mirror of
https://github.com/Anjok07/ultimatevocalremovergui.git
synced 2024-11-12 10:00:49 +01:00
2078 lines
112 KiB
Python
2078 lines
112 KiB
Python
from functools import total_ordering
|
|
import importlib
|
|
import os
|
|
from statistics import mode
|
|
from pathlib import Path
|
|
import pydub
|
|
import hashlib
|
|
|
|
import subprocess
|
|
import soundfile as sf
|
|
import torch
|
|
import numpy as np
|
|
from demucs.model import Demucs
|
|
from demucs.utils import apply_model
|
|
from models import get_models, spec_effects
|
|
import onnxruntime as ort
|
|
import time
|
|
import os
|
|
from tqdm import tqdm
|
|
import warnings
|
|
import sys
|
|
import librosa
|
|
import psutil
|
|
|
|
import cv2
|
|
import math
|
|
import librosa
|
|
import numpy as np
|
|
import soundfile as sf
|
|
import shutil
|
|
from tqdm import tqdm
|
|
from datetime import datetime
|
|
|
|
from lib_v5 import dataset
|
|
from lib_v5 import spec_utils
|
|
from lib_v5.model_param_init import ModelParameters
|
|
import torch
|
|
|
|
# Command line text parsing and widget manipulation
|
|
from collections import defaultdict
|
|
import tkinter as tk
|
|
import traceback # Error Message Recent Calls
|
|
import time # Timer
|
|
|
|
class Predictor():
|
|
def __init__(self):
|
|
pass
|
|
|
|
def prediction_setup(self, demucs_name,
|
|
channels=64):
|
|
if data['demucsmodel']:
|
|
self.demucs = Demucs(sources=["drums", "bass", "other", "vocals"], channels=channels)
|
|
widget_text.write(base_text + 'Loading Demucs model... ')
|
|
update_progress(**progress_kwargs,
|
|
step=0.05)
|
|
self.demucs.to(device)
|
|
self.demucs.load_state_dict(torch.load(demucs_name))
|
|
widget_text.write('Done!\n')
|
|
self.demucs.eval()
|
|
self.onnx_models = {}
|
|
c = 0
|
|
|
|
self.models = get_models('tdf_extra', load=False, device=cpu, stems='vocals')
|
|
widget_text.write(base_text + 'Loading ONNX model... ')
|
|
update_progress(**progress_kwargs,
|
|
step=0.1)
|
|
c+=1
|
|
|
|
if data['gpu'] >= 0:
|
|
if torch.cuda.is_available():
|
|
run_type = ['CUDAExecutionProvider']
|
|
else:
|
|
data['gpu'] = -1
|
|
widget_text.write("\n" + base_text + "No NVIDIA GPU detected. Switching to CPU... ")
|
|
run_type = ['CPUExecutionProvider']
|
|
else:
|
|
run_type = ['CPUExecutionProvider']
|
|
|
|
self.onnx_models[c] = ort.InferenceSession(os.path.join('models/MDX_Net_Models', model_set), providers=run_type)
|
|
widget_text.write('Done!\n')
|
|
|
|
def prediction(self, m):
|
|
#mix, rate = sf.read(m)
|
|
mix, rate = librosa.load(m, mono=False, sr=44100)
|
|
if mix.ndim == 1:
|
|
mix = np.asfortranarray([mix,mix])
|
|
mix = mix.T
|
|
sources = self.demix(mix.T)
|
|
widget_text.write(base_text + 'Inferences complete!\n')
|
|
c = -1
|
|
|
|
#Main Save Path
|
|
save_path = os.path.dirname(base_name)
|
|
|
|
#Vocal Path
|
|
vocal_name = '(Vocals)'
|
|
if data['modelFolder']:
|
|
vocal_path = '{save_path}/{file_name}.wav'.format(
|
|
save_path=save_path,
|
|
file_name = f'{os.path.basename(base_name)}_{ModelName_2}_{vocal_name}',)
|
|
else:
|
|
vocal_path = '{save_path}/{file_name}.wav'.format(
|
|
save_path=save_path,
|
|
file_name = f'{os.path.basename(base_name)}_{ModelName_2}_{vocal_name}',)
|
|
|
|
#Instrumental Path
|
|
Instrumental_name = '(Instrumental)'
|
|
if data['modelFolder']:
|
|
Instrumental_path = '{save_path}/{file_name}.wav'.format(
|
|
save_path=save_path,
|
|
file_name = f'{os.path.basename(base_name)}_{ModelName_2}_{Instrumental_name}',)
|
|
else:
|
|
Instrumental_path = '{save_path}/{file_name}.wav'.format(
|
|
save_path=save_path,
|
|
file_name = f'{os.path.basename(base_name)}_{ModelName_2}_{Instrumental_name}',)
|
|
|
|
#Non-Reduced Vocal Path
|
|
vocal_name = '(Vocals)'
|
|
if data['modelFolder']:
|
|
non_reduced_vocal_path = '{save_path}/{file_name}.wav'.format(
|
|
save_path=save_path,
|
|
file_name = f'{os.path.basename(base_name)}_{ModelName_2}_{vocal_name}_No_Reduction',)
|
|
else:
|
|
non_reduced_vocal_path = '{save_path}/{file_name}.wav'.format(
|
|
save_path=save_path,
|
|
file_name = f'{os.path.basename(base_name)}_{ModelName_2}_{vocal_name}_No_Reduction',)
|
|
|
|
if os.path.isfile(non_reduced_vocal_path):
|
|
file_exists_n = 'there'
|
|
else:
|
|
file_exists_n = 'not_there'
|
|
|
|
if os.path.isfile(vocal_path):
|
|
file_exists = 'there'
|
|
else:
|
|
file_exists = 'not_there'
|
|
|
|
if not data['noisereduc_s'] == 'None':
|
|
c += 1
|
|
if not data['demucsmodel']:
|
|
if data['inst_only'] and not data['voc_only']:
|
|
widget_text.write(base_text + 'Preparing to save Instrumental...')
