_pro_set = noise_pro
else:
noise_pro_set = data['noise_pro_select']
update_progress(**progress_kwargs,
step=0)
if data['noisereduc_s'] == 'None':
pass
else:
if not os.path.isfile("lib_v5\sox\sox.exe"):
data['noisereduc_s'] = 'None'
data['non_red'] = False
widget_text.write(base_text + 'SoX is missing and required for noise reduction.\n')
widget_text.write(base_text + 'See the \"More Info\" tab in the Help Guide.\n')
widget_text.write(base_text + 'Noise Reduction will be disabled until SoX is available.\n\n')
e = os.path.join(data["export_path"])
pred = Predictor()
if c['mdx_model_run'] == 'yes':
if stemset_n == '(Bass)' or stemset_n == '(Drums)' or stemset_n == '(Other)':
widget_text.write(base_text + 'Only vocal and instrumental MDX-Net models are supported in \nensemble mode.\n')
widget_text.write(base_text + 'Moving on to next model...\n\n')
continue
if modeltype == 'Not Set' or \
noise_pro == 'Not Set' or \
stemset_n == 'Not Set' or \
compensate == 'Not Set' or \
source_val == 'Not Set' or \
n_fft_scale_set == 'Not Set' or \
dim_f_set == 'Not Set':
confirm = tk.messagebox.askyesno(title='Unrecognized Model Detected',
message=f'\nWould you like to set the correct model parameters for this model before continuing?\n')
if confirm:
pred.mdx_options()
else:
text_widget.write(base_text + 'An unrecognized model has been detected.\n')
text_widget.write(base_text + 'Please configure the ONNX model settings accordingly and try again.\n')
text_widget.write(base_text + 'Moving on to next model...\n\n')
continue
pred.prediction_setup()
# split
pred.prediction(
m=music_file,
)
else:
pass
# Emsembling Outputs
def get_files(folder="", prefix="", suffix=""):
return [f"{folder}{i}" for i in os.listdir(folder) if i.startswith(prefix) if i.endswith(suffix)]
if data['appendensem'] == False:
if data['settest']:
voc_inst = [
{
'algorithm':'min_mag',
'model_params':'lib_v5/modelparams/1band_sr44100_hl512.json',
'files':get_files(folder=enseExport, prefix=trackname, suffix="_(Instrumental).wav"),
'output':'{}_{}_(Instrumental)'.format(foldernum, trackname),
'type': 'Instrumentals'
},
{
'algorithm':'max_mag',
'model_params':'lib_v5/modelparams/1band_sr44100_hl512.json',
'files':get_files(folder=enseExport, prefix=trackname, suffix="_(Vocals).wav"),
'output': '{}_{}_(Vocals)'.format(foldernum, trackname),
'type': 'Vocals'
}
]
inst = [
{
'algorithm':'min_mag',
'model_params':'lib_v5/modelparams/1band_sr44100_hl512.json',
'files':get_files(folder=enseExport, prefix=trackname, suffix="_(Instrumental).wav"),
'output':'{}_{}_(Instrumental)'.format(foldernum, trackname),
'type': 'Instrumentals'
}
]
vocal = [
{
'algorithm':'max_mag',
'model_params':'lib_v5/modelparams/1band_sr44100_hl512.json',
'files':get_files(folder=enseExport, prefix=trackname, suffix="_(Vocals).wav"),
'output': '{}_{}_(Vocals)'.format(foldernum, trackname),
'type': 'Vocals'
}
]
else:
voc_inst = [
{
'algorithm':'min_mag',
'model_params':'lib_v5/modelparams/1band_sr44100_hl512.json',
'files':get_files(folder=enseExport, prefix=trackname, suffix="_(Instrumental).wav"),
'output':'{}_(Instrumental)'.format(trackname),
'type': 'Instrumentals'
},
{
'algorithm':'max_mag',
'model_params':'lib_v5/modelparams/1band_sr44100_hl512.json',
'files':get_files(folder=enseExport, prefix=trackname, suffix="_(Vocals).wav"),
'output': '{}_(Vocals)'.format(trackname),
'type': 'Vocals'
}
]
inst = [
{
'algorithm':'min_mag',
'model_params':'lib_v5/modelparams/1band_sr44100_hl512.json',
'files':get_files(folder=enseExport, prefix=trackname, suffix="_(Instrumental).wav"),
'output':'{}_(Instrumental)'.format(trackname),
'type': 'Instrumentals'
}
]
vocal = [
{
'algorithm':'max_mag',
'model_params':'lib_v5/modelparams/1band_sr44100_hl512.json',
'files':get_files(folder=enseExport, prefix=trackname, suffix="_(Vocals).wav"),
'output': '{}_(Vocals)'.format(trackname),
'type': 'Vocals'
}
]
else:
if data['settest']:
voc_inst = [
{
'algorithm':'min_mag',
'model_params':'lib_v5/modelparams/1band_sr44100_hl512.json',
'files':get_files(folder=enseExport, prefix=trackname, suffix="_(Instrumental).wav"),
'output':'{}_{}_Ensembled_{}_(Instrumental)'.format(foldernum, trackname, ensemode),
'type': 'Instrumentals'
},
{
'algorithm':'max_mag',
'model_params':'lib_v5/modelparams/1band_sr44100_hl512.json',
'files':get_files(folder=enseExport, prefix=trackname, suffix="_(Vocals).wav"),
'output': '{}_{}_Ensembled_{}_(Vocals)'.format(foldernum, trackname, ensemode),
'type': 'Vocals'
}
]
inst = [
{
'algorithm':'min_mag',
'model_params':'lib_v5/modelparams/1band_sr44100_hl512.json',
'files':get_files(folder=enseExport, prefix=trackname, suffix="_(Instrumental).wav"),
'output':'{}_{}_Ensembled_{}_(Instrumental)'.format(foldernum, trackname, ensemode),
'type': 'Instrumentals'
}
]
vocal = [
{
'algorithm':'max_mag',
'model_params':'lib_v5/modelparams/1band_sr44100_hl512.json',
'files':get_files(folder=enseExport, prefix=trackname, suffix="_(Vocals).wav"),
'output': '{}_{}_Ensembled_{}_(Vocals)'.format(foldernum, trackname, ensemode),
'type': 'Vocals'
}
]
else:
voc_inst = [
{
'algorithm':'min_mag',
'model_params':'lib_v5/modelparams/1band_sr44100_hl512.json',
