mirror of
https://github.com/Anjok07/ultimatevocalremovergui.git
synced 2025-01-07 03:51:36 +01:00
219 lines
7.3 KiB
Python
219 lines
7.3 KiB
Python
# Copyright (c) Facebook, Inc. and its affiliates.
|
|
# All rights reserved.
|
|
#
|
|
# This source code is licensed under the license found in the
|
|
# LICENSE file in the root directory of this source tree.
|
|
|
|
import math
|
|
|
|
import torch as th
|
|
from torch import nn
|
|
|
|
from .utils import capture_init, center_trim
|
|
|
|
|
|
class BLSTM(nn.Module):
|
|
def __init__(self, dim, layers=1):
|
|
super().__init__()
|
|
self.lstm = nn.LSTM(bidirectional=True, num_layers=layers, hidden_size=dim, input_size=dim)
|
|
self.linear = nn.Linear(2 * dim, dim)
|
|
|
|
def forward(self, x):
|
|
x = x.permute(2, 0, 1)
|
|
x = self.lstm(x)[0]
|
|
x = self.linear(x)
|
|
x = x.permute(1, 2, 0)
|
|
return x
|
|
|
|
|
|
def rescale_conv(conv, reference):
|
|
std = conv.weight.std().detach()
|
|
scale = (std / reference)**0.5
|
|
conv.weight.data /= scale
|
|
if conv.bias is not None:
|
|
conv.bias.data /= scale
|
|
|
|
|
|
def rescale_module(module, reference):
|
|
for sub in module.modules():
|
|
if isinstance(sub, (nn.Conv1d, nn.ConvTranspose1d)):
|
|
rescale_conv(sub, reference)
|
|
|
|
|
|
def upsample(x, stride):
|
|
"""
|
|
Linear upsampling, the output will be `stride` times longer.
|
|
"""
|
|
batch, channels, time = x.size()
|
|
weight = th.arange(stride, device=x.device, dtype=th.float) / stride
|
|
x = x.view(batch, channels, time, 1)
|
|
out = x[..., :-1, :] * (1 - weight) + x[..., 1:, :] * weight
|
|
return out.reshape(batch, channels, -1)
|
|
|
|
|
|
def downsample(x, stride):
|
|
"""
|
|
Downsample x by decimation.
|
|
"""
|
|
return x[:, :, ::stride]
|
|
|
|
|
|
class Demucs(nn.Module):
|
|
@capture_init
|
|
def __init__(self,
|
|
sources=4,
|
|
audio_channels=2,
|
|
channels=64,
|
|
depth=6,
|
|
rewrite=True,
|
|
glu=True,
|
|
upsample=False,
|
|
rescale=0.1,
|
|
kernel_size=8,
|
|
stride=4,
|
|
growth=2.,
|
|
lstm_layers=2,
|
|
context=3,
|
|
samplerate=44100):
|
|
"""
|
|
Args:
|
|
sources (int): number of sources to separate
|
|
audio_channels (int): stereo or mono
|
|
channels (int): first convolution channels
|
|
depth (int): number of encoder/decoder layers
|
|
rewrite (bool): add 1x1 convolution to each encoder layer
|
|
and a convolution to each decoder layer.
|
|
For the decoder layer, `context` gives the kernel size.
|
|
glu (bool): use glu instead of ReLU
|
|
upsample (bool): use linear upsampling with convolutions
|
|
Wave-U-Net style, instead of transposed convolutions
|
|
rescale (int): rescale initial weights of convolutions
|
|
to get their standard deviation closer to `rescale`
|
|
kernel_size (int): kernel size for convolutions
|
|
stride (int): stride for convolutions
|
|
growth (float): multiply (resp divide) number of channels by that
|
|
for each layer of the encoder (resp decoder)
|
|
lstm_layers (int): number of lstm layers, 0 = no lstm
|
|
context (int): kernel size of the convolution in the
|
|
decoder before the transposed convolution. If > 1,
|
|
will provide some context from neighboring time
|
|
steps.