|
|
else:
|
|
widget_text.write(base_text + 'Saving vocals... ')
|
|
sf.write(non_reduced_vocal_path, sources[c].T, rate)
|
|
update_progress(**progress_kwargs,
|
|
step=(0.9))
|
|
widget_text.write('Done!\n')
|
|
widget_text.write(base_text + 'Performing Noise Reduction... ')
|
|
reduction_sen = float(int(data['noisereduc_s'])/10)
|
|
subprocess.call("lib_v5\\sox\\sox.exe" + ' "' +
|
|
f"{str(non_reduced_vocal_path)}" + '" "' + f"{str(vocal_path)}" + '" ' +
|
|
"noisered lib_v5\\sox\\mdxnetnoisereduc.prof " + f"{reduction_sen}",
|
|
shell=True, stdout=subprocess.PIPE,
|
|
stdin=subprocess.PIPE, stderr=subprocess.PIPE)
|
|
widget_text.write('Done!\n')
|
|
update_progress(**progress_kwargs,
|
|
step=(0.95))
|
|
else:
|
|
if data['inst_only'] and not data['voc_only']:
|
|
widget_text.write(base_text + 'Preparing Instrumental...')
|
|
else:
|
|
widget_text.write(base_text + 'Saving Vocals... ')
|
|
sf.write(non_reduced_vocal_path, sources[3].T, rate)
|
|
update_progress(**progress_kwargs,
|
|
step=(0.9))
|
|
widget_text.write('Done!\n')
|
|
widget_text.write(base_text + 'Performing Noise Reduction... ')
|
|
reduction_sen = float(int(data['noisereduc_s'])/10)
|
|
subprocess.call("lib_v5\\sox\\sox.exe" + ' "' +
|
|
f"{str(non_reduced_vocal_path)}" + '" "' + f"{str(vocal_path)}" + '" ' +
|
|
"noisered lib_v5\\sox\\mdxnetnoisereduc.prof " + f"{reduction_sen}",
|
|
shell=True, stdout=subprocess.PIPE,
|
|
stdin=subprocess.PIPE, stderr=subprocess.PIPE)
|
|
update_progress(**progress_kwargs,
|
|
step=(0.95))
|
|
widget_text.write('Done!\n')
|
|
else:
|
|
c += 1
|
|
if not data['demucsmodel']:
|
|
widget_text.write(base_text + 'Saving Vocals..')
|
|
sf.write(vocal_path, sources[c].T, rate)
|
|
update_progress(**progress_kwargs,
|
|
step=(0.9))
|
|
widget_text.write('Done!\n')
|
|
else:
|
|
widget_text.write(base_text + 'Saving Vocals... ')
|
|
sf.write(vocal_path, sources[3].T, rate)
|
|
update_progress(**progress_kwargs,
|
|
step=(0.9))
|
|
widget_text.write('Done!\n')
|
|
|
|
if data['voc_only'] and not data['inst_only']:
|
|
pass
|
|
else:
|
|
finalfiles = [
|
|
{
|
|
'model_params':'lib_v5/modelparams/1band_sr44100_hl512.json',
|
|
'files':[str(music_file), vocal_path],
|
|
}
|
|
]
|
|
widget_text.write(base_text + 'Saving Instrumental... ')
|
|
for i, e in tqdm(enumerate(finalfiles)):
|
|
|
|
wave, specs = {}, {}
|
|
|
|
mp = ModelParameters(e['model_params'])
|
|
|
|
for i in range(len(e['files'])):
|
|
spec = {}
|
|
|
|
for d in range(len(mp.param['band']), 0, -1):
|
|
bp = mp.param['band'][d]
|
|
|
|
if d == len(mp.param['band']): # high-end band
|
|
wave[d], _ = librosa.load(
|
|
e['files'][i], bp['sr'], False, dtype=np.float32, res_type=bp['res_type'])
|
|
|
|
if len(wave[d].shape) == 1: # mono to stereo
|
|
wave[d] = np.array([wave[d], wave[d]])
|
|
else: # lower bands
|
|
wave[d] = librosa.resample(wave[d+1], mp.param['band'][d+1]['sr'], bp['sr'], res_type=bp['res_type'])
|
|
|
|
