mirror of
https://github.com/Anjok07/ultimatevocalremovergui.git
synced 2024-12-18 10:26:03 +01:00
1123 lines
62 KiB
Python
1123 lines
62 KiB
Python
from collections import defaultdict
|
|
from datetime import datetime
|
|
from demucs.apply import BagOfModels, apply_model
|
|
from demucs.hdemucs import HDemucs
|
|
from demucs.pretrained import get_model as _gm
|
|
from lib_v5 import dataset
|
|
from lib_v5 import spec_utils
|
|
from lib_v5.model_param_init import ModelParameters
|
|
from models import stft, istft
|
|
from pathlib import Path
|
|
from random import randrange
|
|
from tqdm import tqdm
|
|
from tkinter import filedialog
|
|
import lib_v5.filelist
|
|
import cv2
|
|
import hashlib
|
|
import importlib
|
|
import librosa
|
|
import math
|
|
import numpy as np
|
|
import os
|
|
import pydub
|
|
import shutil
|
|
import soundfile as sf
|
|
import time # Timer
|
|
import tkinter as tk
|
|
import torch
|
|
import traceback # Error Message Recent Calls
|
|
|
|
class VocalRemover(object):
|
|
|
|
def __init__(self, data, text_widget: tk.Text):
|
|
self.data = data
|
|
self.text_widget = text_widget
|
|
self.models = defaultdict(lambda: None)
|
|
self.devices = defaultdict(lambda: None)
|
|
# self.offset = model.offset
|
|
|
|
data = {
|
|
'agg': 10,
|
|
'demucsmodel_sel_VR': 'UVR_Demucs_Model_1',
|
|
'demucsmodelVR': True,
|
|
'export_path': None,
|
|
'gpu': -1,
|
|
'high_end_process': 'mirroring',
|
|
'input_paths': None,
|
|
'inst_only': False,
|
|
'instrumentalModel': None,
|
|
'ModelParams': 'Auto',
|
|
'mp3bit': '320k',
|
|
'normalize': False,
|
|
'output_image': True,
|
|
'overlap': 0.5,
|
|
'postprocess': True,
|
|
'saveFormat': 'wav',
|
|
'segment': 'None',
|
|
'settest': False,
|
|
'shifts': 0,
|
|
'split_mode': False,
|
|
'tta': True,
|
|
'useModel': None,
|
|
'voc_only': False,
|
|
'wavtype': 'PCM_16',
|
|
'window_size': 512,
|
|
}
|
|
|
|
default_window_size = data['window_size']
|
|
default_agg = data['agg']
|
|
|
|
def update_progress(progress_var, total_files, file_num, step: float = 1):
|
|
"""Calculate the progress for the progress widget in the GUI"""
|
|
base = (100 / total_files)
|
|
progress = base * (file_num - 1)
|
|
progress += base * step
|
|
|
|
progress_var.set(progress)
|
|
|
|
def get_baseText(total_files, file_num):
|
|
"""Create the base text for the command widget"""
|
|
text = 'File {file_num}/{total_files} '.format(file_num=file_num,
|
|
total_files=total_files)
|
|
return text
|
|
|
|
def determineModelFolderName():
|
|
"""
|
|
Determine the name that is used for the folder and appended
|
|
to the back of the music files
|
|
"""
|
|
modelFolderName = ''
|
|
if not data['modelFolder']:
|
|
# Model Test Mode not selected
|
|
return modelFolderName
|
|
|
|
# -Instrumental-
|
|
if os.path.isfile(data['instrumentalModel']):
|
|
modelFolderName += os.path.splitext(os.path.basename(data['instrumentalModel']))[0]
|
|
|
|
if modelFolderName:
|
|
modelFolderName = '/' + modelFolderName
|
|
|
|
return modelFolderName
|
|
|
|
def main(window: tk.Wm, text_widget: tk.Text, button_widget: tk.Button, progress_var: tk.Variable,
|
|
**kwargs: dict):
|
|
|
|
global model_params_d
|
|
global nn_arch_sizes
|
|
global nn_architecture
|
|
|
|
global overlap_set
|
|
global shift_set
|
|
global split_mode
|
|
global demucs_model_set
|
|
global wav_type_set
|
|
|
|
global flac_type_set
|
|
global mp3_bit_set
|
|
|
|
wav_type_set = data['wavtype']
|
|
|
|
#Error Handling
|
|
|
|
runtimeerr = "CUDNN error executing cudnnSetTensorNdDescriptor"
|
|
systemmemerr = "DefaultCPUAllocator: not enough memory"
|
|
cuda_err = "CUDA out of memory"
|
|
mod_err = "ModuleNotFoundError"
|
|
file_err = "FileNotFoundError"
|
|
ffmp_err = """audioread\__init__.py", line 116, in audio_open"""
|
|
sf_write_err = "sf.write"
|
|
|
|
try:
|
|
with open('errorlog.txt', 'w') as f:
|
|
f.write(f'No errors to report at this time.' + f'\n\nLast Process Method Used: VR Architecture' +
|
|
f'\nLast Conversion Time Stamp: [{datetime.now().strftime("%Y-%m-%d %H:%M:%S")}]\n')
|
|
except:
|
|
pass
|
|
|
|
nn_arch_sizes = [
|
|
31191, # default
|
|
33966, 123821, 123812, 129605, 537238 # custom
|
|
]
|
|
|
|
nn_architecture = list('{}KB'.format(s) for s in nn_arch_sizes)
|
|
|
|
|
|
def save_files(wav_instrument, wav_vocals):
|
|
"""Save output music files"""
|
|
vocal_name = '(Vocals)'
|
|
instrumental_name = '(Instrumental)'
|
|
save_path = os.path.dirname(base_name)
|
|
|
|
# Swap names if vocal model
|
|
|
|
VModel="Vocal"
|
|
|
|
if VModel in model_name:
|
|
# Reverse names
|
|
vocal_name, instrumental_name = instrumental_name, vocal_name
|
|
|
|
# Save Temp File
|
|
# For instrumental the instrumental is the temp file
|
|
# and for vocal the instrumental is the temp file due
|
|
# to reversement
|
|
if data['demucsmodelVR']:
|
|
samplerate = 44100
|
|
else:
|
|
samplerate = mp.param['sr']
|
|
|
|
|
|
sf.write(f'temp.wav',
|
|
normalization_set(wav_instrument).T, samplerate, subtype=wav_type_set)
|
|
|
|
appendModelFolderName = modelFolderName.replace('/', '_')
|
|
|
|
# -Save files-
|
|
# Instrumental
|
|
if instrumental_name is not None:
|
|
if data['modelFolder']:
|
|
instrumental_path = '{save_path}/{file_name}.wav'.format(
|
|
save_path=save_path,
|
|
file_name=f'{os.path.basename(base_name)}{appendModelFolderName}_{instrumental_name}',)
|
|
instrumental_path_mp3 = '{save_path}/{file_name}.mp3'.format(
|
|
save_path=save_path,
|
|
file_name=f'{os.path.basename(base_name)}{appendModelFolderName}_{instrumental_name}',)
|
|
instrumental_path_flac = '{save_path}/{file_name}.flac'.format(
