mirror of
https://github.com/Anjok07/ultimatevocalremovergui.git
synced 2025-01-07 03:51:36 +01:00
453 lines
16 KiB
Python
453 lines
16 KiB
Python
# Copyright (c) Facebook, Inc. and its affiliates.
|
||
# All rights reserved.
|
||
#
|
||
# This source code is licensed under the license found in the
|
||
# LICENSE file in the root directory of this source tree.
|
||
#
|
||
# Created on 2018/12
|
||
# Author: Kaituo XU
|
||
# Modified on 2019/11 by Alexandre Defossez, added support for multiple output channels
|
||
# Here is the original license:
|
||
# The MIT License (MIT)
|
||
#
|
||
# Copyright (c) 2018 Kaituo XU
|
||
#
|
||
# Permission is hereby granted, free of charge, to any person obtaining a copy
|
||
# of this software and associated documentation files (the "Software"), to deal
|
||
# in the Software without restriction, including without limitation the rights
|
||
# to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
|
||
# copies of the Software, and to permit persons to whom the Software is
|
||
# furnished to do so, subject to the following conditions:
|
||
#
|
||
# The above copyright notice and this permission notice shall be included in all
|
||
# copies or substantial portions of the Software.
|
||
#
|
||
# THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
|
||
# IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
|
||
# FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
|
||
# AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
|
||
# LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
|
||
# OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
|
||
# SOFTWARE.
|
||
|
||
import math
|
||
|
||
import torch
|
||
import torch.nn as nn
|
||
import torch.nn.functional as F
|
||
|
||
from .utils import capture_init
|
||
|
||
EPS = 1e-8
|
||
|
||
|
||
def overlap_and_add(signal, frame_step):
|
||
outer_dimensions = signal.size()[:-2]
|
||
frames, frame_length = signal.size()[-2:]
|
||
|
||
subframe_length = math.gcd(frame_length, frame_step) # gcd=Greatest Common Divisor
|
||
subframe_step = frame_step // subframe_length
|
||
subframes_per_frame = frame_length // subframe_length
|
||
output_size = frame_step * (frames - 1) + frame_length
|
||
output_subframes = output_size // subframe_length
|
||
|
||
subframe_signal = signal.view(*outer_dimensions, -1, subframe_length)
|
||
|
||
frame = torch.arange(0, output_subframes,
|
||
device=signal.device).unfold(0, subframes_per_frame, subframe_step)
|
||
frame = frame.long() # signal may in GPU or CPU
|
||
frame = frame.contiguous().view(-1)
|
||
|
||
result = signal.new_zeros(*outer_dimensions, output_subframes, subframe_length)
|
||
result.index_add_(-2, frame, subframe_signal)
|
||
result = result.view(*outer_dimensions, -1)
|
||
return result
|
||
|
||
|
||
class ConvTasNet(nn.Module):
|
||
@capture_init
|
||
def __init__(self,
|
||
sources,
|
||
N=256,
|
||
L=20,
|
||
B=256,
|
||
H=512,
|
||
P=3,
|
||
X=8,
|
||
R=4,
|
||
audio_channels=2,
|
||
norm_type="gLN",
|
||
causal=False,
|
||
mask_nonlinear='relu',
|
||
samplerate=44100,
|
||
segment_length=44100 * 2 * 4):
|
||
"""
|
||
Args:
|
||
sources: list of sources
|
||