spec[d] = spec_utils.wave_to_spectrogram(wave[d], bp['hl'], bp['n_fft'], mp.param['mid_side'], mp.param['mid_side_b2'], mp.param['reverse'])
|
|
|
|
specs[i] = spec_utils.combine_spectrograms(spec, mp)
|
|
|
|
del wave
|
|
|
|
ln = min([specs[0].shape[2], specs[1].shape[2]])
|
|
specs[0] = specs[0][:,:,:ln]
|
|
specs[1] = specs[1][:,:,:ln]
|
|
X_mag = np.abs(specs[0])
|
|
y_mag = np.abs(specs[1])
|
|
max_mag = np.where(X_mag >= y_mag, X_mag, y_mag)
|
|
v_spec = specs[1] - max_mag * np.exp(1.j * np.angle(specs[0]))
|
|
update_progress(**progress_kwargs,
|
|
step=(1))
|
|
sf.write(Instrumental_path, spec_utils.cmb_spectrogram_to_wave(-v_spec, mp), mp.param['sr'])
|
|
if data['inst_only']:
|
|
if file_exists == 'there':
|
|
pass
|
|
else:
|
|
try:
|
|
os.remove(vocal_path)
|
|
except:
|
|
pass
|
|
|
|
widget_text.write('Done!\n')
|
|
|
|
if data['noisereduc_s'] == 'None':
|
|
pass
|
|
elif data['inst_only']:
|
|
if file_exists_n == 'there':
|
|
pass
|
|
else:
|
|
try:
|
|
os.remove(non_reduced_vocal_path)
|
|
except:
|
|
pass
|
|
else:
|
|
try:
|
|
os.remove(non_reduced_vocal_path)
|
|
except:
|
|
pass
|
|
|
|
widget_text.write(base_text + 'Completed Seperation!\n\n')
|
|
|
|
def demix(self, mix):
|
|
# 1 = demucs only
|
|
# 0 = onnx only
|
|
if data['chunks'] == 'Full':
|
|
chunk_set = 0
|
|
else:
|
|
chunk_set = data['chunks']
|
|
|
|
if data['chunks'] == 'Auto':
|
|
if data['gpu'] == 0:
|
|
try:
|
|
gpu_mem = round(torch.cuda.get_device_properties(0).total_memory/1.074e+9)
|
|
except:
|
|
widget_text.write(base_text + 'NVIDIA GPU Required for conversion!\n')
|
|
if int(gpu_mem) <= int(5):
|
|
chunk_set = int(5)
|
|
widget_text.write(base_text + 'Chunk size auto-set to 5... \n')
|
|
if gpu_mem in [6, 7]:
|
|
chunk_set = int(30)
|
|
widget_text.write(base_text + 'Chunk size auto-set to 30... \n')
|
|
if gpu_mem in [8, 9, 10, 11, 12, 13, 14, 15]:
|
|
chunk_set = int(40)
|
|
widget_text.write(base_text + 'Chunk size auto-set to 40... \n')
|
|
if int(gpu_mem) >= int(16):
|
|
chunk_set = int(60)
|
|
widget_text.write(base_text + 'Chunk size auto-set to 60... \n')
|
|
if data['gpu'] == -1:
|
|
sys_mem = psutil.virtual_memory().total >> 30
|
|
if int(sys_mem) <= int(4):
|
|
chunk_set = int(1)
|
|
widget_text.write(base_text + 'Chunk size auto-set to 1... \n')
|
|
if sys_mem in [5, 6, 7, 8]:
|
|
chunk_set = int(10)
|
|
widget_text.write(base_text + 'Chunk size auto-set to 10... \n')
|
|
if sys_mem in [9, 10, 11, 12, 13, 14, 15, 16]:
|
|
chunk_set = int(25)
|
|
widget_text.write(base_text + 'Chunk size auto-set to 25... \n')
|
|
if int(sys_mem) >= int(17):
|
|
chunk_set = int(60)
|
|
widget_text.write(base_text + 'Chunk size auto-set to 60... \n')
|
|
elif data['chunks'] == 'Full':
|
|
chunk_set = 0
|
|
widget_text.write(base_text + "Chunk size set to full... \n")
|
|
else:
|
|
chunk_set = int(data['chunks'])
|
|
widget_text.write(base_text + "Chunk size user-set to "f"{chunk_set}... \n")
|
|
|
|
samples = mix.shape[-1]
|
|
margin = margin_set
|
|
chunk_size = chunk_set*44100
|
|
assert not margin == 0, 'margin cannot be zero!'