|
|
save_path=save_path,
|
|
file_name=f'{os.path.basename(base_name)}{appendModelFolderName}_{instrumental_name}',)
|
|
else:
|
|
instrumental_path = '{save_path}/{file_name}.wav'.format(
|
|
save_path=save_path,
|
|
file_name=f'{os.path.basename(base_name)}_{instrumental_name}',)
|
|
instrumental_path_mp3 = '{save_path}/{file_name}.mp3'.format(
|
|
save_path=save_path,
|
|
file_name=f'{os.path.basename(base_name)}_{instrumental_name}',)
|
|
instrumental_path_flac = '{save_path}/{file_name}.flac'.format(
|
|
save_path=save_path,
|
|
file_name=f'{os.path.basename(base_name)}_{instrumental_name}',)
|
|
|
|
if os.path.isfile(instrumental_path):
|
|
file_exists_i = 'there'
|
|
else:
|
|
file_exists_i = 'not_there'
|
|
|
|
if VModel in model_name and data['voc_only']:
|
|
sf.write(instrumental_path,
|
|
normalization_set(wav_instrument).T, samplerate, subtype=wav_type_set)
|
|
elif VModel in model_name and data['inst_only']:
|
|
pass
|
|
elif data['voc_only']:
|
|
pass
|
|
else:
|
|
sf.write(instrumental_path,
|
|
normalization_set(wav_instrument).T, samplerate, subtype=wav_type_set)
|
|
|
|
# Vocal
|
|
if vocal_name is not None:
|
|
if data['modelFolder']:
|
|
vocal_path = '{save_path}/{file_name}.wav'.format(
|
|
save_path=save_path,
|
|
file_name=f'{os.path.basename(base_name)}{appendModelFolderName}_{vocal_name}',)
|
|
vocal_path_mp3 = '{save_path}/{file_name}.mp3'.format(
|
|
save_path=save_path,
|
|
file_name=f'{os.path.basename(base_name)}{appendModelFolderName}_{vocal_name}',)
|
|
vocal_path_flac = '{save_path}/{file_name}.flac'.format(
|
|
save_path=save_path,
|
|
file_name=f'{os.path.basename(base_name)}{appendModelFolderName}_{vocal_name}',)
|
|
else:
|
|
vocal_path = '{save_path}/{file_name}.wav'.format(
|
|
save_path=save_path,
|
|
file_name=f'{os.path.basename(base_name)}_{vocal_name}',)
|
|
vocal_path_mp3 = '{save_path}/{file_name}.mp3'.format(
|
|
save_path=save_path,
|
|
file_name=f'{os.path.basename(base_name)}_{vocal_name}',)
|
|
vocal_path_flac = '{save_path}/{file_name}.flac'.format(
|
|
save_path=save_path,
|
|
file_name=f'{os.path.basename(base_name)}_{vocal_name}',)
|
|
|
|
if os.path.isfile(vocal_path):
|
|
file_exists_v = 'there'
|
|
else:
|
|
file_exists_v = 'not_there'
|
|
|
|
if VModel in model_name and data['inst_only']:
|
|
sf.write(vocal_path,
|
|
normalization_set(wav_vocals).T, samplerate, subtype=wav_type_set)
|
|
elif VModel in model_name and data['voc_only']:
|
|
pass
|
|
elif data['inst_only']:
|
|
pass
|
|
else:
|
|
sf.write(vocal_path,
|
|
normalization_set(wav_vocals).T, samplerate, subtype=wav_type_set)
|
|
|
|
if data['saveFormat'] == 'Mp3':
|
|
try:
|
|
if data['inst_only'] == True:
|
|
pass
|
|
else:
|
|
musfile = pydub.AudioSegment.from_wav(vocal_path)
|
|
musfile.export(vocal_path_mp3, format="mp3", bitrate=mp3_bit_set)
|
|
if file_exists_v == 'there':
|
|
pass
|
|
else:
|
|
try:
|
|
os.remove(vocal_path)
|
|
except:
|
|
pass
|
|
if data['voc_only'] == True:
|
|
pass
|
|
else:
|
|
musfile = pydub.AudioSegment.from_wav(instrumental_path)
|
|
musfile.export(instrumental_path_mp3, format="mp3", bitrate=mp3_bit_set)
|
|
if file_exists_i == 'there':
|
|
pass
|
|
else:
|
|
try:
|
|
os.remove(instrumental_path)
|
|
except:
|
|
pass
|
|
except Exception as e:
|
|
traceback_text = ''.join(traceback.format_tb(e.__traceback__))
|
|
errmessage = f'Traceback Error: "{traceback_text}"\n{type(e).__name__}: "{e}"\n'
|
|
if "ffmpeg" in errmessage:
|
|
text_widget.write(base_text + 'Failed to save output(s) as Mp3(s).\n')
|
|
text_widget.write(base_text + 'FFmpeg might be missing or corrupted, please check error log.\n')
|
|
text_widget.write(base_text + 'Moving on...\n')
|
|
else:
|
|
text_widget.write(base_text + 'Failed to save output(s) as Mp3(s).\n')
|
|
text_widget.write(base_text + 'Please check error log.\n')
|
|
text_widget.write(base_text + 'Moving on...\n')
|
|
try:
|
|
with open('errorlog.txt', 'w') as f:
|
|
f.write(f'Last Error Received:\n\n' +
|
|
f'Error Received while attempting to save file as mp3 "{os.path.basename(music_file)}":\n' +
|
|
f'Process Method: VR Architecture\n\n' +
|
|
f'FFmpeg might be missing or corrupted.\n\n' +
|
|
f'If this error persists, please contact the developers.\n\n' +
|
|
f'Raw error details:\n\n' +
|
|
errmessage + f'\nError Time Stamp: [{datetime.now().strftime("%Y-%m-%d %H:%M:%S")}]\n')
|
|
except:
|
|
pass
|
|
|
|
if data['saveFormat'] == 'Flac':
|
|
try:
|
|
if VModel in model_name:
|
|
if data['inst_only'] == True:
|
|
pass
|
|
else:
|
|
musfile = pydub.AudioSegment.from_wav(instrumental_path)
|
|
musfile.export(instrumental_path_flac, format="flac")
|
|
if file_exists_v == 'there':
|
|
pass
|
|
else:
|
|
try:
|
|
os.remove(instrumental_path)
|
|
except:
|
|
pass
|
|
if data['voc_only'] == True:
|
|
pass
|
|
else:
|
|
musfile = pydub.AudioSegment.from_wav(vocal_path)
|
|
musfile.export(vocal_path_flac, format="flac")
|
|
if file_exists_i == 'there':
|
|
pass
|
|
else:
|
|
try:
|
|
os.remove(vocal_path)
|
|
except:
|
|
pass
|
|
else:
|
|
if data['inst_only'] == True:
|
|
pass
|
|
else:
|
|
musfile = pydub.AudioSegment.from_wav(vocal_path)
|
|
musfile.export(vocal_path_flac, format="flac")
|
|
if file_exists_v == 'there':
|
|
pass
|
|
else:
|
|
try:
|
|
os.remove(vocal_path)
|
|
except:
|
|
pass
|
|
if data['voc_only'] == True:
|
|
pass
|
|
else:
|
|
musfile = pydub.AudioSegment.from_wav(instrumental_path)
|
|
musfile.export(instrumental_path_flac, format="flac")
|
|
if file_exists_i == 'there':
|
|
pass
|
|
else:
|
|
try:
|
|
os.remove(instrumental_path)
|
|
except:
|
|
pass
|
|