|
|
"""
|
|
|
|
super().__init__()
|
|
self.audio_channels = audio_channels
|
|
self.sources = sources
|
|
self.kernel_size = kernel_size
|
|
self.context = context
|
|
self.stride = stride
|
|
self.depth = depth
|
|
self.upsample = upsample
|
|
self.channels = channels
|
|
self.samplerate = samplerate
|
|
|
|
self.encoder = nn.ModuleList()
|
|
self.decoder = nn.ModuleList()
|
|
|
|
self.final = None
|
|
if upsample:
|
|
self.final = nn.Conv1d(channels + audio_channels, sources * audio_channels, 1)
|
|
stride = 1
|
|
|
|
if glu:
|
|
activation = nn.GLU(dim=1)
|
|
ch_scale = 2
|
|
else:
|
|
activation = nn.ReLU()
|
|
ch_scale = 1
|
|
in_channels = audio_channels
|
|
for index in range(depth):
|
|
encode = []
|
|
encode += [nn.Conv1d(in_channels, channels, kernel_size, stride), nn.ReLU()]
|
|
if rewrite:
|
|
encode += [nn.Conv1d(channels, ch_scale * channels, 1), activation]
|
|
self.encoder.append(nn.Sequential(*encode))
|
|
|
|
decode = []
|
|
if index > 0:
|
|
out_channels = in_channels
|
|
else:
|
|
if upsample:
|
|
out_channels = channels
|
|
else:
|
|
out_channels = sources * audio_channels
|
|
if rewrite:
|
|
decode += [nn.Conv1d(channels, ch_scale * channels, context), activation]
|
|
if upsample:
|
|
decode += [
|
|
nn.Conv1d(channels, out_channels, kernel_size, stride=1),
|
|
]
|
|
else:
|
|
decode += [nn.ConvTranspose1d(channels, out_channels, kernel_size, stride)]
|
|
if index > 0:
|
|
decode.append(nn.ReLU())
|
|
self.decoder.insert(0, nn.Sequential(*decode))
|
|
in_channels = channels
|
|
channels = int(growth * channels)
|
|
|
|
channels = in_channels
|
|
|
|
if lstm_layers:
|
|
self.lstm = BLSTM(channels, lstm_layers)
|
|
else:
|
|
self.lstm = None
|
|
|
|
if rescale:
|
|
rescale_module(self, reference=rescale)
|
|
|
|
def valid_length(self, length):
|
|
"""
|
|
Return the nearest valid length to use with the model so that
|
|
there is no time steps left over in a convolutions, e.g. for all
|
|
layers, size of the input - kernel_size % stride = 0.
|
|
|
|
If the mixture has a valid length, the estimated sources
|
|
will have exactly the same length when context = 1. If context > 1,
|
|
the two signals can be center trimmed to match.
|
|
|
|
For training, extracts should have a valid length.For evaluation
|
|
on full tracks we recommend passing `pad = True` to :method:`forward`.
|
|
"""
|
|
for _ in range(self.depth):
|
|
if self.upsample:
|
|
length = math.ceil(length / self.stride) + self.kernel_size - 1
|
|
else:
|
|
length = math.ceil((length - self.kernel_size) / self.stride) + 1
|
|
length = max(1, length)
|
|
length += self.context - 1
|
|
for _ in range(self.depth):
|
|
if self.upsample:
|
|
length = length * self.stride + self.kernel_size - 1
|
|
else:
|
|
length = (length - 1) * self.stride + self.kernel_size
|
|
|
|
return int(length)
|
|
|
|
def forward(self, mix):
|
|
x = mix
|
|
saved = [x]
|
|
for encode in self.encoder:
|
|
x = encode(x)
|
|
saved.append(x)
|
|
if self.upsample:
|
|
x = downsample(x, self.stride)
|
|
if self.lstm:
|
|
x = self.lstm(x)
|
|
for decode in self.decoder:
|
|
if self.upsample:
|
|
x = upsample(x, stride=self.stride)
|
|
skip = center_trim(saved.pop(-1), x)
|
|
x = x + skip
|
|
x = decode(x)
|
|
if self.final:
|
|
skip = center_trim(saved.pop(-1), x)
|
|
x = th.cat([x, skip], dim=1)
|
|
x = self.final(x)
|
|
|
|
x = x.view(x.size(0), self.sources, self.audio_channels, x.size(-1))
|
|
return x
|