|
|
if margin > chunk_size:
|
|
margin = chunk_size
|
|
|
|
b = np.array([[[0.5]], [[0.5]], [[0.7]], [[0.9]]])
|
|
segmented_mix = {}
|
|
|
|
if chunk_set == 0 or samples < chunk_size:
|
|
chunk_size = samples
|
|
|
|
counter = -1
|
|
for skip in range(0, samples, chunk_size):
|
|
counter+=1
|
|
|
|
s_margin = 0 if counter == 0 else margin
|
|
end = min(skip+chunk_size+margin, samples)
|
|
|
|
start = skip-s_margin
|
|
|
|
segmented_mix[skip] = mix[:,start:end].copy()
|
|
if end == samples:
|
|
break
|
|
|
|
if not data['demucsmodel']:
|
|
sources = self.demix_base(segmented_mix, margin_size=margin)
|
|
|
|
else: # both, apply spec effects
|
|
base_out = self.demix_base(segmented_mix, margin_size=margin)
|
|
demucs_out = self.demix_demucs(segmented_mix, margin_size=margin)
|
|
nan_count = np.count_nonzero(np.isnan(demucs_out)) + np.count_nonzero(np.isnan(base_out))
|
|
if nan_count > 0:
|
|
print('Warning: there are {} nan values in the array(s).'.format(nan_count))
|
|
demucs_out, base_out = np.nan_to_num(demucs_out), np.nan_to_num(base_out)
|
|
sources = {}
|
|
|
|
sources[3] = (spec_effects(wave=[demucs_out[3],base_out[0]],
|
|
algorithm='default',
|
|
value=b[3])*1.03597672895) # compensation
|
|
return sources
|
|
|
|
def demix_base(self, mixes, margin_size):
|
|
chunked_sources = []
|
|
onnxitera = len(mixes)
|
|
onnxitera_calc = onnxitera * 2
|
|
gui_progress_bar_onnx = 0
|
|
widget_text.write(base_text + "Running ONNX Inference...\n")
|
|
widget_text.write(base_text + "Processing "f"{onnxitera} slices... ")
|
|
print(' Running ONNX Inference...')
|
|
for mix in mixes:
|
|
gui_progress_bar_onnx += 1
|
|
if data['demucsmodel']:
|
|
update_progress(**progress_kwargs,
|
|
step=(0.1 + (0.5/onnxitera_calc * gui_progress_bar_onnx)))
|
|
else:
|
|
update_progress(**progress_kwargs,
|
|
step=(0.1 + (0.9/onnxitera * gui_progress_bar_onnx)))
|
|
cmix = mixes[mix]
|
|
sources = []
|
|
n_sample = cmix.shape[1]
|
|
|
|
mod = 0
|
|
for model in self.models:
|
|
mod += 1
|
|
trim = model.n_fft//2
|
|
gen_size = model.chunk_size-2*trim
|
|
pad = gen_size - n_sample%gen_size
|
|
mix_p = np.concatenate((np.zeros((2,trim)), cmix, np.zeros((2,pad)), np.zeros((2,trim))), 1)
|
|
mix_waves = []
|
|
i = 0
|
|
while i < n_sample + pad:
|
|
waves = np.array(mix_p[:, i:i+model.chunk_size])
|
|
mix_waves.append(waves)
|
|
i += gen_size
|
|
mix_waves = torch.tensor(mix_waves, dtype=torch.float32).to(cpu)
|
|
with torch.no_grad():
|
|
_ort = self.onnx_models[mod]
|
|
spek = model.stft(mix_waves)
|
|
|
|
tar_waves = model.istft(torch.tensor(_ort.run(None, {'input': spek.cpu().numpy()})[0]))#.cpu()
|
|
|
|
tar_signal = tar_waves[:,:,trim:-trim].transpose(0,1).reshape(2, -1).numpy()[:, :-pad]
|
|
|
|
start = 0 if mix == 0 else margin_size
|
|
end = None if mix == list(mixes.keys())[::-1][0] else -margin_size
|
|
if margin_size == 0:
|
|
end = None
|
|
sources.append(tar_signal[:,start:end])
|
|
|
|
|
|
chunked_sources.append(sources)
|
|
_sources = np.concatenate(chunked_sources, axis=-1)
|
|
del self.onnx_models
|
|
widget_text.write('Done!\n')
|
|
return _sources
|
|
|
|
def demix_demucs(self, mix, margin_size):
|
|
processed = {}
|
|
demucsitera = len(mix)
|
|
demucsitera_calc = demucsitera * 2
|
|
gui_progress_bar_demucs = 0
|
|
widget_text.write(base_text + "Running Demucs Inference...\n")
|
|
widget_text.write(base_text + "Processing "f"{len(mix)} slices... ")
|
|
print(' Running Demucs Inference...')