except Exception as e:
|
|
traceback_text = ''.join(traceback.format_tb(e.__traceback__))
|
|
errmessage = f'Traceback Error: "{traceback_text}"\n{type(e).__name__}: "{e}"\n'
|
|
if "ffmpeg" in errmessage:
|
|
text_widget.write(base_text + 'Failed to save output(s) as Flac(s).\n')
|
|
text_widget.write(base_text + 'FFmpeg might be missing or corrupted, please check error log.\n')
|
|
text_widget.write(base_text + 'Moving on...\n')
|
|
else:
|
|
text_widget.write(base_text + 'Failed to save output(s) as Flac(s).\n')
|
|
text_widget.write(base_text + 'Please check error log.\n')
|
|
text_widget.write(base_text + 'Moving on...\n')
|
|
try:
|
|
with open('errorlog.txt', 'w') as f:
|
|
f.write(f'Last Error Received:\n\n' +
|
|
f'Error Received while attempting to save file as flac "{os.path.basename(music_file)}":\n' +
|
|
f'Process Method: VR Architecture\n\n' +
|
|
f'FFmpeg might be missing or corrupted.\n\n' +
|
|
f'If this error persists, please contact the developers.\n\n' +
|
|
f'Raw error details:\n\n' +
|
|
errmessage + f'\nError Time Stamp: [{datetime.now().strftime("%Y-%m-%d %H:%M:%S")}]\n')
|
|
except:
|
|
pass
|
|
|
|
|
|
data.update(kwargs)
|
|
|
|
# Update default settings
|
|
global default_window_size
|
|
global default_agg
|
|
global normalization_set
|
|
default_window_size = data['window_size']
|
|
default_agg = data['agg']
|
|
|
|
stime = time.perf_counter()
|
|
progress_var.set(0)
|
|
text_widget.clear()
|
|
button_widget.configure(state=tk.DISABLED) # Disable Button
|
|
|
|
overlap_set = float(data['overlap'])
|
|
shift_set = int(data['shifts'])
|
|
demucs_model_set = data['demucsmodel_sel_VR']
|
|
split_mode = data['split_mode']
|
|
|
|
if data['wavtype'] == '32-bit Float':
|
|
wav_type_set = 'FLOAT'
|
|
elif data['wavtype'] == '64-bit Float':
|
|
wav_type_set = 'DOUBLE'
|
|
else:
|
|
wav_type_set = data['wavtype']
|
|
|
|
flac_type_set = data['flactype']
|
|
mp3_bit_set = data['mp3bit']
|
|
|
|
if data['normalize'] == True:
|
|
normalization_set = spec_utils.normalize
|
|
print('normalization on')
|
|
else:
|
|
normalization_set = spec_utils.nonormalize
|
|
print('normalization off')
|
|
|
|
vocal_remover = VocalRemover(data, text_widget)
|
|
modelFolderName = determineModelFolderName()
|
|
|
|
timestampnum = round(datetime.utcnow().timestamp())
|
|
randomnum = randrange(100000, 1000000)
|
|
|
|
# Separation Preperation
|
|
try: #Load File(s)
|
|
for file_num, music_file in enumerate(data['input_paths'], start=1):
|
|
# Determine File Name
|
|
m=music_file
|
|
|
|
if data['settest']:
|
|
try:
|
|
base_name = f'{data["export_path"]}/{str(timestampnum)}_{file_num}_{os.path.splitext(os.path.basename(music_file))[0]}'
|
|
except:
|
|
base_name = f'{data["export_path"]}/{str(randomnum)}_{file_num}_{os.path.splitext(os.path.basename(music_file))[0]}'
|
|
else:
|
|
base_name = f'{data["export_path"]}/{file_num}_{os.path.splitext(os.path.basename(music_file))[0]}'
|
|
|
|
model_name = os.path.basename(data[f'{data["useModel"]}Model'])
|
|
model = vocal_remover.models[data['useModel']]
|
|
device = vocal_remover.devices[data['useModel']]
|
|
# -Get text and update progress-
|
|
base_text = get_baseText(total_files=len(data['input_paths']),
|
|
file_num=file_num)
|
|
progress_kwargs = {'progress_var': progress_var,
|
|
'total_files': len(data['input_paths']),
|
|
'file_num': file_num}
|
|
update_progress(**progress_kwargs,
|
|
step=0)
|
|
|
|
try:
|
|
total, used, free = shutil.disk_usage("/")
|
|
|
|
total_space = int(total/1.074e+9)
|
|
used_space = int(used/1.074e+9)
|
|
free_space = int(free/1.074e+9)
|
|
|
|
if int(free/1.074e+9) <= int(2):
|
|
text_widget.write('Error: Not enough storage on main drive to continue. Your main drive must have \nat least 3 GB\'s of storage in order for this application function properly. \n\nPlease ensure your main drive has at least 3 GB\'s of storage and try again.\n\n')
|
|
text_widget.write('Detected Total Space: ' + str(total_space) + ' GB' + '\n')
|
|
text_widget.write('Detected Used Space: ' + str(used_space) + ' GB' + '\n')
|
|
text_widget.write('Detected Free Space: ' + str(free_space) + ' GB' + '\n')
|
|
progress_var.set(0)
|
|
button_widget.configure(state=tk.NORMAL) # Enable Button
|
|
return
|
|
|
|
if int(free/1.074e+9) in [3, 4, 5, 6, 7, 8]:
|
|
text_widget.write('Warning: Your main drive is running low on storage. Your main drive must have \nat least 3 GB\'s of storage in order for this application function properly.\n\n')
|
|
text_widget.write('Detected Total Space: ' + str(total_space) + ' GB' + '\n')
|
|
text_widget.write('Detected Used Space: ' + str(used_space) + ' GB' + '\n')
|
|
text_widget.write('Detected Free Space: ' + str(free_space) + ' GB' + '\n\n')
|
|
except:
|
|
pass
|
|
|
|
if data['wavtype'] == '64-bit Float':
|
|
if data['saveFormat'] == 'Flac':
|
|
text_widget.write('Please select \"WAV\" as your save format to use 64-bit Float.\n')
|
|
text_widget.write(f'Time Elapsed: {time.strftime("%H:%M:%S", time.gmtime(int(time.perf_counter() - stime)))}')
|
|
progress_var.set(0)
|
|
button_widget.configure(state=tk.NORMAL) # Enable Button
|
|
return
|
|
|
|
if data['wavtype'] == '64-bit Float':
|
|
if data['saveFormat'] == 'Mp3':
|
|
text_widget.write('Please select \"WAV\" as your save format to use 64-bit Float.\n')
|
|
text_widget.write(f'Time Elapsed: {time.strftime("%H:%M:%S", time.gmtime(int(time.perf_counter() - stime)))}')
|
|
progress_var.set(0)
|
|
button_widget.configure(state=tk.NORMAL) # Enable Button
|
|
return
|
|
|
|
#Load Model
|
|
text_widget.write(base_text + 'Loading model...')