N: Number of filters in autoencoder
|
||
L: Length of the filters (in samples)
|
||
B: Number of channels in bottleneck 1 × 1-conv block
|
||
H: Number of channels in convolutional blocks
|
||
P: Kernel size in convolutional blocks
|
||
X: Number of convolutional blocks in each repeat
|
||
R: Number of repeats
|
||
norm_type: BN, gLN, cLN
|
||
causal: causal or non-causal
|
||
mask_nonlinear: use which non-linear function to generate mask
|
||
"""
|
||
super(ConvTasNet, self).__init__()
|
||
# Hyper-parameter
|
||
self.sources = sources
|
||
self.C = len(sources)
|
||
self.N, self.L, self.B, self.H, self.P, self.X, self.R = N, L, B, H, P, X, R
|
||
self.norm_type = norm_type
|
||
self.causal = causal
|
||
self.mask_nonlinear = mask_nonlinear
|
||
self.audio_channels = audio_channels
|
||
self.samplerate = samplerate
|
||
self.segment_length = segment_length
|
||
# Components
|
||
self.encoder = Encoder(L, N, audio_channels)
|
||
self.separator = TemporalConvNet(
|
||
N, B, H, P, X, R, self.C, norm_type, causal, mask_nonlinear)
|
||
self.decoder = Decoder(N, L, audio_channels)
|
||
# init
|
||
for p in self.parameters():
|
||
if p.dim() > 1:
|
||
nn.init.xavier_normal_(p)
|
||
|
||
def valid_length(self, length):
|
||
return length
|
||
|
||
def forward(self, mixture):
|
||
"""
|
||
Args:
|
||
mixture: [M, T], M is batch size, T is #samples
|
||
Returns:
|
||
est_source: [M, C, T]
|
||
"""
|
||
mixture_w = self.encoder(mixture)
|
||
est_mask = self.separator(mixture_w)
|
||
est_source = self.decoder(mixture_w, est_mask)
|
||
|
||
# T changed after conv1d in encoder, fix it here
|
||
T_origin = mixture.size(-1)
|
||
T_conv = est_source.size(-1)
|
||
est_source = F.pad(est_source, (0, T_origin - T_conv))
|
||
return est_source
|
||
|
||
|
||
class Encoder(nn.Module):
|
||
"""Estimation of the nonnegative mixture weight by a 1-D conv layer.
|
||
"""
|
||
def __init__(self, L, N, audio_channels):
|
||
super(Encoder, self).__init__()
|
||
# Hyper-parameter
|
||
self.L, self.N = L, N
|
||
# Components
|
||
# 50% overlap
|
||
self.conv1d_U = nn.Conv1d(audio_channels, N, kernel_size=L, stride=L // 2, bias=False)
|
||
|
||
def forward(self, mixture):
|
||
"""
|
||
Args:
|
||
mixture: [M, T], M is batch size, T is #samples
|
||
Returns:
|
||
mixture_w: [M, N, K], where K = (T-L)/(L/2)+1 = 2T/L-1
|
||
"""
|
||
mixture_w = F.relu(self.conv1d_U(mixture)) # [M, N, K]
|
||
return mixture_w
|
||
|
||
|
||
class Decoder(nn.Module):
|
||
def __init__(self, N, L, audio_channels):
|
||
super(Decoder, self).__init__()
|
||
# Hyper-parameter
|
||
self.N, self.L = N, L
|
||
self.audio_channels = audio_channels
|
||
# Components
|
||
self.basis_signals = nn.Linear(N, audio_channels * L, bias=False)
|
||
|
||
def forward(self, mixture_w, est_mask):
|
||
"""
|
||
Args:
|
||
mixture_w: [M, N, K]
|
||
est_mask: [M, C, N, K]
|
||
Returns:
|
||
est_source: [M, C, T]
|
||
"""
|
||
# D = W * M
|
||
source_w = torch.unsqueeze(mixture_w, 1) * est_mask # [M, C, N, K]
|
||
source_w = torch.transpose(source_w, 2, 3) # [M, C, K, N]
|
||
# S = DV
|
||
est_source = self.basis_signals(source_w) # [M, C, K, ac * L]
|
||
m, c, k, _ = est_source.size()
|
||
