ultimatevocalremovergui/diffq/base.py
2022-06-13 02:10:39 -05:00

344 lines
12 KiB
Python

# Copyright (c) Facebook, Inc. and its affiliates.
# All rights reserved.
#
# This source code is licensed under the license found in the
# LICENSE file in the root directory of this source tree.
"""Base class for all quantizers."""
from contextlib import contextmanager
from dataclasses import dataclass
from concurrent import futures
from fnmatch import fnmatch
from functools import partial
import io
import math
from multiprocessing import cpu_count
import pickle
import typing as tp
import zlib
import torch
from . import bitpack
from . import torch_pack as torch_pack_mod
class BaseQuantizer:
@dataclass
class _QuantizedParam:
name: str
param: torch.nn.Parameter
module: torch.nn.Module
# If a Parameter is used multiple times, `other` can be used
# to share state between the different Quantizers
other: tp.Optional[tp.Any]
def __init__(self, model: torch.nn.Module, min_size: float = 0.01, float16: bool = False,
exclude: tp.Optional[tp.List[str]] = [], detect_bound: bool = True):
self.model = model
self.min_size = min_size
self.float16 = float16
self.exclude = exclude
self.detect_bound = detect_bound
self._quantized = False
self._need_unquantize = None
self._pre_handle = self.model.register_forward_pre_hook(self._forward_pre_hook)
self._post_handle = self.model.register_forward_hook(self._forward_hook)
self._qparams = []
self._float16 = []
self._others = []
self._rnns = []
self._saved = []
self._find_params()
def _find_params(self):
min_params = self.min_size * 2**20 // 4
previous = {}
for module_name, module in self.model.named_modules():
if isinstance(module, torch.nn.RNNBase):
self._rnns.append(module)
for name, param in list(module.named_parameters(recurse=False)):
full_name = f"{module_name}.{name}"
matched = False
for pattern in self.exclude:
if fnmatch(full_name, pattern) or fnmatch(name, pattern):
matched = True
break
if param.numel() <= min_params or matched:
if id(param) in previous:
continue
if self.detect_bound:
previous[id(param)] = None
if self.float16:
self._float16.append(param)
else:
self._others.append(param)
else:
qparam = self._register_param(name, param, module, previous.get(id(param)))
if self.detect_bound:
previous[id(param)] = qparam
self._qparams.append(qparam)
def _register_param(self, name, param, module, other):
return self.__class__._QuantizedParam(name, param, module, other)
def _forward_pre_hook(self, module, input):
if self.model.training:
self._quantized_state = None
self.unquantize()
if self._pre_forward_train():
self._fix_rnns()
else:
assert self._need_unquantize is None
self._need_unquantize = self.quantize()
def _forward_hook(self, module, input, output):
if self.model.training:
if self._post_forward_train():
self._fix_rnns(flatten=False) # Hacky, next forward will flatten
else:
if self._need_unquantize:
self._need_unquantize = None
self.unquantize()
def quantize(self):
"""
Immediately apply quantization to the model parameters.
Model parameters are saved to later allow restoring the unquantized state.
Note that you shouldn't need to call this for model evaluation, as long as
you properly call `model.train()` and `model.eval()`, but this can be
useful for weight inspection.
"""
if self._quantized:
return False
self._saved = [qp.param.data.to('cpu', copy=True)
for qp in self._qparams if qp.other is None]
self.restore_quantized_state(self.get_quantized_state(packed=False))
self._quantized = True
self._fix_rnns()
return True
@contextmanager
def enter_quantize(self):
"""Context manager for entering quantized state."""
self.quantize()
try:
yield
finally:
self.unquantize()
def unquantize(self):
"""
Revert a previous call to `quantize()`.
"""
if not self._quantized:
return
if not self._saved:
raise RuntimeError("Nothing to restore. This shouldn't happen")
for qparam in self._qparams:
if qparam.other is None:
qparam.param.data[:] = self._saved.pop(0)
assert len(self._saved) == 0
self._quantized = False
self._fix_rnns()
def _pre_forward_train(self) -> bool:
"""
Called once before each forward for continuous quantization.
Should return True if parameters were changed.
"""
return False
def _post_forward_train(self) -> bool:
"""
Called once after each forward (to restore state for instance).
Should return True if parameters were changed.
"""
return False
def _fix_rnns(self, flatten=True):
"""
To be called after quantization happened to fix RNNs.
"""
for rnn in self._rnns:
rnn._flat_weights = [
(lambda wn: getattr(rnn, wn) if hasattr(rnn, wn) else None)(wn)
for wn in rnn._flat_weights_names]
if flatten:
rnn.flatten_parameters()
def _bit_pack_param(self, qparam: _QuantizedParam, quantized: tp.Any,
pack_fn: tp.Any) -> tp.Any:
"""Further bitpack the quantized representation.
This is used to return the quantized state. Should be overriden.