'files':get_files(folder=enseExport, prefix=trackname, suffix="_(Instrumental).wav"),
'output':'{}_Ensembled_{}_(Instrumental)'.format(trackname, ensemode),
'type': 'Instrumentals'
},
{
'algorithm':'max_mag',
'model_params':'lib_v5/modelparams/1band_sr44100_hl512.json',
'files':get_files(folder=enseExport, prefix=trackname, suffix="_(Vocals).wav"),
'output': '{}_Ensembled_{}_(Vocals)'.format(trackname, ensemode),
'type': 'Vocals'
}
]
inst = [
{
'algorithm':'min_mag',
'model_params':'lib_v5/modelparams/1band_sr44100_hl512.json',
'files':get_files(folder=enseExport, prefix=trackname, suffix="_(Instrumental).wav"),
'output':'{}_Ensembled_{}_(Instrumental)'.format(trackname, ensemode),
'type': 'Instrumentals'
}
]
vocal = [
{
'algorithm':'max_mag',
'model_params':'lib_v5/modelparams/1band_sr44100_hl512.json',
'files':get_files(folder=enseExport, prefix=trackname, suffix="_(Vocals).wav"),
'output': '{}_Ensembled_{}_(Vocals)'.format(trackname, ensemode),
'type': 'Vocals'
}
]
if data['voc_only']:
ensembles = vocal
elif data['inst_only']:
ensembles = inst
else:
ensembles = voc_inst
try:
for i, e in tqdm(enumerate(ensembles), desc="Ensembling..."):
text_widget.write(base_text + "Ensembling " + e['type'] + "... ")
wave, specs = {}, {}
mp = ModelParameters(e['model_params'])
for i in range(len(e['files'])):
spec = {}
for d in range(len(mp.param['band']), 0, -1):
bp = mp.param['band'][d]
if d == len(mp.param['band']): # high-end band
wave[d], _ = librosa.load(
e['files'][i], bp['sr'], False, dtype=np.float32, res_type=bp['res_type'])
if len(wave[d].shape) == 1: # mono to stereo
wave[d] = np.array([wave[d], wave[d]])
else: # lower bands
wave[d] = librosa.resample(wave[d+1], mp.param['band'][d+1]['sr'], bp['sr'], res_type=bp['res_type'])
spec[d] = spec_utils.wave_to_spectrogram(wave[d], bp['hl'], bp['n_fft'], mp.param['mid_side'], mp.param['mid_side_b2'], mp.param['reverse'])
specs[i] = spec_utils.combine_spectrograms(spec, mp)
del wave
sf.write(os.path.join('{}'.format(data['export_path']),'{}.wav'.format(e['output'])),
normalization_set(spec_utils.cmb_spectrogram_to_wave(spec_utils.ensembling(e['algorithm'],
specs), mp)), mp.param['sr'], subtype=wav_type_set)
if data['saveFormat'] == 'Mp3':
try:
musfile = pydub.AudioSegment.from_wav(os.path.join('{}'.format(data['export_path']),'{}.wav'.format(e['output'])))
musfile.export((os.path.join('{}'.format(data['export_path']),'{}.mp3'.format(e['output']))), format="mp3", bitrate=mp3_bit_set)
os.remove((os.path.join('{}'.format(data['export_path']),'{}.wav'.format(e['output']))))
except Exception as e:
traceback_text = ''.join(traceback.format_tb(e.__traceback__))
errmessage = f'Traceback Error: "{traceback_text}"\n{type(e).__name__}: "{e}"\n'
if "ffmpeg" in errmessage:
text_widget.write('\n' + base_text + 'Failed to save output(s) as Mp3(s).\n')
text_widget.write(base_text + 'FFmpeg might be missing or corrupted, please check error log.\n')
text_widget.write(base_text + 'Moving on... ')
else:
text_widget.write('\n' + base_text + 'Failed to save output(s) as Mp3(s).\n')
text_widget.write(base_text + 'Please check error log.\n')
text_widget.write(base_text + 'Moving on... ')
try:
with open('errorlog.txt', 'w') as f:
f.write(f'Last Error Received:\n\n' +
f'Error Received while attempting to save file as mp3 "{os.path.basename(music_file)}".\n\n' +
f'Process Method: Ensemble Mode\n\n' +
f'FFmpeg might be missing or corrupted.\n\n' +
f'If this error persists, please contact the developers.\n\n' +
f'Raw error details:\n\n' +
errmessage + f'\nError Time Stamp: [{datetime.now().strftime("%Y-%m-%d %H:%M:%S")}]\n')
except:
pass
if data['saveFormat'] == 'Flac':
try:
musfile = pydub.AudioSegment.from_wav(os.path.join('{}'.format(data['export_path']),'{}.wav'.format(e['output'])))
musfile.export((os.path.join('{}'.format(data['export_path']),'{}.flac'.format(e['output']))), format="flac")
os.remove((os.path.join('{}'.format(data['export_path']),'{}.wav'.format(e['output']))))
except Exception as e:
traceback_text = ''.join(traceback.format_tb(e.__traceback__))
errmessage = f'Traceback Error: "{traceback_text}"\n{type(e).__name__}: "{e}"\n'
if "ffmpeg" in errmessage:
text_widget.write('\n' + base_text + 'Failed to save output(s) as Flac(s).\n')
text_widget.write(base_text + 'FFmpeg might be missing or corrupted, please check error log.\n')
text_widget.write(base_text + 'Moving on... ')
else:
text_widget.write('\n' + base_text + 'Failed to save output(s) as Flac(s).\n')
text_widget.write(base_text + 'Please check error log.\n')
text_widget.write(base_text + 'Moving on... ')
try:
with open('errorlog.txt', 'w') as f:
f.write(f'Last Error Received:\n\n' +
f'Error Received while attempting to save file as flac "{os.path.basename(music_file)}".\n' +
f'Process Method: Ensemble Mode\n\n' +
f'FFmpeg might be missing or corrupted.\n\n' +
f'If this error persists, please contact the developers.\n\n' +
f'Raw error details:\n\n' +
errmessage + f'\nError Time Stamp: [{datetime.now().strftime("%Y-%m-%d %H:%M:%S")}]\n')
except:
pass
text_widget.write("Done!\n")
except:
text_widget.write('\n' + base_text + 'Not enough files to ensemble.')