est_source = est_source.view(m, c, k, self.audio_channels, -1).transpose(2, 3).contiguous()
|
||
est_source = overlap_and_add(est_source, self.L // 2) # M x C x ac x T
|
||
return est_source
|
||
|
||
|
||
class TemporalConvNet(nn.Module):
|
||
def __init__(self, N, B, H, P, X, R, C, norm_type="gLN", causal=False, mask_nonlinear='relu'):
|
||
"""
|
||
Args:
|
||
N: Number of filters in autoencoder
|
||
B: Number of channels in bottleneck 1 × 1-conv block
|
||
H: Number of channels in convolutional blocks
|
||
P: Kernel size in convolutional blocks
|
||
X: Number of convolutional blocks in each repeat
|
||
R: Number of repeats
|
||
C: Number of speakers
|
||
norm_type: BN, gLN, cLN
|
||
causal: causal or non-causal
|
||
mask_nonlinear: use which non-linear function to generate mask
|
||
"""
|
||
super(TemporalConvNet, self).__init__()
|
||
# Hyper-parameter
|
||
self.C = C
|
||
self.mask_nonlinear = mask_nonlinear
|
||
# Components
|
||
# [M, N, K] -> [M, N, K]
|
||
layer_norm = ChannelwiseLayerNorm(N)
|
||
# [M, N, K] -> [M, B, K]
|
||
bottleneck_conv1x1 = nn.Conv1d(N, B, 1, bias=False)
|
||
# [M, B, K] -> [M, B, K]
|
||
repeats = []
|
||
for r in range(R):
|
||
blocks = []
|
||
for x in range(X):
|
||
dilation = 2**x
|
||
padding = (P - 1) * dilation if causal else (P - 1) * dilation // 2
|
||
blocks += [
|
||
TemporalBlock(B,
|
||
H,
|
||
P,
|
||
stride=1,
|
||
padding=padding,
|
||
dilation=dilation,
|
||
norm_type=norm_type,
|
||
causal=causal)
|
||
]
|
||
repeats += [nn.Sequential(*blocks)]
|
||
temporal_conv_net = nn.Sequential(*repeats)
|
||
# [M, B, K] -> [M, C*N, K]
|
||
mask_conv1x1 = nn.Conv1d(B, C * N, 1, bias=False)
|
||
# Put together
|
||
self.network = nn.Sequential(layer_norm, bottleneck_conv1x1, temporal_conv_net,
|
||
mask_conv1x1)
|
||
|
||
def forward(self, mixture_w):
|
||
"""
|
||
Keep this API same with TasNet
|
||
Args:
|
||
mixture_w: [M, N, K], M is batch size
|
||
returns:
|
||
est_mask: [M, C, N, K]
|
||
"""
|
||
M, N, K = mixture_w.size()
|
||
score = self.network(mixture_w) # [M, N, K] -> [M, C*N, K]
|
||
score = score.view(M, self.C, N, K) # [M, C*N, K] -> [M, C, N, K]
|
||
if self.mask_nonlinear == 'softmax':
|
||
est_mask = F.softmax(score, dim=1)
|
||
elif self.mask_nonlinear == 'relu':
|
||
est_mask = F.relu(score)
|
||
else:
|
||
raise ValueError("Unsupported mask non-linear function")
|
||
return est_mask
|
||
|
||
|
||
class TemporalBlock(nn.Module):
|
||
def __init__(self,
|
||
in_channels,
|
||
out_channels,
|
||
kernel_size,
|
||
stride,
|
||
padding,
|
||
dilation,
|
||
norm_type="gLN",
|
||
causal=False):
|
||
super(TemporalBlock, self).__init__()
|
||
# [M, B, K] -> [M, H, K]
|
||
conv1x1 = nn.Conv1d(in_channels, out_channels, 1, bias=False)
|
||
prelu = nn.PReLU()
|
||
norm = chose_norm(norm_type, out_channels)
|
||
# [M, H, K] -> [M, B, K]
|
||
dsconv = DepthwiseSeparableConv(out_channels, in_channels, kernel_size, stride, padding,
|
||
dilation, norm_type, causal)
|
||
# Put together
|
||
self.net = nn.Sequential(conv1x1, prelu, norm, dsconv)
|
||
|
||
def forward(self, x):
|
||
"""
|
||
Args:
|
||
x: [M, B, K]
|
||
Returns:
|
||
[M, B, K]
|
||
"""
|
||
residual = x
|
||
out = self.net(x)