"""
return quantized
def _bit_unpack_param(self, qparam: _QuantizedParam, packed: tp.Any,
unpack_fn: tp.Any) -> tp.Any:
"""Unpack bitpacked representation. Should be overriden
"""
return packed
def _quantize_param(self, qparam: _QuantizedParam) -> tp.Any:
"""
To be overriden.
"""
raise NotImplementedError()
def _unquantize_param(self, qparam: _QuantizedParam, quantized: tp.Any) -> torch.Tensor:
"""
To be overriden.
"""
raise NotImplementedError()
def get_quantized_state(self, packed=True, torch_pack=False):
"""
Return a quantized representation fo the weights. If `packed` is True,
this will also perform bitpacking to ensure optimal store.
If `torck_pack` is true, the bitpacking from `torch_pack` will be used.
It is slower (except maybe on GPU), but is compatible with torchscript.
You can restore a model from a quantized state either using
`BaseQuantizer.restore_quantized_state` or `diffq.restore_quantized_state`
if you do not have the original quantizer around anymore.
"""
float16_params = []
for p in self._float16:
q = p.data.half()
float16_params.append(q)
if torch_pack:
pack_fn = torch_pack_mod.pack
else:
pack_fn = bitpack.pack
all_quantized = []
for qparam in self._qparams:
if qparam.other is not None:
continue
quantized = self._quantize_param(qparam)
if packed:
quantized = self._bit_pack_param(qparam, quantized, pack_fn=pack_fn)
all_quantized.append(quantized)
state = {
"quantized": all_quantized,
"float16": float16_params,
"others": [p.data.clone() for p in self._others],
}
kwargs = dict(self._init_kwargs)
kwargs.pop("model")
state["meta"] = {
"init_kwargs": kwargs,
"klass": self.__class__,
"packed": packed,
"torch_pack": torch_pack
}
return state
def restore_quantized_state(self, state) -> None:
"""
Restore the state of the model from the quantized state.
"""
for p, q in zip(self._float16, state["float16"]):
p.data[:] = q.to(p)
for p, q in zip(self._others, state["others"]):
p.data[:] = q
meta = state.get("meta", {})
packed = meta.get("packed", False)
torch_pack = meta.get("torch_pack", False)
if torch_pack:
unpack_fn = torch_pack_mod.unpack
else:
unpack_fn = bitpack.unpack
remaining = list(state["quantized"])
for qparam in self._qparams:
if qparam.other is not None:
# Only unquantize first appearance of nn.Parameter.
continue
quantized = remaining.pop(0)
if packed:
quantized = self._bit_unpack_param(qparam, quantized, unpack_fn)
qparam.param.data[:] = self._unquantize_param(qparam, quantized)
assert not remaining
self._fix_rnns()
def detach(self) -> None:
"""
Detach from the model, removes hooks and anything else.
"""
self._pre_handle.remove()
self._post_handle.remove()
def model_size(self) -> torch.Tensor:
"""
Returns an estimate of the quantized model size.
"""
total = torch.tensor(0.)
for p in self._float16:
total += 16 * p.numel()
for p in self._others:
total += 32 * p.numel()
return total / 2**20 / 8 # bits to MegaBytes
def true_model_size(self) -> float:
"""
Return the true quantized model size, in MB, without extra
compression.
"""
return self.model_size().item()
def packed_model_size(self) -> float:
"""Return the packed model size, when stored with pickle.
This should be mostly equivalent to `true_model_size` up to some
slight overhead for storing metadata.
"""
state = self.get_quantized_state(packed=True)
return len(pickle.dumps(state)) / 2 ** 20
def compressed_model_size(self, compress_level=-1, num_workers=8) -> float:
"""
Return the compressed quantized model size, in MB.
Args:
compress_level (int): compression level used with zlib,
see `zlib.compress` for details.
num_workers (int): will split the final big byte representation in that
many chunks processed in parallels.
"""
out = io.BytesIO()
torch.save(self.get_quantized_state(packed=False), out)
ms = _parallel_compress_len(out.getvalue(), compress_level, num_workers)
return ms / 2 ** 20
def restore_quantized_state(model: torch.nn.Module, state: dict):
assert "meta" in state
quantizer = state["meta"]["klass"](model, **state["meta"]["init_kwargs"])
quantizer.restore_quantized_state(state)
quantizer.detach()
def _compress_len(data, compress_level):
return len(zlib.compress(data, level=compress_level))
def _parallel_compress_len(data, compress_level, num_workers):
num_workers = min(cpu_count(), num_workers)
chunk_size = int(math.ceil(len(data) / num_workers))
chunks = [data[offset:offset + chunk_size] for offset in range(0, len(data), chunk_size)]
with futures.ThreadPoolExecutor(num_workers) as pool:
# thread pool is okay here, zlib calls an external C lib and GIL is released
# before the call.
return sum(pool.map(partial(_compress_len, compress_level=compress_level), chunks))