pass
update_progress(**progress_kwargs,
step=0.95)
text_widget.write("\n")
try:
if not data['save']: # Deletes all outputs if Save All Outputs isn't checked
files = get_files(folder=enseExport, prefix=trackname, suffix="_(Vocals).wav")
for file in files:
os.remove(file)
if not data['save']:
files = get_files(folder=enseExport, prefix=trackname, suffix="_(Instrumental).wav")
for file in files:
os.remove(file)
except:
pass
if data['save'] and data['saveFormat'] == 'Mp3':
try:
text_widget.write(base_text + 'Saving all ensemble outputs in Mp3... ')
path = enseExport
#Change working directory
os.chdir(path)
audio_files = os.listdir()
for file in audio_files:
#spliting the file into the name and the extension
name, ext = os.path.splitext(file)
if ext == ".wav":
if trackname in file:
musfile = pydub.AudioSegment.from_wav(file)
#rename them using the old name + ".wav"
musfile.export("{0}.mp3".format(name), format="mp3", bitrate=mp3_bit_set)
try:
files = get_files(folder=enseExport, prefix=trackname, suffix="_(Vocals).wav")
for file in files:
os.remove(file)
except:
pass
try:
files = get_files(folder=enseExport, prefix=trackname, suffix="_(Instrumental).wav")
for file in files:
os.remove(file)
except:
pass
text_widget.write('Done!\n\n')
base_path = os.path.dirname(os.path.abspath(__file__))
os.chdir(base_path)
except Exception as e:
base_path = os.path.dirname(os.path.abspath(__file__))
os.chdir(base_path)
traceback_text = ''.join(traceback.format_tb(e.__traceback__))
errmessage = f'Traceback Error: "{traceback_text}"\n{type(e).__name__}: "{e}"\n'
if "ffmpeg" in errmessage:
text_widget.write('\n' + base_text + 'Failed to save output(s) as Mp3(s).\n')
text_widget.write(base_text + 'FFmpeg might be missing or corrupted, please check error log.\n')
text_widget.write(base_text + 'Moving on...\n')
else:
text_widget.write('\n' + base_text + 'Failed to save output(s) as Mp3(s).\n')
text_widget.write(base_text + 'Please check error log.\n')
text_widget.write(base_text + 'Moving on...\n')
try:
with open('errorlog.txt', 'w') as f:
f.write(f'Last Error Received:\n\n' +
f'\nError Received while attempting to save ensembled outputs as mp3s.\n' +
f'Process Method: Ensemble Mode\n\n' +
f'FFmpeg might be missing or corrupted.\n\n' +
f'If this error persists, please contact the developers.\n\n' +
f'Raw error details:\n\n' +
errmessage + f'\nError Time Stamp: [{datetime.now().strftime("%Y-%m-%d %H:%M:%S")}]\n')
except:
pass
if data['save'] and data['saveFormat'] == 'Flac':
try:
text_widget.write(base_text + 'Saving all ensemble outputs in Flac... ')
path = enseExport
#Change working directory
os.chdir(path)
audio_files = os.listdir()
for file in audio_files:
#spliting the file into the name and the extension
name, ext = os.path.splitext(file)
if ext == ".wav":
if trackname in file:
musfile = pydub.AudioSegment.from_wav(file)
#rename them using the old name + ".wav"
musfile.export("{0}.flac".format(name), format="flac")
try:
files = get_files(folder=enseExport, prefix=trackname, suffix="_(Vocals).wav")
for file in files:
os.remove(file)
except:
pass
try:
files = get_files(folder=enseExport, prefix=trackname, suffix="_(Instrumental).wav")
for file in files:
os.remove(file)
except:
pass
text_widget.write('Done!\n\n')
base_path = os.path.dirname(os.path.abspath(__file__))
os.chdir(base_path)
except Exception as e:
base_path = os.path.dirname(os.path.abspath(__file__))
os.chdir(base_path)
traceback_text = ''.join(traceback.format_tb(e.__traceback__))
errmessage = f'Traceback Error: "{traceback_text}"\n{type(e).__name__}: "{e}"\n'
if "ffmpeg" in errmessage:
text_widget.write('\n' + base_text + 'Failed to save output(s) as Flac(s).\n')
text_widget.write(base_text + 'FFmpeg might be missing or corrupted, please check error log.\n')
text_widget.write(base_text + 'Moving on...\n')
else:
text_widget.write('\n' + base_text + 'Failed to save output(s) as Flac(s).\n')
text_widget.write(base_text + 'Please check error log.\n')
text_widget.write(base_text + 'Moving on...\n')
try:
with open('errorlog.txt', 'w') as f:
f.write(f'Last Error Received:\n\n' +
f'\nError Received while attempting to ensembled outputs as Flacs.\n' +
f'Process Method: Ensemble Mode\n\n' +
f'FFmpeg might be missing or corrupted.\n\n' +
f'If this error persists, please contact the developers.\n\n' +
f'Raw error details:\n\n' +
errmessage + f'\nError Time Stamp: [{datetime.now().strftime("%Y-%m-%d %H:%M:%S")}]\n')
except:
pass
try:
os.remove('temp.wav')
except:
pass
if len(os.listdir(enseExport)) == 0: #Check if the folder is empty
shutil.rmtree(folder_path) #Delete folder if empty
else:
progress_kwargs = {'progress_var': progress_var,
'total_files': len(data['input_paths']),
'file_num': len(data['input_paths'])}
base_text = get_baseText(total_files=len(data['input_paths']),
file_num=len(data['input_paths']))
try:
total, used, free = shutil.disk_usage("/")
total_space = int(total/1.074e+9)
used_space = int(used/1.074e+9)
free_space = int(free/1.074e+9)
if int(free/1.074e+9) <= int(2):
text_widget.write('Error: Not enough storage on main drive to continue. Your main drive must have \nat least 3 GB\'s of storage in order for this application function properly. \n\nPlease ensure your main drive has at least 3 GB\'s of storage and try again.\n\n')