|
||
# TODO: when P = 3 here works fine, but when P = 2 maybe need to pad?
|
||
return out + residual # look like w/o F.relu is better than w/ F.relu
|
||
# return F.relu(out + residual)
|
||
|
||
|
||
class DepthwiseSeparableConv(nn.Module):
|
||
def __init__(self,
|
||
in_channels,
|
||
out_channels,
|
||
kernel_size,
|
||
stride,
|
||
padding,
|
||
dilation,
|
||
norm_type="gLN",
|
||
causal=False):
|
||
super(DepthwiseSeparableConv, self).__init__()
|
||
# Use `groups` option to implement depthwise convolution
|
||
# [M, H, K] -> [M, H, K]
|
||
depthwise_conv = nn.Conv1d(in_channels,
|
||
in_channels,
|
||
kernel_size,
|
||
stride=stride,
|
||
padding=padding,
|
||
dilation=dilation,
|
||
groups=in_channels,
|
||
bias=False)
|
||
if causal:
|
||
chomp = Chomp1d(padding)
|
||
prelu = nn.PReLU()
|
||
norm = chose_norm(norm_type, in_channels)
|
||
# [M, H, K] -> [M, B, K]
|
||
pointwise_conv = nn.Conv1d(in_channels, out_channels, 1, bias=False)
|
||
# Put together
|
||
if causal:
|
||
self.net = nn.Sequential(depthwise_conv, chomp, prelu, norm, pointwise_conv)
|
||
else:
|
||
self.net = nn.Sequential(depthwise_conv, prelu, norm, pointwise_conv)
|
||
|
||
def forward(self, x):
|
||
"""
|
||
Args:
|
||
x: [M, H, K]
|
||
Returns:
|
||
result: [M, B, K]
|
||
"""
|
||
return self.net(x)
|
||
|
||
|
||
class Chomp1d(nn.Module):
|
||
"""To ensure the output length is the same as the input.
|
||
"""
|
||
def __init__(self, chomp_size):
|
||
super(Chomp1d, self).__init__()
|
||
self.chomp_size = chomp_size
|
||
|
||
def forward(self, x):
|
||
"""
|
||
Args:
|
||
x: [M, H, Kpad]
|
||
Returns:
|
||
[M, H, K]
|
||
"""
|
||
return x[:, :, :-self.chomp_size].contiguous()
|
||
|
||
|
||
def chose_norm(norm_type, channel_size):
|
||
"""The input of normlization will be (M, C, K), where M is batch size,
|
||
C is channel size and K is sequence length.
|
||
"""
|
||
if norm_type == "gLN":
|
||
return GlobalLayerNorm(channel_size)
|
||
elif norm_type == "cLN":
|
||
return ChannelwiseLayerNorm(channel_size)
|
||
elif norm_type == "id":
|
||
return nn.Identity()
|
||
else: # norm_type == "BN":