|
|
|
|
model_size = math.ceil(os.stat(data['instrumentalModel']).st_size / 1024)
|
|
nn_architecture = '{}KB'.format(min(nn_arch_sizes, key=lambda x:abs(x-model_size)))
|
|
|
|
nets = importlib.import_module('lib_v5.nets' + f'_{nn_architecture}'.replace('_{}KB'.format(nn_arch_sizes[0]), ''), package=None)
|
|
|
|
aggresive_set = float(data['agg']/100)
|
|
|
|
ModelName=(data['instrumentalModel'])
|
|
|
|
#Package Models
|
|
text_widget.write('Done!\n')
|
|
|
|
if data['ModelParams'] == 'Auto':
|
|
model_hash = hashlib.md5(open(ModelName,'rb').read()).hexdigest()
|
|
model_params = []
|
|
model_params = lib_v5.filelist.provide_model_param_hash(model_hash)
|
|
print(model_params)
|
|
if model_params[0] == 'Not Found Using Hash':
|
|
model_params = []
|
|
model_params = lib_v5.filelist.provide_model_param_name(ModelName)
|
|
if model_params[0] == 'Not Found Using Name':
|
|
text_widget.write(base_text + f'Unable to set model parameters automatically with the selected model.\n')
|
|
confirm = tk.messagebox.askyesno(title='Unrecognized Model Detected',
|
|
message=f'\nThe application could not automatically set the model param for the selected model.\n\n' +
|
|
f'Would you like to select the model param file for this model?\n\n')
|
|
|
|
if confirm:
|
|
model_param_selection = filedialog.askopenfilename(initialdir='lib_v5/modelparams',
|
|
title=f'Select Model Param',
|
|
filetypes=[("Model Param", "*.json")])
|
|
|
|
model_param_file_path = str(model_param_selection)
|
|
model_param_file = os.path.splitext(os.path.basename(model_param_file_path))[0] + '.json'
|
|
model_params = [model_param_file_path, model_param_file]
|
|
|
|
with open(f"lib_v5/filelists/model_cache/vr_param_cache/{model_hash}.txt", 'w') as f:
|
|
f.write(model_param_file)
|
|
|
|
|
|
if model_params[0] == '':
|
|
text_widget.write("\n" + base_text + f'Separation failed for the following audio file:\n')
|
|
text_widget.write(base_text + f'"{os.path.basename(music_file)}"\n')
|
|
text_widget.write(f'\nError Received:\n\n')
|
|
text_widget.write(f'Model parameters are missing.\n\n')
|
|
text_widget.write(f'Please check the following:\n')
|
|
text_widget.write(f'1. Make sure the model is still present.\n')
|
|
text_widget.write(f'2. If you are running a model that was not originally included in this package, \nplease append the modelparam name to the model name.\n')
|
|
text_widget.write(f' - Example if using \"4band_v2.json\" modelparam: \"model_4band_v2.pth\"\n\n')
|
|
text_widget.write(f'Please address this and try again.\n\n')
|
|
text_widget.write(f'Time Elapsed: {time.strftime("%H:%M:%S", time.gmtime(int(time.perf_counter() - stime)))}')
|
|
torch.cuda.empty_cache()
|
|
progress_var.set(0)
|
|
button_widget.configure(state=tk.NORMAL) # Enable Button
|
|
return
|
|
|
|
else:
|
|
pass
|
|
else:
|
|
text_widget.write(base_text + f'Model param not selected.\n')
|
|
text_widget.write("\n" + base_text + f'Separation failed for the following audio file:\n')
|
|
text_widget.write(base_text + f'"{os.path.basename(music_file)}"\n')
|
|
text_widget.write(f'\nError Received:\n\n')
|
|
text_widget.write(f'Model parameters are missing.\n\n')
|
|
text_widget.write(f'Please check the following:\n')
|
|
text_widget.write(f'1. Make sure the model is still present.\n')
|
|
text_widget.write(f'2. If you are running a model that was not originally included in this package, \nplease append the modelparam name to the model name.\n')
|
|
text_widget.write(f' - Example if using \"4band_v2.json\" modelparam: \"model_4band_v2.pth\"\n\n')
|
|
text_widget.write(f'Please address this and try again.\n\n')
|
|
text_widget.write(f'Time Elapsed: {time.strftime("%H:%M:%S", time.gmtime(int(time.perf_counter() - stime)))}')
|
|
torch.cuda.empty_cache()
|
|
progress_var.set(0)
|
|
button_widget.configure(state=tk.NORMAL) # Enable Button
|
|
return
|
|
|
|
else:
|
|
param = data['ModelParams']
|
|
model_param_file_path = f'lib_v5/modelparams/{param}'
|
|
model_params = [model_param_file_path, param]
|
|
|
|
text_widget.write(base_text + 'Loading assigned model parameters ' + '\"' + model_params[1] + '\"... ')
|
|
mp = ModelParameters(model_params[0])
|
|
text_widget.write('Done!\n')
|
|
# -Instrumental-
|
|
if os.path.isfile(data['instrumentalModel']):
|
|
device = torch.device('cpu')
|
|
model = nets.CascadedASPPNet(mp.param['bins'] * 2)
|
|
model.load_state_dict(torch.load(data['instrumentalModel'],
|
|
map_location=device))
|
|
if torch.cuda.is_available() and data['gpu'] >= 0:
|
|
device = torch.device('cuda:{}'.format(data['gpu']))
|
|
model.to(device)
|
|
|
|
vocal_remover.models['instrumental'] = model
|
|
vocal_remover.devices['instrumental'] = device
|
|
|
|
|
|
model_name = os.path.basename(data[f'{data["useModel"]}Model'])
|
|
|
|
# -Go through the different steps of Separation-
|
|
# Wave source
|
|
text_widget.write(base_text + 'Loading audio source...')