text_widget.write('Detected Total Space: ' + str(total_space) + ' GB' + '\n')
text_widget.write('Detected Used Space: ' + str(used_space) + ' GB' + '\n')
text_widget.write('Detected Free Space: ' + str(free_space) + ' GB' + '\n')
progress_var.set(0)
button_widget.configure(state=tk.NORMAL) # Enable Button
return
if int(free/1.074e+9) in [3, 4, 5, 6, 7, 8]:
text_widget.write('Warning: Your main drive is running low on storage. Your main drive must have \nat least 3 GB\'s of storage in order for this application function properly.\n\n')
text_widget.write('Detected Total Space: ' + str(total_space) + ' GB' + '\n')
text_widget.write('Detected Used Space: ' + str(used_space) + ' GB' + '\n')
text_widget.write('Detected Free Space: ' + str(free_space) + ' GB' + '\n\n')
except:
pass
music_file = data['input_paths']
if len(data['input_paths']) <= 1:
text_widget.write(base_text + "Not enough files to process.\n")
pass
else:
update_progress(**progress_kwargs,
step=0.2)
savefilename = (data['input_paths'][0])
trackname1 = f'{os.path.splitext(os.path.basename(savefilename))[0]}'
timestampnum = round(datetime.utcnow().timestamp())
randomnum = randrange(100000, 1000000)
if data['settest']:
try:
insts = [
{
'algorithm':'min_mag',
'model_params':'lib_v5/modelparams/1band_sr44100_hl512.json',
'output':'{}_{}_Manual_Ensemble_(Min Spec)'.format(timestampnum, trackname1),
'type': 'Instrumentals'
}
]
vocals = [
{
'algorithm':'max_mag',
'model_params':'lib_v5/modelparams/1band_sr44100_hl512.json',
'output': '{}_{}_Manual_Ensemble_(Max Spec)'.format(timestampnum, trackname1),
'type': 'Vocals'
}
]
invert_spec = [
{
'model_params':'lib_v5/modelparams/1band_sr44100_hl512.json',
'output': '{}_{}_diff_si'.format(timestampnum, trackname1),
'type': 'Spectral Inversion'
}
]
invert_nor = [
{
'model_params':'lib_v5/modelparams/1band_sr44100_hl512.json',
'output': '{}_{}_diff_ni'.format(timestampnum, trackname1),
'type': 'Normal Inversion'
}
]
except:
insts = [
{
'algorithm':'min_mag',
'model_params':'lib_v5/modelparams/1band_sr44100_hl512.json',
'output':'{}_{}_Manual_Ensemble_(Min Spec)'.format(randomnum, trackname1),
'type': 'Instrumentals'
}
]
vocals = [
{
'algorithm':'max_mag',
'model_params':'lib_v5/modelparams/1band_sr44100_hl512.json',
'output': '{}_{}_Manual_Ensemble_(Max Spec)'.format(randomnum, trackname1),
'type': 'Vocals'
}
]
invert_spec = [
{
'model_params':'lib_v5/modelparams/1band_sr44100_hl512.json',
'output': '{}_{}_diff_si'.format(randomnum, trackname1),
'type': 'Spectral Inversion'
}
]
invert_nor = [
{
'model_params':'lib_v5/modelparams/1band_sr44100_hl512.json',
'output': '{}_{}_diff_ni'.format(randomnum, trackname1),
'type': 'Normal Inversion'
}
]
else:
insts = [
{
'algorithm':'min_mag',
'model_params':'lib_v5/modelparams/1band_sr44100_hl512.json',
'output':'{}_Manual_Ensemble_(Min Spec)'.format(trackname1),
'type': 'Instrumentals'
}
]
vocals = [
{
'algorithm':'max_mag',
'model_params':'lib_v5/modelparams/1band_sr44100_hl512.json',
'output': '{}_Manual_Ensemble_(Max Spec)'.format(trackname1),
'type': 'Vocals'
}
]
invert_spec = [
{
'model_params':'lib_v5/modelparams/1band_sr44100_hl512.json',
'output': '{}_diff_si'.format(trackname1),
'type': 'Spectral Inversion'
}
]
invert_nor = [
{
'model_params':'lib_v5/modelparams/1band_sr44100_hl512.json',
'output': '{}_diff_ni'.format(trackname1),
'type': 'Normal Inversion'
}
]
if data['algo'] == 'Instrumentals (Min Spec)':
ensem = insts
if data['algo'] == 'Vocals (Max Spec)':
ensem = vocals
if data['algo'] == 'Invert (Spectral)':
ensem = invert_spec
if data['algo'] == 'Invert (Normal)':
ensem = invert_nor
#Prepare to loop models
if data['algo'] == 'Instrumentals (Min Spec)' or data['algo'] == 'Vocals (Max Spec)':
for i, e in tqdm(enumerate(ensem), desc="Ensembling..."):
text_widget.write(base_text + "Ensembling " + e['type'] + "... ")
wave, specs = {}, {}
mp = ModelParameters(e['model_params'])
for i in range(len(data['input_paths'])):
spec = {}
for d in range(len(mp.param['band']), 0, -1):
bp = mp.param['band'][d]
if d == len(mp.param['band']): # high-end band
wave[d], _ = librosa.load(
data['input_paths'][i], bp['sr'], False, dtype=np.float32, res_type=bp['res_type'])
if len(wave[d].shape) == 1: # mono to stereo
wave[d] = np.array([wave[d], wave[d]])
else: # lower bands
wave[d] = librosa.resample(wave[d+1], mp.param['band'][d+1]['sr'], bp['sr'], res_type=bp['res_type'])
spec[d] = spec_utils.wave_to_spectrogram(wave[d], bp['hl'], bp['n_fft'], mp.param['mid_side'], mp.param['mid_side_b2'], mp.param['reverse'])
specs[i] = spec_utils.combine_spectrograms(spec, mp)
del wave
sf.write(os.path.join('{}'.format(data['export_path']),'{}.wav'.format(e['output'])),
normalization_set(spec_utils.cmb_spectrogram_to_wave(spec_utils.ensembling(e['algorithm'],
specs), mp)), mp.param['sr'], subtype=wav_type_set)
if data['saveFormat'] == 'Mp3':
try:
musfile = pydub.AudioSegment.from_wav(os.path.join('{}'.format(data['export_path']),'{}.wav'.format(e['output'])))
musfile.export((os.path.join('{}'.format(data['export_path']),'{}.mp3'.format(e['output']))), format="mp3", bitrate=mp3_bit_set)
os.remove((os.path.join('{}'.format(data['export_path']),'{}.wav'.format(e['output']))))
except Exception as e:
text_widget.write('\n' + base_text + 'Failed to save output(s) as Mp3.')