|
|
for nmix in mix:
|
|
gui_progress_bar_demucs += 1
|
|
update_progress(**progress_kwargs,
|
|
step=(0.35 + (1.05/demucsitera_calc * gui_progress_bar_demucs)))
|
|
cmix = mix[nmix]
|
|
cmix = torch.tensor(cmix, dtype=torch.float32)
|
|
ref = cmix.mean(0)
|
|
cmix = (cmix - ref.mean()) / ref.std()
|
|
shift_set = 0
|
|
with torch.no_grad():
|
|
sources = apply_model(self.demucs, cmix.to(device), split=True, overlap=overlap_set, shifts=shift_set)
|
|
sources = (sources * ref.std() + ref.mean()).cpu().numpy()
|
|
sources[[0,1]] = sources[[1,0]]
|
|
|
|
start = 0 if nmix == 0 else margin_size
|
|
end = None if nmix == list(mix.keys())[::-1][0] else -margin_size
|
|
if margin_size == 0:
|
|
end = None
|
|
processed[nmix] = sources[:,:,start:end].copy()
|
|
|
|
sources = list(processed.values())
|
|
sources = np.concatenate(sources, axis=-1)
|
|
widget_text.write('Done!\n')
|
|
return sources
|
|
|
|
|
|
def update_progress(progress_var, total_files, file_num, step: float = 1):
|
|
"""Calculate the progress for the progress widget in the GUI"""
|
|
base = (100 / total_files)
|
|
progress = base * (file_num - 1)
|
|
progress += base * step
|
|
|
|
progress_var.set(progress)
|
|
|
|
def get_baseText(total_files, file_num):
|
|
"""Create the base text for the command widget"""
|
|
text = 'File {file_num}/{total_files} '.format(file_num=file_num,
|
|
total_files=total_files)
|
|
return text
|
|
|
|
warnings.filterwarnings("ignore")
|
|
cpu = torch.device('cpu')
|
|
device = torch.device('cuda:0' if torch.cuda.is_available() else 'cpu')
|
|
|
|
def hide_opt():
|
|
with open(os.devnull, "w") as devnull:
|
|
old_stdout = sys.stdout
|
|
sys.stdout = devnull
|
|
try:
|
|
yield
|
|
finally:
|
|
sys.stdout = old_stdout
|
|
|
|
class VocalRemover(object):
|
|
|
|
def __init__(self, data, text_widget: tk.Text):
|
|
self.data = data
|
|
self.text_widget = text_widget
|
|
self.models = defaultdict(lambda: None)
|
|
self.devices = defaultdict(lambda: None)
|
|
# self.offset = model.offset
|
|
|
|
|
|
|
|
def update_progress(progress_var, total_files, file_num, step: float = 1):
|
|
"""Calculate the progress for the progress widget in the GUI"""
|
|
base = (100 / total_files)
|
|
progress = base * (file_num - 1)
|
|
progress += base * step
|
|
|
|
progress_var.set(progress)
|
|
|
|
def get_baseText(total_files, file_num):
|
|
"""Create the base text for the command widget"""
|
|
text = 'File {file_num}/{total_files} '.format(file_num=file_num,
|
|
total_files=total_files)
|
|
return text
|
|
|
|
def determineModelFolderName():
|
|
"""
|
|
Determine the name that is used for the folder and appended
|
|
to the back of the music files
|
|
"""
|
|
modelFolderName = ''
|
|
if not data['modelFolder']:
|
|
# Model Test Mode not selected
|
|
return modelFolderName
|
|
|
|
# -Instrumental-
|
|
if os.path.isfile(data['instrumentalModel']):
|
|
modelFolderName += os.path.splitext(os.path.basename(data['instrumentalModel']))[0]
|
|
|
|
if modelFolderName:
|
|
modelFolderName = '/' + modelFolderName
|
|
|
|
return modelFolderName
|
|
|
|
class VocalRemover(object):
|
|
|
|
def __init__(self, data, text_widget: tk.Text):
|
|
self.data = data
|
|
self.text_widget = text_widget
|
|
# self.offset = model.offset
|
|
|
|
data = {
|
|
# Paths
|
|
'input_paths': None,
|
|
'export_path': None,
|
|
'saveFormat': 'wav',
|
|
# Processing Options
|
|
'gpu': -1,
|
|
'postprocess': True,
|
|
'tta': True,
|
|
'output_image': True,
|
|
'voc_only': False,
|
|
'inst_only': False,
|
|
'demucsmodel': True,
|
|
'gpu': -1,
|
|
'chunks': 'auto',
|
|
'non_red': False,
|
|
'noisereduc_s': 3,
|
|
'mixing': 'default',
|
|
'ensChoose': 'HP1 Models',
|
|
'algo': 'Instrumentals (Min Spec)',
|
|
# Models
|
|
'instrumentalModel': None,
|
|
'useModel': None,
|
|
# Constants
|
|
'window_size': 512,
|
|
'agg': 10,
|
|
'high_end_process': 'mirroring'
|
|
}
|
|
|
|
default_window_size = data['window_size']
|
|
default_agg = data['agg']
|
|
default_chunks = data['chunks']
|
|
default_noisereduc_s = data['noisereduc_s']
|
|
|
|
|
|
def update_progress(progress_var, total_files, file_num, step: float = 1):