|
|
|
|
X_wave, y_wave, X_spec_s, y_spec_s = {}, {}, {}, {}
|
|
|
|
bands_n = len(mp.param['band'])
|
|
|
|
for d in range(bands_n, 0, -1):
|
|
bp = mp.param['band'][d]
|
|
|
|
if d == bands_n: # high-end band
|
|
X_wave[d], _ = librosa.load(
|
|
music_file, bp['sr'], False, dtype=np.float32, res_type=bp['res_type'])
|
|
|
|
if X_wave[d].ndim == 1:
|
|
X_wave[d] = np.asarray([X_wave[d], X_wave[d]])
|
|
else: # lower bands
|
|
X_wave[d] = librosa.resample(X_wave[d+1], mp.param['band'][d+1]['sr'], bp['sr'], res_type=bp['res_type'])
|
|
|
|
# Stft of wave source
|
|
|
|
X_spec_s[d] = spec_utils.wave_to_spectrogram_mt(X_wave[d], bp['hl'], bp['n_fft'], mp.param['mid_side'],
|
|
mp.param['mid_side_b2'], mp.param['reverse'])
|
|
|
|
if d == bands_n and data['high_end_process'] != 'none':
|
|
input_high_end_h = (bp['n_fft']//2 - bp['crop_stop']) + (mp.param['pre_filter_stop'] - mp.param['pre_filter_start'])
|
|
input_high_end = X_spec_s[d][:, bp['n_fft']//2-input_high_end_h:bp['n_fft']//2, :]
|
|
|
|
text_widget.write('Done!\n')
|
|
|
|
update_progress(**progress_kwargs,
|
|
step=0.1)
|
|
|
|
text_widget.write(base_text + 'Loading the stft of audio source...')
|
|
|
|
text_widget.write(' Done!\n')
|
|
|
|
text_widget.write(base_text + "Please Wait...\n")
|
|
|
|
X_spec_m = spec_utils.combine_spectrograms(X_spec_s, mp)
|
|
|
|
del X_wave, X_spec_s
|
|
|
|
def inference(X_spec, device, model, aggressiveness):
|
|
|
|
def _execute(X_mag_pad, roi_size, n_window, device, model, aggressiveness):
|
|
model.eval()
|
|
|
|
with torch.no_grad():
|
|
preds = []
|
|
|
|
iterations = [n_window]
|
|
|
|
total_iterations = sum(iterations)
|
|
|
|
text_widget.write(base_text + "Processing "f"{total_iterations} Slices... ")
|
|
|
|
for i in tqdm(range(n_window)):
|
|
update_progress(**progress_kwargs,
|
|
step=(0.1 + (0.8/n_window * i)))
|
|
start = i * roi_size
|
|
X_mag_window = X_mag_pad[None, :, :, start:start + data['window_size']]
|
|
X_mag_window = torch.from_numpy(X_mag_window).to(device)
|
|
|
|
pred = model.predict(X_mag_window, aggressiveness)
|
|
|
|
pred = pred.detach().cpu().numpy()
|
|
preds.append(pred[0])
|
|
|
|
pred = np.concatenate(preds, axis=2)
|
|
text_widget.write('Done!\n')
|
|
return pred
|
|
|
|
def preprocess(X_spec):
|
|
X_mag = np.abs(X_spec)
|
|
X_phase = np.angle(X_spec)
|
|
|
|
return X_mag, X_phase
|
|
|
|
X_mag, X_phase = preprocess(X_spec)
|
|
|
|
coef = X_mag.max()
|
|
X_mag_pre = X_mag / coef
|
|
|
|
n_frame = X_mag_pre.shape[2]
|
|
pad_l, pad_r, roi_size = dataset.make_padding(n_frame,
|
|
data['window_size'], model.offset)
|
|
n_window = int(np.ceil(n_frame / roi_size))
|
|
|
|
X_mag_pad = np.pad(
|
|
X_mag_pre, ((0, 0), (0, 0), (pad_l, pad_r)), mode='constant')
|
|
|
|
pred = _execute(X_mag_pad, roi_size, n_window,
|
|
device, model, aggressiveness)
|
|
pred = pred[:, :, :n_frame]
|
|
|
|
if data['tta']:
|
|
pad_l += roi_size // 2
|
|
pad_r += roi_size // 2
|
|
n_window += 1
|
|
|
|
X_mag_pad = np.pad(
|
|
X_mag_pre, ((0, 0), (0, 0), (pad_l, pad_r)), mode='constant')
|
|
|
|
pred_tta = _execute(X_mag_pad, roi_size, n_window,
|
|
device, model, aggressiveness)
|
|
pred_tta = pred_tta[:, :, roi_size // 2:]
|
|
pred_tta = pred_tta[:, :, :n_frame]
|
|
|
|
return (pred + pred_tta) * 0.5 * coef, X_mag, np.exp(1.j * X_phase)
|
|
else:
|
|
return pred * coef, X_mag, np.exp(1.j * X_phase)
|
|
|
|
aggressiveness = {'value': aggresive_set, 'split_bin': mp.param['band'][1]['crop_stop']}
|
|
|
|
if data['tta']:
|
|
text_widget.write(base_text + "Running Inferences (TTA)...\n")
|
|
else:
|
|
text_widget.write(base_text + "Running Inference...\n")
|
|
|
|
pred, X_mag, X_phase = inference(X_spec_m,
|
|
device,
|
|
model, aggressiveness)
|
|
|
|
update_progress(**progress_kwargs,
|
|
step=0.9)
|
|
# Postprocess
|
|
if data['postprocess']:
|
|
try:
|
|
text_widget.write(base_text + 'Post processing...')
|
|
pred_inv = np.clip(X_mag - pred, 0, np.inf)
|
|
pred = spec_utils.mask_silence(pred, pred_inv)
|
|
text_widget.write(' Done!\n')
|
|
except Exception as e:
|
|
text_widget.write('\n' + base_text + 'Post process failed, check error log.\n')
|
|
text_widget.write(base_text + 'Moving on...\n')
|
|
traceback_text = ''.join(traceback.format_tb(e.__traceback__))
|
|
errmessage = f'Traceback Error: "{traceback_text}"\n{type(e).__name__}: "{e}"\n'
|
|
try:
|
|
with open('errorlog.txt', 'w') as f:
|
|
f.write(f'Last Error Received:\n\n' +
|
|
f'Error Received while attempting to run Post Processing on "{os.path.basename(music_file)}":\n' +
|
|
f'Process Method: VR Architecture\n\n' +
|
|
f'If this error persists, please contact the developers.\n\n' +
|
|
f'Raw error details:\n\n' +
|
|
errmessage + f'\nError Time Stamp: [{datetime.now().strftime("%Y-%m-%d %H:%M:%S")}]\n')
|
|
except:
|
|
pass
|
|
|
|
update_progress(**progress_kwargs,
|
|
step=0.95)
|
|
|
|
# Inverse stft
|
|
y_spec_m = pred * X_phase
|
|
v_spec_m = X_spec_m - y_spec_m
|
|
|
|
def demix_demucs(mix):
|
|
#print('shift_set ', shift_set)
|
|
text_widget.write(base_text + "Running Demucs Inference...\n")
|
|
text_widget.write(base_text + "Processing... ")
|
|
print(' Running Demucs Inference...')