text_widget.write('\n' + base_text + 'FFmpeg might be missing or corrupted, please check error log.\n')
text_widget.write(base_text + 'Moving on...\n')
text_widget.write(base_text + f'Complete!\n')
traceback_text = ''.join(traceback.format_tb(e.__traceback__))
errmessage = f'Traceback Error: "{traceback_text}"\n{type(e).__name__}: "{e}"\n'
try:
with open('errorlog.txt', 'w') as f:
f.write(f'Last Error Received:\n\n' +
f'Error Received while attempting to run Manual Ensemble:\n' +
f'Process Method: Ensemble Mode\n\n' +
f'FFmpeg might be missing or corrupted.\n\n' +
f'If this error persists, please contact the developers.\n\n' +
f'Raw error details:\n\n' +
errmessage + f'\nError Time Stamp: [{datetime.now().strftime("%Y-%m-%d %H:%M:%S")}]\n')
except:
pass
progress_var.set(0)
button_widget.configure(state=tk.NORMAL)
return
if data['saveFormat'] == 'Flac':
try:
musfile = pydub.AudioSegment.from_wav(os.path.join('{}'.format(data['export_path']),'{}.wav'.format(e['output'])))
musfile.export((os.path.join('{}'.format(data['export_path']),'{}.flac'.format(e['output']))), format="flac")
os.remove((os.path.join('{}'.format(data['export_path']),'{}.wav'.format(e['output']))))
except Exception as e:
text_widget.write('\n' + base_text + 'Failed to save output as Flac.\n')
text_widget.write(base_text + 'FFmpeg might be missing or corrupted, please check error log.\n')
text_widget.write(base_text + 'Moving on...\n')
text_widget.write(base_text + f'Complete!\n')
traceback_text = ''.join(traceback.format_tb(e.__traceback__))
errmessage = f'Traceback Error: "{traceback_text}"\n{type(e).__name__}: "{e}"\n'
try:
with open('errorlog.txt', 'w') as f:
f.write(f'Last Error Received:\n\n' +
f'Error Received while attempting to run Manual Ensemble:\n' +
f'Process Method: Ensemble Mode\n\n' +
f'FFmpeg might be missing or corrupted.\n\n' +
f'If this error persists, please contact the developers.\n\n' +
f'Raw error details:\n\n' +
errmessage + f'\nError Time Stamp: [{datetime.now().strftime("%Y-%m-%d %H:%M:%S")}]\n')
except:
pass
progress_var.set(0)
button_widget.configure(state=tk.NORMAL)
return
text_widget.write("Done!\n")
if data['algo'] == 'Invert (Spectral)' and data['algo'] == 'Invert (Normal)':
if len(data['input_paths']) != 2:
text_widget.write(base_text + "Invalid file count.\n")
pass
else:
for i, e in tqdm(enumerate(ensem), desc="Inverting..."):
wave, specs = {}, {}
mp = ModelParameters(e['model_params'])
for i in range(len(data['input_paths'])):
spec = {}
for d in range(len(mp.param['band']), 0, -1):
bp = mp.param['band'][d]
if d == len(mp.param['band']): # high-end band
wave[d], _ = librosa.load(
data['input_paths'][i], bp['sr'], False, dtype=np.float32, res_type=bp['res_type'])
if len(wave[d].shape) == 1: # mono to stereo
wave[d] = np.array([wave[d], wave[d]])
else: # lower bands
wave[d] = librosa.resample(wave[d+1], mp.param['band'][d+1]['sr'], bp['sr'], res_type=bp['res_type'])
spec[d] = spec_utils.wave_to_spectrogram(wave[d], bp['hl'], bp['n_fft'], mp.param['mid_side'], mp.param['mid_side_b2'], mp.param['reverse'])
specs[i] = spec_utils.combine_spectrograms(spec, mp)
del wave
ln = min([specs[0].shape[2], specs[1].shape[2]])
specs[0] = specs[0][:,:,:ln]
specs[1] = specs[1][:,:,:ln]
if data['algo'] == 'Invert (Spectral)':
text_widget.write(base_text + "Performing " + e['type'] + "... ")
X_mag = np.abs(specs[0])
y_mag = np.abs(specs[1])
max_mag = np.where(X_mag >= y_mag, X_mag, y_mag)
v_spec = specs[1] - max_mag * np.exp(1.j * np.angle(specs[0]))
sf.write(os.path.join('{}'.format(data['export_path']),'{}.wav'.format(e['output'])),
spec_utils.cmb_spectrogram_to_wave(-v_spec, mp), mp.param['sr'], subtype=wav_type_set)
if data['algo'] == 'Invert (Normal)':
v_spec = specs[0] - specs[1]
sf.write(os.path.join('{}'.format(data['export_path']),'{}.wav'.format(e['output'])),
spec_utils.cmb_spectrogram_to_wave(v_spec, mp), mp.param['sr'], subtype=wav_type_set)
text_widget.write("Done!\n")
except Exception as e:
traceback_text = ''.join(traceback.format_tb(e.__traceback__))
message = f'Traceback Error: "{traceback_text}"\n{type(e).__name__}: "{e}"\n'
if runtimeerr in message:
text_widget.write("\n" + base_text + f'Separation failed for the following audio file:\n')
text_widget.write(base_text + f'"{os.path.basename(music_file)}"\n')
text_widget.write(f'\nError Received:\n\n')
text_widget.write(f'Your PC cannot process this audio file with the chunk size selected.\nPlease lower the chunk size and try again.\n\n')
text_widget.write(f'If this error persists, please contact the developers.\n\n')
text_widget.write(f'Time Elapsed: {time.strftime("%H:%M:%S", time.gmtime(int(time.perf_counter() - stime)))}')
try:
with open('errorlog.txt', 'w') as f:
f.write(f'Last Error Received:\n\n' +
f'Error Received while processing "{os.path.basename(music_file)}":\n' +
f'Process Method: Ensemble Mode\n\n' +
f'Your PC cannot process this audio file with the chunk size selected.\nPlease lower the chunk size and try again.\n\n' +
f'If this error persists, please contact the developers.\n\n' +
f'Raw error details:\n\n' +
message + f'\nError Time Stamp: [{datetime.now().strftime("%Y-%m-%d %H:%M:%S")}]\n')
except:
pass
torch.cuda.empty_cache()
progress_var.set(0)
button_widget.configure(state=tk.NORMAL) # Enable Button
return
if cuda_err in message:
text_widget.write("\n" + base_text + f'Separation failed for the following audio file:\n')
text_widget.write(base_text + f'"{os.path.basename(music_file)}"\n')
text_widget.write(f'\nError Received:\n\n')
text_widget.write(f'The application was unable to allocate enough GPU memory to use this model.\n')