|
|
"""Calculate the progress for the progress widget in the GUI"""
|
|
base = (100 / total_files)
|
|
progress = base * (file_num - 1)
|
|
progress += base * step
|
|
|
|
progress_var.set(progress)
|
|
|
|
def get_baseText(total_files, file_num):
|
|
"""Create the base text for the command widget"""
|
|
text = 'File {file_num}/{total_files} '.format(file_num=file_num,
|
|
total_files=total_files)
|
|
return text
|
|
|
|
def main(window: tk.Wm, text_widget: tk.Text, button_widget: tk.Button, progress_var: tk.Variable,
|
|
**kwargs: dict):
|
|
|
|
global widget_text
|
|
global gui_progress_bar
|
|
global music_file
|
|
global channel_set
|
|
global margin_set
|
|
global overlap_set
|
|
global default_chunks
|
|
global default_noisereduc_s
|
|
global base_name
|
|
global progress_kwargs
|
|
global base_text
|
|
global model_set
|
|
global model_set_name
|
|
global ModelName_2
|
|
|
|
model_set = 'UVR_MDXNET_9703.onnx'
|
|
model_set_name = 'UVR_MDXNET_9703'
|
|
|
|
# Update default settings
|
|
default_chunks = data['chunks']
|
|
default_noisereduc_s = data['noisereduc_s']
|
|
|
|
channel_set = int(64)
|
|
margin_set = int(44100)
|
|
overlap_set = float(0.5)
|
|
|
|
widget_text = text_widget
|
|
gui_progress_bar = progress_var
|
|
|
|
#Error Handling
|
|
|
|
onnxmissing = "[ONNXRuntimeError] : 3 : NO_SUCHFILE"
|
|
onnxmemerror = "onnxruntime::CudaCall CUDA failure 2: out of memory"
|
|
runtimeerr = "CUDNN error executing cudnnSetTensorNdDescriptor"
|
|
cuda_err = "CUDA out of memory"
|
|
mod_err = "ModuleNotFoundError"
|
|
file_err = "FileNotFoundError"
|
|
ffmp_err = """audioread\__init__.py", line 116, in audio_open"""
|
|
sf_write_err = "sf.write"
|
|
|
|
try:
|
|
with open('errorlog.txt', 'w') as f:
|
|
f.write(f'No errors to report at this time.' + f'\n\nLast Process Method Used: Ensemble Mode' +
|
|
f'\nLast Conversion Time Stamp: [{datetime.now().strftime("%Y-%m-%d %H:%M:%S")}]\n')
|
|
except:
|
|
pass
|
|
|
|
global nn_arch_sizes
|
|
global nn_architecture
|
|
|
|
nn_arch_sizes = [
|
|
31191, # default
|
|
33966, 123821, 123812, 537238, 537227 # custom
|
|
]
|
|
|
|
def save_files(wav_instrument, wav_vocals):
|
|
"""Save output music files"""
|
|
vocal_name = '(Vocals)'
|
|
instrumental_name = '(Instrumental)'
|
|
save_path = os.path.dirname(base_name)
|
|
|
|
# Swap names if vocal model
|
|
|
|
VModel="Vocal"
|
|
|
|
if VModel in model_name:
|
|
# Reverse names
|
|
vocal_name, instrumental_name = instrumental_name, vocal_name
|
|
|
|
# Save Temp File
|
|
# For instrumental the instrumental is the temp file
|
|
# and for vocal the instrumental is the temp file due
|
|
# to reversement
|
|
|
|
sf.write(f'temp.wav',
|
|
wav_instrument, mp.param['sr'])
|
|
|
|
# -Save files-
|
|
# Instrumental
|
|
if instrumental_name is not None:
|
|
instrumental_path = '{save_path}/{file_name}.wav'.format(
|
|
save_path=save_path,
|
|
file_name = f'{os.path.basename(base_name)}_{ModelName_1}_{instrumental_name}',
|
|
)
|
|
|
|
if VModel in ModelName_1 and data['voc_only']:
|
|
sf.write(instrumental_path,
|
|
wav_instrument, mp.param['sr'])
|
|
elif VModel in ModelName_1 and data['inst_only']:
|
|
pass
|
|
elif data['voc_only']:
|
|
pass
|
|
else:
|
|
sf.write(instrumental_path,
|
|
wav_instrument, mp.param['sr'])
|
|
|
|
# Vocal
|
|
if vocal_name is not None:
|
|
vocal_path = '{save_path}/{file_name}.wav'.format(
|
|
save_path=save_path,
|
|
file_name=f'{os.path.basename(base_name)}_{ModelName_1}_{vocal_name}',
|
|
)
|
|
|
|
if VModel in ModelName_1 and data['inst_only']:
|
|
sf.write(vocal_path,
|
|
wav_vocals, mp.param['sr'])
|
|
elif VModel in ModelName_1 and data['voc_only']:
|
|
pass
|
|
elif data['inst_only']:
|
|
pass
|
|
else:
|
|
sf.write(vocal_path,
|
|
wav_vocals, mp.param['sr'])
|
|
|
|
data.update(kwargs)
|
|
|
|
# Update default settings
|
|
global default_window_size
|
|
global default_agg
|
|
default_window_size = data['window_size']
|
|
default_agg = data['agg']
|
|
|
|
stime = time.perf_counter()
|
|
progress_var.set(0)
|
|
text_widget.clear()
|
|
button_widget.configure(state=tk.DISABLED) # Disable Button