|
|
|
|
mix = torch.tensor(mix, dtype=torch.float32)
|
|
ref = mix.mean(0)
|
|
mix = (mix - ref.mean()) / ref.std()
|
|
|
|
with torch.no_grad():
|
|
sources = apply_model(demucs, mix[None], split=split_mode, device=device, overlap=overlap_set, shifts=shift_set, progress=False)[0]
|
|
|
|
text_widget.write('Done!\n')
|
|
|
|
sources = (sources * ref.std() + ref.mean()).cpu().numpy()
|
|
sources[[0,1]] = sources[[1,0]]
|
|
|
|
return sources
|
|
|
|
def demucs_prediction(m):
|
|
global demucs_sources
|
|
mix, samplerate = librosa.load(m, mono=False, sr=44100)
|
|
if mix.ndim == 1:
|
|
mix = np.asfortranarray([mix,mix])
|
|
|
|
mix = mix.T
|
|
|
|
demucs_sources = demix_demucs(mix.T)
|
|
|
|
if data['demucsmodelVR']:
|
|
demucs = HDemucs(sources=["other", "vocals"])
|
|
text_widget.write(base_text + 'Loading Demucs model... ')
|
|
update_progress(**progress_kwargs,
|
|
step=0.95)
|
|
path_d = Path('models/Demucs_Models/v3_repo')
|
|
#print('What Demucs model was chosen? ', demucs_model_set)
|
|
demucs = _gm(name=demucs_model_set, repo=path_d)
|
|
text_widget.write('Done!\n')
|
|
|
|
#print('segment: ', data['segment'])
|
|
|
|
if data['segment'] == 'None':
|
|
segment = None
|
|
if isinstance(demucs, BagOfModels):
|
|
if segment is not None:
|
|
for sub in demucs.models:
|
|
sub.segment = segment
|
|
else:
|
|
if segment is not None:
|
|
sub.segment = segment
|
|
else:
|
|
try:
|
|
segment = int(data['segment'])
|
|
if isinstance(demucs, BagOfModels):
|
|
if segment is not None:
|
|
for sub in demucs.models:
|
|
sub.segment = segment
|
|
else:
|
|
if segment is not None:
|
|
sub.segment = segment
|
|
text_widget.write(base_text + "Segments set to "f"{segment}.\n")
|
|
except:
|
|
segment = None
|
|
if isinstance(demucs, BagOfModels):
|
|
if segment is not None:
|
|
for sub in demucs.models:
|
|
sub.segment = segment
|
|
else:
|
|
if segment is not None:
|
|
sub.segment = segment
|
|
|
|
#print('segment port-process: ', segment)
|
|
|
|
demucs.cpu()
|
|
demucs.eval()
|
|
|
|
demucs_prediction(m)
|
|
|
|
if data['voc_only'] and not data['inst_only']:
|
|
pass
|
|
else:
|
|
text_widget.write(base_text + 'Saving Instrumental... ')
|
|
|
|
if data['high_end_process'].startswith('mirroring'):
|
|
input_high_end_ = spec_utils.mirroring(data['high_end_process'], y_spec_m, input_high_end, mp)
|
|
if data['demucsmodelVR']:
|
|
wav_instrument = spec_utils.cmb_spectrogram_to_wave_d(y_spec_m, mp, input_high_end_h, input_high_end_, demucs=True)
|
|
demucs_inst = demucs_sources[0]
|
|
sources = [wav_instrument,demucs_inst]
|
|
spec = [stft(sources[0],2048,1024),stft(sources[1],2048,1024)]
|
|
ln = min([spec[0].shape[2], spec[1].shape[2]])
|
|
spec[0] = spec[0][:,:,:ln]
|
|
spec[1] = spec[1][:,:,:ln]
|
|
v_spec_c = np.where(np.abs(spec[1]) <= np.abs(spec[0]), spec[1], spec[0])
|
|
wav_instrument = istft(v_spec_c,1024)
|
|
else:
|
|
wav_instrument = spec_utils.cmb_spectrogram_to_wave_d(y_spec_m, mp, input_high_end_h, input_high_end_, demucs=False)
|
|
|
|
if data['voc_only'] and not data['inst_only']:
|
|
pass
|
|
else:
|
|
text_widget.write('Done!\n')
|
|
else:
|
|
wav_instrument = spec_utils.cmb_spectrogram_to_wave_d(y_spec_m, mp)
|
|
if data['voc_only'] and not data['inst_only']:
|
|
pass
|
|
else:
|
|
text_widget.write('Done!\n')
|
|
|
|
if data['inst_only'] and not data['voc_only']:
|
|
pass
|
|
else:
|
|
text_widget.write(base_text + 'Saving Vocals... ')
|
|
|
|
if data['high_end_process'].startswith('mirroring'):
|
|
input_high_end_ = spec_utils.mirroring(data['high_end_process'], v_spec_m, input_high_end, mp)
|
|
if data['demucsmodelVR']:
|
|
wav_vocals = spec_utils.cmb_spectrogram_to_wave_d(v_spec_m, mp, input_high_end_h, input_high_end_, demucs=True)
|
|
demucs_voc = demucs_sources[1]
|
|
sources = [wav_vocals,demucs_voc]
|
|
spec = [stft(sources[0],2048,1024),stft(sources[1],2048,1024)]
|
|
ln = min([spec[0].shape[2], spec[1].shape[2]])
|
|
spec[0] = spec[0][:,:,:ln]
|
|
spec[1] = spec[1][:,:,:ln]
|
|
v_spec_c = np.where(np.abs(spec[1]) >= np.abs(spec[0]), spec[1], spec[0])
|
|
wav_vocals = istft(v_spec_c,1024)
|
|
else:
|
|
wav_vocals = spec_utils.cmb_spectrogram_to_wave_d(v_spec_m, mp, input_high_end_h, input_high_end_, demucs=False)
|
|
|
|
if data['inst_only'] and not data['voc_only']:
|
|
pass
|
|
else:
|
|
text_widget.write('Done!\n')
|
|
else:
|
|
wav_vocals = spec_utils.cmb_spectrogram_to_wave_d(v_spec_m, mp, demucs=False)
|
|
if data['inst_only'] and not data['voc_only']:
|
|
pass
|
|
else:
|
|
text_widget.write('Done!\n')
|
|
|
|
update_progress(**progress_kwargs,
|
|
step=1)
|
|
|
|
# Save output music files
|
|
save_files(wav_instrument, wav_vocals)
|
|
|
|
update_progress(**progress_kwargs,
|
|
step=1)
|
|
|
|
# Save output image
|
|
if data['output_image']:
|
|
with open('{}_Instruments.jpg'.format(base_name), mode='wb') as f:
|
|
image = spec_utils.spectrogram_to_image(y_spec_m)
|
|
_, bin_image = cv2.imencode('.jpg', image)
|
|
bin_image.tofile(f)
|
|
with open('{}_Vocals.jpg'.format(base_name), mode='wb') as f:
|
|
image = spec_utils.spectrogram_to_image(v_spec_m)
|
|
_, bin_image = cv2.imencode('.jpg', image)
|
|
bin_image.tofile(f)
|
|
|
|
|
|
text_widget.write(base_text + 'Completed Separation!\n\n')
|
|
except Exception as e:
|
|
traceback_text = ''.join(traceback.format_tb(e.__traceback__))
|
|
message = f'Traceback Error: "{traceback_text}"\n{type(e).__name__}: "{e}"\n'
|
|
if runtimeerr in message:
|
|
text_widget.write("\n" + base_text + f'Separation failed for the following audio file:\n')
|
|
text_widget.write(base_text + f'"{os.path.basename(music_file)}"\n')
|
|
text_widget.write(f'\nError Received:\n\n')
|
|
text_widget.write(f'Your PC cannot process this audio file with the chunk size selected.\nPlease lower the chunk size and try again.\n\n')