text_widget.write(f'Please close any GPU intensive applications and try again.\n')
text_widget.write(f'If the error persists, your GPU might not be supported.\n\n')
text_widget.write(f'Time Elapsed: {time.strftime("%H:%M:%S", time.gmtime(int(time.perf_counter() - stime)))}')
try:
with open('errorlog.txt', 'w') as f:
f.write(f'Last Error Received:\n\n' +
f'Error Received while processing "{os.path.basename(music_file)}":\n' +
f'Process Method: Ensemble Mode\n\n' +
f'The application was unable to allocate enough GPU memory to use this model.\n' +
f'Please close any GPU intensive applications and try again.\n' +
f'If the error persists, your GPU might not be supported.\n\n' +
f'Raw error details:\n\n' +
message + f'\nError Time Stamp [{datetime.now().strftime("%Y-%m-%d %H:%M:%S")}]\n')
except:
pass
torch.cuda.empty_cache()
progress_var.set(0)
button_widget.configure(state=tk.NORMAL) # Enable Button
return
if mod_err in message:
text_widget.write("\n" + base_text + f'Separation failed for the following audio file:\n')
text_widget.write(base_text + f'"{os.path.basename(music_file)}"\n')
text_widget.write(f'\nError Received:\n\n')
text_widget.write(f'Application files(s) are missing.\n')
text_widget.write("\n" + f'{type(e).__name__} - "{e}"' + "\n\n")
text_widget.write(f'Please check for missing files/scripts in the app directory and try again.\n')
text_widget.write(f'If the error persists, please reinstall application or contact the developers.\n\n')
text_widget.write(f'Time Elapsed: {time.strftime("%H:%M:%S", time.gmtime(int(time.perf_counter() - stime)))}')
try:
with open('errorlog.txt', 'w') as f:
f.write(f'Last Error Received:\n\n' +
f'Error Received while processing "{os.path.basename(music_file)}":\n' +
f'Process Method: Ensemble Mode\n\n' +
f'Application files(s) are missing.\n' +
f'Please check for missing files/scripts in the app directory and try again.\n' +
f'If the error persists, please reinstall application or contact the developers.\n\n' +
message + f'\nError Time Stamp [{datetime.now().strftime("%Y-%m-%d %H:%M:%S")}]\n')
except:
pass
torch.cuda.empty_cache()
progress_var.set(0)
button_widget.configure(state=tk.NORMAL) # Enable Button
return
if file_err in message:
text_widget.write("\n" + base_text + f'Separation failed for the following audio file:\n')
text_widget.write(base_text + f'"{os.path.basename(music_file)}"\n')
text_widget.write(f'\nError Received:\n\n')
text_widget.write(f'Missing file error raised.\n')
text_widget.write("\n" + f'{type(e).__name__} - "{e}"' + "\n\n")
text_widget.write("\n" + f'Please address the error and try again.' + "\n")
text_widget.write(f'If this error persists, please contact the developers.\n\n')
text_widget.write(f'Time Elapsed: {time.strftime("%H:%M:%S", time.gmtime(int(time.perf_counter() - stime)))}')
torch.cuda.empty_cache()
try:
with open('errorlog.txt', 'w') as f:
f.write(f'Last Error Received:\n\n' +
f'Error Received while processing "{os.path.basename(music_file)}":\n' +
f'Process Method: Ensemble Mode\n\n' +
f'Missing file error raised.\n' +
"\n" + f'Please address the error and try again.' + "\n" +
f'If this error persists, please contact the developers.\n\n' +
message + f'\nError Time Stamp [{datetime.now().strftime("%Y-%m-%d %H:%M:%S")}]\n')
except:
pass
progress_var.set(0)
button_widget.configure(state=tk.NORMAL) # Enable Button
return
if ffmp_err in message:
text_widget.write("\n" + base_text + f'Separation failed for the following audio file:\n')
text_widget.write(base_text + f'"{os.path.basename(music_file)}"\n')
text_widget.write(f'\nError Received:\n\n')
text_widget.write(f'The input file type is not supported or FFmpeg is missing.\n')
text_widget.write(f'Please select a file type supported by FFmpeg and try again.\n\n')
text_widget.write(f'If FFmpeg is missing or not installed, you will only be able to process \".wav\" files \nuntil it is available on this system.\n\n')
text_widget.write(f'See the \"More Info\" tab in the Help Guide.\n\n')
text_widget.write(f'If this error persists, please contact the developers.\n\n')
text_widget.write(f'Time Elapsed: {time.strftime("%H:%M:%S", time.gmtime(int(time.perf_counter() - stime)))}')
torch.cuda.empty_cache()
try:
with open('errorlog.txt', 'w') as f:
f.write(f'Last Error Received:\n\n' +
f'Error Received while processing "{os.path.basename(music_file)}":\n' +
f'Process Method: Ensemble Mode\n\n' +
f'The input file type is not supported or FFmpeg is missing.\nPlease select a file type supported by FFmpeg and try again.\n\n' +
f'If FFmpeg is missing or not installed, you will only be able to process \".wav\" files until it is available on this system.\n\n' +
f'See the \"More Info\" tab in the Help Guide.\n\n' +
f'If this error persists, please contact the developers.\n\n' +
message + f'\nError Time Stamp [{datetime.now().strftime("%Y-%m-%d %H:%M:%S")}]\n')
except:
pass
progress_var.set(0)
button_widget.configure(state=tk.NORMAL) # Enable Button
return
if onnxmissing in message:
text_widget.write("\n" + base_text + f'Separation failed for the following audio file:\n')
text_widget.write(base_text + f'"{os.path.basename(music_file)}"\n')
text_widget.write(f'\nError Received:\n\n')
text_widget.write(f'The application could not detect this MDX-Net model on your system.\n')
text_widget.write(f'Please make sure all the models are present in the correct directory.\n')
text_widget.write(f'If the error persists, please reinstall application or contact the developers.\n\n')
text_widget.write(f'Time Elapsed: {time.strftime("%H:%M:%S", time.gmtime(int(time.perf_counter() - stime)))}')