|
|
|
|
if os.path.exists('models/Main_Models/7_HP2-UVR.pth') \
|
|
or os.path.exists('models/Main_Models/8_HP2-UVR.pth') \
|
|
or os.path.exists('models/Main_Models/9_HP2-UVR.pth'):
|
|
hp2_ens = 'on'
|
|
else:
|
|
hp2_ens = 'off'
|
|
|
|
print('Do all of the HP models exist? ' + hp2_ens)
|
|
|
|
# Separation Preperation
|
|
try: #Ensemble Dictionary
|
|
|
|
if not data['ensChoose'] == 'User Ensemble':
|
|
HP1_Models = [
|
|
{
|
|
'model_name':'1_HP-UVR',
|
|
'model_name_c':'1st HP Model',
|
|
'model_params':'lib_v5/modelparams/4band_44100.json',
|
|
'model_param_name':'4band_44100',
|
|
'model_location':'models/Main_Models/1_HP-UVR.pth',
|
|
'using_archtecture': '123821KB',
|
|
'loop_name': 'Ensemble Mode - Model 1/2'
|
|
},
|
|
{
|
|
'model_name':'2_HP-UVR',
|
|
'model_name_c':'2nd HP Model',
|
|
'model_params':'lib_v5/modelparams/4band_v2.json',
|
|
'model_param_name':'4band_v2',
|
|
'model_location':'models/Main_Models/2_HP-UVR.pth',
|
|
'using_archtecture': '123821KB',
|
|
'loop_name': 'Ensemble Mode - Model 2/2'
|
|
}
|
|
]
|
|
|
|
HP2_Models = [
|
|
{
|
|
'model_name':'7_HP2-UVR',
|
|
'model_name_c':'1st HP2 Model',
|
|
'model_params':'lib_v5/modelparams/3band_44100_msb2.json',
|
|
'model_param_name':'3band_44100_msb2',
|
|
'model_location':'models/Main_Models/7_HP2-UVR.pth',
|
|
'using_archtecture': '537238KB',
|
|
'loop_name': 'Ensemble Mode - Model 1/3'
|
|
},
|
|
{
|
|
'model_name':'8_HP2-UVR',
|
|
'model_name_c':'2nd HP2 Model',
|
|
'model_params':'lib_v5/modelparams/4band_44100.json',
|
|
'model_param_name':'4band_44100',
|
|
'model_location':'models/Main_Models/8_HP2-UVR.pth',
|
|
'using_archtecture': '537238KB',
|
|
'loop_name': 'Ensemble Mode - Model 2/3'
|
|
},
|
|
{
|
|
'model_name':'9_HP2-UVR',
|
|
'model_name_c':'3rd HP2 Model',
|
|
'model_params':'lib_v5/modelparams/4band_44100.json',
|
|
'model_param_name':'4band_44100',
|
|
'model_location':'models/Main_Models/9_HP2-UVR.pth',
|
|
'using_archtecture': '537238KB',
|
|
'loop_name': 'Ensemble Mode - Model 3/3'
|
|
}
|
|
]
|
|
|
|
All_HP_Models = [
|
|
{
|
|
'model_name':'7_HP2-UVR',
|
|
'model_name_c':'1st HP2 Model',
|
|
'model_params':'lib_v5/modelparams/3band_44100_msb2.json',
|
|
'model_param_name':'3band_44100_msb2',
|
|
'model_location':'models/Main_Models/7_HP2-UVR.pth',
|
|
'using_archtecture': '537238KB',
|
|
'loop_name': 'Ensemble Mode - Model 1/5'
|
|
|
|
},
|
|
{
|
|
'model_name':'8_HP2-UVR',
|
|
'model_name_c':'2nd HP2 Model',
|
|
'model_params':'lib_v5/modelparams/4band_44100.json',
|
|
'model_param_name':'4band_44100',
|
|
'model_location':'models/Main_Models/8_HP2-UVR.pth',
|
|
'using_archtecture': '537238KB',
|
|
'loop_name': 'Ensemble Mode - Model 2/5'
|
|
|
|
},
|
|
{
|
|
'model_name':'9_HP2-UVR',
|
|
'model_name_c':'3rd HP2 Model',
|
|
'model_params':'lib_v5/modelparams/4band_44100.json',
|
|
'model_param_name':'4band_44100',
|
|
'model_location':'models/Main_Models/9_HP2-UVR.pth',
|
|
'using_archtecture': '537238KB',
|
|
'loop_name': 'Ensemble Mode - Model 3/5'
|
|
},
|
|
{
|
|
'model_name':'1_HP-UVR',
|
|
'model_name_c':'1st HP Model',
|
|
'model_params':'lib_v5/modelparams/4band_44100.json',
|
|
'model_param_name':'4band_44100',
|
|
'model_location':'models/Main_Models/1_HP-UVR.pth',
|
|
'using_archtecture': '123821KB',
|
|
'loop_name': 'Ensemble Mode - Model 4/5'
|
|
},
|
|
{
|
|
'model_name':'2_HP-UVR',
|
|
'model_name_c':'2nd HP Model',
|
|
'model_params':'lib_v5/modelparams/4band_v2.json',
|
|
'model_param_name':'4band_v2',
|
|
'model_location':'models/Main_Models/2_HP-UVR.pth',
|
|
'using_archtecture': '123821KB',
|
|
'loop_name': 'Ensemble Mode - Model 5/5'
|
|
}
|
|
]
|
|
|
|
Vocal_Models = [
|
|
{
|
|
'model_name':'3_HP-Vocal-UVR',
|
|
'model_name_c':'1st Vocal Model',
|
|
'model_params':'lib_v5/modelparams/4band_44100.json',
|
|
'model_param_name':'4band_44100',
|
|
'model_location':'models/Main_Models/3_HP-Vocal-UVR.pth',
|
|
'using_archtecture': '123821KB',
|
|
'loop_name': 'Ensemble Mode - Model 1/2'
|
|
},
|
|
{
|
|
'model_name':'4_HP-Vocal-UVR',
|
|
'model_name_c':'2nd Vocal Model',