|
|
text_widget.write(f'If this error persists, please contact the developers.\n\n')
|
|
text_widget.write(f'Time Elapsed: {time.strftime("%H:%M:%S", time.gmtime(int(time.perf_counter() - stime)))}')
|
|
try:
|
|
with open('errorlog.txt', 'w') as f:
|
|
f.write(f'Last Error Received:\n\n' +
|
|
f'Error Received while processing "{os.path.basename(music_file)}":\n' +
|
|
f'Process Method: VR Architecture\n\n' +
|
|
f'Your PC cannot process this audio file with the chunk size selected.\nPlease lower the chunk size and try again.\n\n' +
|
|
f'If this error persists, please contact the developers.\n\n' +
|
|
f'Raw error details:\n\n' +
|
|
message + f'\nError Time Stamp: [{datetime.now().strftime("%Y-%m-%d %H:%M:%S")}]\n')
|
|
except:
|
|
pass
|
|
torch.cuda.empty_cache()
|
|
progress_var.set(0)
|
|
button_widget.configure(state=tk.NORMAL) # Enable Button
|
|
return
|
|
|
|
if cuda_err in message:
|
|
text_widget.write("\n" + base_text + f'Separation failed for the following audio file:\n')
|
|
text_widget.write(base_text + f'"{os.path.basename(music_file)}"\n')
|
|
text_widget.write(f'\nError Received:\n\n')
|
|
text_widget.write(f'The application was unable to allocate enough GPU memory to use this model.\n')
|
|
text_widget.write(f'Please close any GPU intensive applications and try again.\n')
|
|
text_widget.write(f'If the error persists, your GPU might not be supported.\n\n')
|
|
text_widget.write(f'Time Elapsed: {time.strftime("%H:%M:%S", time.gmtime(int(time.perf_counter() - stime)))}')
|
|
try:
|
|
with open('errorlog.txt', 'w') as f:
|
|
f.write(f'Last Error Received:\n\n' +
|
|
f'Error Received while processing "{os.path.basename(music_file)}":\n' +
|
|
f'Process Method: VR Architecture\n\n' +
|
|
f'The application was unable to allocate enough GPU memory to use this model.\n' +
|
|
f'Please close any GPU intensive applications and try again.\n' +
|
|
f'If the error persists, your GPU might not be supported.\n\n' +
|
|
f'Raw error details:\n\n' +
|
|
message + f'\nError Time Stamp [{datetime.now().strftime("%Y-%m-%d %H:%M:%S")}]\n')
|
|
except:
|
|
pass
|
|
torch.cuda.empty_cache()
|
|
progress_var.set(0)
|
|
button_widget.configure(state=tk.NORMAL) # Enable Button
|
|
return
|
|
|
|
if mod_err in message:
|
|
text_widget.write("\n" + base_text + f'Separation failed for the following audio file:\n')
|
|
text_widget.write(base_text + f'"{os.path.basename(music_file)}"\n')
|
|
text_widget.write(f'\nError Received:\n\n')
|
|
text_widget.write(f'Application files(s) are missing.\n')
|
|
text_widget.write("\n" + f'{type(e).__name__} - "{e}"' + "\n\n")
|
|
text_widget.write(f'Please check for missing files/scripts in the app directory and try again.\n')
|
|
text_widget.write(f'If the error persists, please reinstall application or contact the developers.\n\n')
|
|
text_widget.write(f'Time Elapsed: {time.strftime("%H:%M:%S", time.gmtime(int(time.perf_counter() - stime)))}')
|
|
try:
|
|
with open('errorlog.txt', 'w') as f:
|
|
f.write(f'Last Error Received:\n\n' +
|
|
f'Error Received while processing "{os.path.basename(music_file)}":\n' +
|
|
f'Process Method: VR Architecture\n\n' +
|
|
f'Application files(s) are missing.\n' +
|
|
f'Please check for missing files/scripts in the app directory and try again.\n' +
|
|
f'If the error persists, please reinstall application or contact the developers.\n\n' +
|
|
message + f'\nError Time Stamp [{datetime.now().strftime("%Y-%m-%d %H:%M:%S")}]\n')
|
|
except:
|
|
pass
|
|
torch.cuda.empty_cache()
|
|
progress_var.set(0)
|
|
button_widget.configure(state=tk.NORMAL) # Enable Button
|
|
return
|
|
|
|
if file_err in message:
|
|
text_widget.write("\n" + base_text + f'Separation failed for the following audio file:\n')
|
|
text_widget.write(base_text + f'"{os.path.basename(music_file)}"\n')
|
|
text_widget.write(f'\nError Received:\n\n')
|
|
text_widget.write(f'Missing file error raised.\n')
|
|
text_widget.write("\n" + f'{type(e).__name__} - "{e}"' + "\n\n")
|
|
text_widget.write("\n" + f'Please address the error and try again.' + "\n")
|
|
text_widget.write(f'If this error persists, please contact the developers.\n\n')
|
|
text_widget.write(f'Time Elapsed: {time.strftime("%H:%M:%S", time.gmtime(int(time.perf_counter() - stime)))}')
|
|
torch.cuda.empty_cache()
|
|
try:
|
|
with open('errorlog.txt', 'w') as f:
|
|
f.write(f'Last Error Received:\n\n' +
|
|
f'Error Received while processing "{os.path.basename(music_file)}":\n' +
|
|
f'Process Method: VR Architecture\n\n' +
|
|
f'Missing file error raised.\n' +
|
|
"\n" + f'Please address the error and try again.' + "\n" +
|
|
f'If this error persists, please contact the developers.\n\n' +
|
|
message + f'\nError Time Stamp [{datetime.now().strftime("%Y-%m-%d %H:%M:%S")}]\n')
|
|
except:
|
|
pass
|
|
progress_var.set(0)
|
|
button_widget.configure(state=tk.NORMAL) # Enable Button
|
|
return
|
|
|
|
if ffmp_err in message:
|
|
text_widget.write("\n" + base_text + f'Separation failed for the following audio file:\n')
|
|
text_widget.write(base_text + f'"{os.path.basename(music_file)}"\n')
|
|
text_widget.write(f'\nError Received:\n\n')
|
|
text_widget.write(f'The input file type is not supported or FFmpeg is missing.\n')
|
|
text_widget.write(f'Please select a file type supported by FFmpeg and try again.\n\n')
|
|
text_widget.write(f'If FFmpeg is missing or not installed, you will only be able to process \".wav\" files \nuntil it is available on this system.\n\n')
|
|
text_widget.write(f'See the \"More Info\" tab in the Help Guide.\n\n')
|
|
text_widget.write(f'If this error persists, please contact the developers.\n\n')
|
|
text_widget.write(f'Time Elapsed: {time.strftime("%H:%M:%S", time.gmtime(int(time.perf_counter() - stime)))}')