try:
with open('errorlog.txt', 'w') as f:
f.write(f'Last Error Received:\n\n' +
f'Error Received while processing "{os.path.basename(music_file)}":\n' +
f'Process Method: Ensemble Mode\n\n' +
f'The application could not detect this MDX-Net model on your system.\n' +
f'Please make sure all the models are present in the correct directory.\n' +
f'If the error persists, please reinstall application or contact the developers.\n\n' +
message + f'\nError Time Stamp [{datetime.now().strftime("%Y-%m-%d %H:%M:%S")}]\n')
except:
pass
torch.cuda.empty_cache()
progress_var.set(0)
button_widget.configure(state=tk.NORMAL) # Enable Button
return
if onnxmemerror in message:
text_widget.write("\n" + base_text + f'Separation failed for the following audio file:\n')
text_widget.write(base_text + f'"{os.path.basename(music_file)}"\n')
text_widget.write(f'\nError Received:\n\n')
text_widget.write(f'The application was unable to allocate enough GPU memory to use this model.\n')
text_widget.write(f'Please do the following:\n\n1. Close any GPU intensive applications.\n2. Lower the set chunk size.\n3. Then try again.\n\n')
text_widget.write(f'If the error persists, your GPU might not be supported.\n\n')
text_widget.write(f'Time Elapsed: {time.strftime("%H:%M:%S", time.gmtime(int(time.perf_counter() - stime)))}')
try:
with open('errorlog.txt', 'w') as f:
f.write(f'Last Error Received:\n\n' +
f'Error Received while processing "{os.path.basename(music_file)}":\n' +
f'Process Method: Ensemble Mode\n\n' +
f'The application was unable to allocate enough GPU memory to use this model.\n' +
f'Please do the following:\n\n1. Close any GPU intensive applications.\n2. Lower the set chunk size.\n3. Then try again.\n\n' +
f'If the error persists, your GPU might not be supported.\n\n' +
message + f'\nError Time Stamp [{datetime.now().strftime("%Y-%m-%d %H:%M:%S")}]\n')
except:
pass
torch.cuda.empty_cache()
progress_var.set(0)
button_widget.configure(state=tk.NORMAL) # Enable Button
return
if onnxmemerror2 in message:
text_widget.write("\n" + base_text + f'Separation failed for the following audio file:\n')
text_widget.write(base_text + f'"{os.path.basename(music_file)}"\n')
text_widget.write(f'\nError Received:\n\n')
text_widget.write(f'The application was unable to allocate enough GPU memory to use this model.\n')
text_widget.write(f'Please do the following:\n\n1. Close any GPU intensive applications.\n2. Lower the set chunk size.\n3. Then try again.\n\n')
text_widget.write(f'If the error persists, your GPU might not be supported.\n\n')
text_widget.write(f'Time Elapsed: {time.strftime("%H:%M:%S", time.gmtime(int(time.perf_counter() - stime)))}')
try:
with open('errorlog.txt', 'w') as f:
f.write(f'Last Error Received:\n\n' +
f'Error Received while processing "{os.path.basename(music_file)}":\n' +
f'Process Method: Ensemble Mode\n\n' +
f'The application was unable to allocate enough GPU memory to use this model.\n' +
f'Please do the following:\n\n1. Close any GPU intensive applications.\n2. Lower the set chunk size.\n3. Then try again.\n\n' +
f'If the error persists, your GPU might not be supported.\n\n' +
message + f'\nError Time Stamp [{datetime.now().strftime("%Y-%m-%d %H:%M:%S")}]\n')
except:
pass
torch.cuda.empty_cache()
progress_var.set(0)
button_widget.configure(state=tk.NORMAL) # Enable Button
return
if sf_write_err in message:
text_widget.write("\n" + base_text + f'Separation failed for the following audio file:\n')
text_widget.write(base_text + f'"{os.path.basename(music_file)}"\n')
text_widget.write(f'\nError Received:\n\n')
text_widget.write(f'Could not write audio file.\n')
text_widget.write(f'This could be due to low storage on target device or a system permissions issue.\n')
text_widget.write(f"\nFor raw error details, go to the Error Log tab in the Help Guide.\n")
text_widget.write(f'\nIf the error persists, please contact the developers.\n\n')
text_widget.write(f'Time Elapsed: {time.strftime("%H:%M:%S", time.gmtime(int(time.perf_counter() - stime)))}')
try:
with open('errorlog.txt', 'w') as f:
f.write(f'Last Error Received:\n\n' +
f'Error Received while processing "{os.path.basename(music_file)}":\n' +
f'Process Method: Ensemble Mode\n\n' +
f'Could not write audio file.\n' +
f'This could be due to low storage on target device or a system permissions issue.\n' +
f'If the error persists, please contact the developers.\n\n' +
message + f'\nError Time Stamp [{datetime.now().strftime("%Y-%m-%d %H:%M:%S")}]\n')
except:
pass
torch.cuda.empty_cache()
progress_var.set(0)
button_widget.configure(state=tk.NORMAL) # Enable Button
return
if systemmemerr in message:
text_widget.write("\n" + base_text + f'Separation failed for the following audio file:\n')
text_widget.write(base_text + f'"{os.path.basename(music_file)}"\n')
text_widget.write(f'\nError Received:\n\n')
text_widget.write(f'The application was unable to allocate enough system memory to use this \nmodel.\n\n')
text_widget.write(f'Please do the following:\n\n1. Restart this application.\n2. Ensure any CPU intensive applications are closed.\n3. Then try again.\n\n')
text_widget.write(f'Please Note: Intel Pentium and Intel Celeron processors do not work well with \nthis application.\n\n')
text_widget.write(f'If the error persists, the system may not have enough RAM, or your CPU might \nnot be supported.\n\n')
text_widget.write(f'Time Elapsed: {time.strftime("%H:%M:%S", time.gmtime(int(time.perf_counter() - stime)))}')
try:
with open('errorlog.txt', 'w') as f:
f.write(f'Last Error Received:\n\n' +
f'Error Received while processing "{os.path.basename(music_file)}":\n' +