|
||
# Given input (M, C, K), nn.BatchNorm1d(C) will accumulate statics
|
||
# along M and K, so this BN usage is right.
|
||
return nn.BatchNorm1d(channel_size)
|
||
|
||
|
||
# TODO: Use nn.LayerNorm to impl cLN to speed up
|
||
class ChannelwiseLayerNorm(nn.Module):
|
||
"""Channel-wise Layer Normalization (cLN)"""
|
||
def __init__(self, channel_size):
|
||
super(ChannelwiseLayerNorm, self).__init__()
|
||
self.gamma = nn.Parameter(torch.Tensor(1, channel_size, 1)) # [1, N, 1]
|
||
self.beta = nn.Parameter(torch.Tensor(1, channel_size, 1)) # [1, N, 1]
|
||
self.reset_parameters()
|
||
|
||
def reset_parameters(self):
|
||
self.gamma.data.fill_(1)
|
||
self.beta.data.zero_()
|
||
|
||
def forward(self, y):
|
||
"""
|
||
Args:
|
||
y: [M, N, K], M is batch size, N is channel size, K is length
|
||
Returns:
|
||
cLN_y: [M, N, K]
|
||
"""
|
||
mean = torch.mean(y, dim=1, keepdim=True) # [M, 1, K]
|
||
var = torch.var(y, dim=1, keepdim=True, unbiased=False) # [M, 1, K]
|
||
cLN_y = self.gamma * (y - mean) / torch.pow(var + EPS, 0.5) + self.beta
|
||
return cLN_y
|
||
|
||
|
||
class GlobalLayerNorm(nn.Module):
|
||
"""Global Layer Normalization (gLN)"""
|
||
def __init__(self, channel_size):
|
||
super(GlobalLayerNorm, self).__init__()
|
||
self.gamma = nn.Parameter(torch.Tensor(1, channel_size, 1)) # [1, N, 1]
|
||
self.beta = nn.Parameter(torch.Tensor(1, channel_size, 1)) # [1, N, 1]
|
||
self.reset_parameters()
|
||
|
||
def reset_parameters(self):
|
||
self.gamma.data.fill_(1)
|
||
self.beta.data.zero_()
|
||
|
||
def forward(self, y):
|
||
"""
|
||
Args:
|
||
y: [M, N, K], M is batch size, N is channel size, K is length
|
||
Returns:
|
||
gLN_y: [M, N, K]
|
||
"""
|
||
# TODO: in torch 1.0, torch.mean() support dim list
|
||
mean = y.mean(dim=1, keepdim=True).mean(dim=2, keepdim=True) # [M, 1, 1]
|
||
var = (torch.pow(y - mean, 2)).mean(dim=1, keepdim=True).mean(dim=2, keepdim=True)
|
||
gLN_y = self.gamma * (y - mean) / torch.pow(var + EPS, 0.5) + self.beta
|
||
return gLN_y
|
||
|
||
|
||
if __name__ == "__main__":
|
||
torch.manual_seed(123)
|
||
M, N, L, T = 2, 3, 4, 12
|
||
K = 2 * T // L - 1
|
||
B, H, P, X, R, C, norm_type, causal = 2, 3, 3, 3, 2, 2, "gLN", False
|
||
mixture = torch.randint(3, (M, T))
|
||
# test Encoder
|
||
encoder = Encoder(L, N)
|
||
encoder.conv1d_U.weight.data = torch.randint(2, encoder.conv1d_U.weight.size())
|
||
mixture_w = encoder(mixture)
|
||
print('mixture', mixture)
|
||
print('U', encoder.conv1d_U.weight)
|
||
print('mixture_w', mixture_w)
|
||
print('mixture_w size', mixture_w.size())
|
||
|
||
# test TemporalConvNet
|
||
separator = TemporalConvNet(N, B, H, P, X, R, C, norm_type=norm_type, causal=causal)
|
||
est_mask = separator(mixture_w)
|
||
print('est_mask', est_mask)
|
||
|
||
# test Decoder
|
||
decoder = Decoder(N, L)
|
||
est_mask = torch.randint(2, (B, K, C, N))
|
||
est_source = decoder(mixture_w, est_mask)
|
||
print('est_source', est_source)
|
||
|
||
# test Conv-TasNet
|
||
conv_tasnet = ConvTasNet(N, L, B, H, P, X, R, C, norm_type=norm_type)
|
||
est_source = conv_tasnet(mixture)
|
||
print('est_source', est_source)
|
||
print('est_source size', est_source.size())
|