|
|
torch.cuda.empty_cache()
|
|
try:
|
|
with open('errorlog.txt', 'w') as f:
|
|
f.write(f'Last Error Received:\n\n' +
|
|
f'Error Received while processing "{os.path.basename(music_file)}":\n' +
|
|
f'Process Method: VR Architecture\n\n' +
|
|
f'The input file type is not supported or FFmpeg is missing.\nPlease select a file type supported by FFmpeg and try again.\n\n' +
|
|
f'If FFmpeg is missing or not installed, you will only be able to process \".wav\" files until it is available on this system.\n\n' +
|
|
f'See the \"More Info\" tab in the Help Guide.\n\n' +
|
|
f'If this error persists, please contact the developers.\n\n' +
|
|
message + f'\nError Time Stamp [{datetime.now().strftime("%Y-%m-%d %H:%M:%S")}]\n')
|
|
except:
|
|
pass
|
|
progress_var.set(0)
|
|
button_widget.configure(state=tk.NORMAL) # Enable Button
|
|
return
|
|
|
|
if sf_write_err in message:
|
|
text_widget.write("\n" + base_text + f'Separation failed for the following audio file:\n')
|
|
text_widget.write(base_text + f'"{os.path.basename(music_file)}"\n')
|
|
text_widget.write(f'\nError Received:\n\n')
|
|
text_widget.write(f'Could not write audio file.\n')
|
|
text_widget.write(f'This could be due to low storage on target device or a system permissions issue.\n')
|
|
text_widget.write(f"\nFor raw error details, go to the Error Log tab in the Help Guide.\n")
|
|
text_widget.write(f'\nIf the error persists, please contact the developers.\n\n')
|
|
text_widget.write(f'Time Elapsed: {time.strftime("%H:%M:%S", time.gmtime(int(time.perf_counter() - stime)))}')
|
|
try:
|
|
with open('errorlog.txt', 'w') as f:
|
|
f.write(f'Last Error Received:\n\n' +
|
|
f'Error Received while processing "{os.path.basename(music_file)}":\n' +
|
|
f'Process Method: VR Architecture\n\n' +
|
|
f'Could not write audio file.\n' +
|
|
f'This could be due to low storage on target device or a system permissions issue.\n' +
|
|
f'If the error persists, please contact the developers.\n\n' +
|
|
message + f'\nError Time Stamp [{datetime.now().strftime("%Y-%m-%d %H:%M:%S")}]\n')
|
|
except:
|
|
pass
|
|
torch.cuda.empty_cache()
|
|
progress_var.set(0)
|
|
button_widget.configure(state=tk.NORMAL) # Enable Button
|
|
return
|
|
|
|
if systemmemerr in message:
|
|
text_widget.write("\n" + base_text + f'Separation failed for the following audio file:\n')
|
|
text_widget.write(base_text + f'"{os.path.basename(music_file)}"\n')
|
|
text_widget.write(f'\nError Received:\n\n')
|
|
text_widget.write(f'The application was unable to allocate enough system memory to use this \nmodel.\n\n')
|
|
text_widget.write(f'Please do the following:\n\n1. Restart this application.\n2. Ensure any CPU intensive applications are closed.\n3. Then try again.\n\n')
|
|
text_widget.write(f'Please Note: Intel Pentium and Intel Celeron processors do not work well with \nthis application.\n\n')
|
|
text_widget.write(f'If the error persists, the system may not have enough RAM, or your CPU might \nnot be supported.\n\n')
|
|
text_widget.write(f'Time Elapsed: {time.strftime("%H:%M:%S", time.gmtime(int(time.perf_counter() - stime)))}')
|
|
try:
|
|
with open('errorlog.txt', 'w') as f:
|
|
f.write(f'Last Error Received:\n\n' +
|
|
f'Error Received while processing "{os.path.basename(music_file)}":\n' +
|
|
f'Process Method: VR Architecture\n\n' +
|
|
f'The application was unable to allocate enough system memory to use this model.\n' +
|
|
f'Please do the following:\n\n1. Restart this application.\n2. Ensure any CPU intensive applications are closed.\n3. Then try again.\n\n' +
|
|
f'Please Note: Intel Pentium and Intel Celeron processors do not work well with this application.\n\n' +
|
|
f'If the error persists, the system may not have enough RAM, or your CPU might \nnot be supported.\n\n' +
|
|
message + f'\nError Time Stamp [{datetime.now().strftime("%Y-%m-%d %H:%M:%S")}]\n')
|
|
except:
|
|
pass
|
|
torch.cuda.empty_cache()
|
|
progress_var.set(0)
|
|
button_widget.configure(state=tk.NORMAL) # Enable Button
|
|
return
|
|
|
|
print(traceback_text)
|
|
print(type(e).__name__, e)
|
|
print(message)
|
|
|
|
try:
|
|
with open('errorlog.txt', 'w') as f:
|
|
f.write(f'Last Error Received:\n\n' +
|
|
f'Error Received while processing "{os.path.basename(music_file)}":\n' +
|
|
f'Process Method: VR Architecture\n\n' +
|
|
f'If this error persists, please contact the developers with the error details.\n\n' +
|
|
message + f'\nError Time Stamp [{datetime.now().strftime("%Y-%m-%d %H:%M:%S")}]\n')
|
|
except:
|
|
tk.messagebox.showerror(master=window,
|
|
title='Error Details',
|
|
message=message)
|
|
progress_var.set(0)
|
|
text_widget.write("\n" + base_text + f'Separation failed for the following audio file:\n')
|
|
text_widget.write(base_text + f'"{os.path.basename(music_file)}"\n')
|
|
text_widget.write(f'\nError Received:\n')
|
|
text_widget.write("\nFor raw error details, go to the Error Log tab in the Help Guide.\n")
|
|
text_widget.write("\n" + f'Please address the error and try again.' + "\n")
|
|
text_widget.write(f'If this error persists, please contact the developers with the error details.\n\n')
|
|
text_widget.write(f'Time Elapsed: {time.strftime("%H:%M:%S", time.gmtime(int(time.perf_counter() - stime)))}')
|
|
torch.cuda.empty_cache()
|
|
button_widget.configure(state=tk.NORMAL) # Enable Button
|
|
return
|
|
|
|
try:
|
|
os.remove('temp.wav')
|
|
except:
|
|
pass
|
|
|
|
progress_var.set(0)
|
|
text_widget.write(f'Conversion(s) Completed!\n')
|
|
text_widget.write(f'Time Elapsed: {time.strftime("%H:%M:%S", time.gmtime(int(time.perf_counter() - stime)))}') # nopep8
|
|
torch.cuda.empty_cache()
|
|
button_widget.configure(state=tk.NORMAL) # Enable Button |