f'Process Method: Ensemble Mode\n\n' +
f'The application was unable to allocate enough system memory to use this model.\n' +
f'Please do the following:\n\n1. Restart this application.\n2. Ensure any CPU intensive applications are closed.\n3. Then try again.\n\n' +
f'Please Note: Intel Pentium and Intel Celeron processors do not work well with this application.\n\n' +
f'If the error persists, the system may not have enough RAM, or your CPU might \nnot be supported.\n\n' +
message + f'\nError Time Stamp [{datetime.now().strftime("%Y-%m-%d %H:%M:%S")}]\n')
except:
pass
torch.cuda.empty_cache()
progress_var.set(0)
button_widget.configure(state=tk.NORMAL) # Enable Button
return
if enex_err in message:
text_widget.write("\n" + base_text + f'Separation failed for the following audio file:\n')
text_widget.write(base_text + f'"{os.path.basename(music_file)}"\n')
text_widget.write(f'\nError Received:\n\n')
text_widget.write(f'The application was unable to locate a model you selected for this ensemble.\n')
text_widget.write(f'\nPlease do the following to use all compatible models:\n\n1. Navigate to the \"Updates\" tab in the Help Guide.\n2. Download and install the v5 Model Expansion Pack.\n3. Then try again.\n\n')
text_widget.write(f'If the error persists, please verify all models are present.\n\n')
text_widget.write(f'Time Elapsed: {time.strftime("%H:%M:%S", time.gmtime(int(time.perf_counter() - stime)))}')
try:
with open('errorlog.txt', 'w') as f:
f.write(f'Last Error Received:\n\n' +
f'Error Received while processing "{os.path.basename(music_file)}":\n' +
f'Process Method: Ensemble Mode\n\n' +
f'The application was unable to locate a model you selected for this ensemble.\n' +
f'\nPlease do the following to use all compatible models:\n\n1. Navigate to the \"Updates\" tab in the Help Guide.\n2. Download and install the model expansion pack.\n3. Then try again.\n\n' +
f'If the error persists, please verify all models are present.\n\n' +
message + f'\nError Time Stamp [{datetime.now().strftime("%Y-%m-%d %H:%M:%S")}]\n')
except:
pass
torch.cuda.empty_cache()
progress_var.set(0)
button_widget.configure(state=tk.NORMAL) # Enable Button
return
if demucs_model_missing_err in message:
text_widget.write("\n" + base_text + f'Separation failed for the following audio file:\n')
text_widget.write(base_text + f'"{os.path.basename(music_file)}"\n')
text_widget.write(f'\nError Received:\n\n')
text_widget.write(f'The selected Demucs model is missing.\n\n')
text_widget.write(f'Please download the model or make sure it is in the correct directory.\n\n')
text_widget.write(f'Time Elapsed: {time.strftime("%H:%M:%S", time.gmtime(int(time.perf_counter() - stime)))}')
try:
with open('errorlog.txt', 'w') as f:
f.write(f'Last Error Received:\n\n' +
f'Error Received while processing "{os.path.basename(music_file)}":\n' +
f'Process Method: Ensemble Mode\n\n' +
f'The selected Demucs model is missing.\n\n' +
f'Please download the model or make sure it is in the correct directory.\n\n' +
message + f'\nError Time Stamp [{datetime.now().strftime("%Y-%m-%d %H:%M:%S")}]\n')
except:
pass
torch.cuda.empty_cache()
progress_var.set(0)
button_widget.configure(state=tk.NORMAL) # Enable Button
return
print(traceback_text)
print(type(e).__name__, e)
print(message)
try:
with open('errorlog.txt', 'w') as f:
f.write(f'Last Error Received:\n\n' +
f'Error Received while processing "{os.path.basename(music_file)}":\n' +
f'Process Method: Ensemble Mode\n\n' +
f'If this error persists, please contact the developers with the error details.\n\n' +
message + f'\nError Time Stamp [{datetime.now().strftime("%Y-%m-%d %H:%M:%S")}]\n')
except:
tk.messagebox.showerror(master=window,
title='Error Details',
message=message)
progress_var.set(0)
text_widget.write("\n" + base_text + f'Separation failed for the following audio file:\n')
text_widget.write(base_text + f'"{os.path.basename(music_file)}"\n')
text_widget.write(f'\nError Received:\n')
text_widget.write("\nFor raw error details, go to the Error Log tab in the Help Guide.\n")
text_widget.write("\n" + f'Please address the error and try again.' + "\n")
text_widget.write(f'If this error persists, please contact the developers with the error details.\n\n')
text_widget.write(f'Time Elapsed: {time.strftime("%H:%M:%S", time.gmtime(int(time.perf_counter() - stime)))}')
torch.cuda.empty_cache()
button_widget.configure(state=tk.NORMAL) # Enable Button
return
update_progress(**progress_kwargs,
step=1)
print('Done!')
progress_var.set(0)
if not data['ensChoose'] == 'Manual Ensemble':
text_widget.write(base_text + f'Conversions Completed!\n')
elif data['algo'] == 'Instrumentals (Min Spec)' and len(data['input_paths']) <= 1 or data['algo'] == 'Vocals (Max Spec)' and len(data['input_paths']) <= 1:
text_widget.write(base_text + f'Please select 2 or more files to use this feature and try again.\n')
elif data['algo'] == 'Instrumentals (Min Spec)' or data['algo'] == 'Vocals (Max Spec)':
text_widget.write(base_text + f'Ensemble Complete!\n')
elif len(data['input_paths']) != 2 and data['algo'] == 'Invert (Spectral)' or len(data['input_paths']) != 2 and data['algo'] == 'Invert (Normal)':
text_widget.write(base_text + f'Please select exactly 2 files to extract difference.\n')
elif data['algo'] == 'Invert (Spectral)' or data['algo'] == 'Invert (Normal)':
text_widget.write(base_text + f'Complete!\n')
text_widget.write(f'Time Elapsed: {time.strftime("%H:%M:%S", time.gmtime(int(time.perf_counter() - stime)))}') # nopep8
torch.cuda.empty_cache()
button_widget.configure(state=tk.NORMAL) #Enable Button