|
|
'model_params':'lib_v5/modelparams/4band_44100.json',
|
|
'model_param_name':'4band_44100',
|
|
'model_location':'models/Main_Models/4_HP-Vocal-UVR.pth',
|
|
'using_archtecture': '123821KB',
|
|
'loop_name': 'Ensemble Mode - Model 2/2'
|
|
}
|
|
]
|
|
|
|
mdx_vr = [
|
|
{
|
|
'model_name':'VR_Model',
|
|
'mdx_model_name': 'UVR_MDXNET_9703',
|
|
'model_name_c':'VR Model',
|
|
'model_params':'lib_v5/modelparams/4band_v2.json',
|
|
'model_param_name':'4band_v2',
|
|
'model_location':'models/Main_Models/2_HP-UVR.pth',
|
|
'using_archtecture': '123821KB',
|
|
'loop_name': 'Ensemble Mode - Model 1/2'
|
|
}
|
|
]
|
|
|
|
if data['ensChoose'] == 'HP Models':
|
|
loops = HP1_Models
|
|
ensefolder = 'HP_Models_Ensemble_Outputs'
|
|
ensemode = 'HP_Models'
|
|
if data['ensChoose'] == 'HP2 Models':
|
|
loops = HP2_Models
|
|
ensefolder = 'HP2_Models_Ensemble_Outputs'
|
|
ensemode = 'HP2_Models'
|
|
if data['ensChoose'] == 'All HP/HP2 Models':
|
|
loops = All_HP_Models
|
|
ensefolder = 'All_HP_HP2_Models_Ensemble_Outputs'
|
|
ensemode = 'All_HP_HP2_Models'
|
|
if data['ensChoose'] == 'Vocal Models':
|
|
loops = Vocal_Models
|
|
ensefolder = 'Vocal_Models_Ensemble_Outputs'
|
|
ensemode = 'Vocal_Models'
|
|
if data['ensChoose'] == 'MDX-Net/VR Ensemble':
|
|
loops = mdx_vr
|
|
ensefolder = 'MDX_VR_Ensemble_Outputs'
|
|
ensemode = 'MDX-Net_VR'
|
|
|
|
|
|
#Prepare Audiofile(s)
|
|
for file_num, music_file in enumerate(data['input_paths'], start=1):
|
|
print(data['input_paths'])
|
|
# -Get text and update progress-
|
|
base_text = get_baseText(total_files=len(data['input_paths']),
|
|
file_num=file_num)
|
|
progress_kwargs = {'progress_var': progress_var,
|
|
'total_files': len(data['input_paths']),
|
|
'file_num': file_num}
|
|
update_progress(**progress_kwargs,
|
|
step=0)
|
|
|
|
try:
|
|
total, used, free = shutil.disk_usage("/")
|
|
|
|
total_space = int(total/1.074e+9)
|
|
used_space = int(used/1.074e+9)
|
|
free_space = int(free/1.074e+9)
|
|
|
|
if int(free/1.074e+9) <= int(2):
|
|
text_widget.write('Error: Not enough storage on main drive to continue. Your main drive must have \nat least 3 GB\'s of storage in order for this application function properly. \n\nPlease ensure your main drive has at least 3 GB\'s of storage and try again.\n\n')
|
|
text_widget.write('Detected Total Space: ' + str(total_space) + ' GB' + '\n')
|
|
text_widget.write('Detected Used Space: ' + str(used_space) + ' GB' + '\n')
|
|
text_widget.write('Detected Free Space: ' + str(free_space) + ' GB' + '\n')
|
|
progress_var.set(0)
|
|
button_widget.configure(state=tk.NORMAL) # Enable Button
|
|
return
|
|
|
|
if int(free/1.074e+9) in [3, 4, 5, 6, 7, 8]:
|
|
text_widget.write('Warning: Your main drive is running low on storage. Your main drive must have \nat least 3 GB\'s of storage in order for this application function properly.\n\n')
|
|
text_widget.write('Detected Total Space: ' + str(total_space) + ' GB' + '\n')
|
|
text_widget.write('Detected Used Space: ' + str(used_space) + ' GB' + '\n')
|
|
text_widget.write('Detected Free Space: ' + str(free_space) + ' GB' + '\n\n')
|
|
except:
|
|
pass
|
|
|
|
|
|
#Prepare to loop models
|
|
for i, c in tqdm(enumerate(loops), disable=True, desc='Iterations..'):
|
|
|
|
if hp2_ens == 'off' and loops == HP2_Models:
|
|
text_widget.write(base_text + 'You must install the UVR expansion pack in order to use this ensemble.\n')
|
|
text_widget.write(base_text + 'Please install the expansion pack or choose another ensemble.\n')
|
|
text_widget.write(base_text + 'See the \"Updates\" tab in the Help Guide for installation instructions.\n')
|
|
text_widget.write(f'Time Elapsed: {time.strftime("%H:%M:%S", time.gmtime(int(time.perf_counter() - stime)))}') # nopep8
|
|
torch.cuda.empty_cache()
|
|
button_widget.configure(state=tk.NORMAL)
|
|
return
|
|
elif hp2_ens == 'off' and loops == All_HP_Models:
|
|
text_widget.write(base_text + 'You must install the UVR expansion pack in order to use this ensemble.\n')
|
|
text_widget.write(base_text + 'Please install the expansion pack or choose another ensemble.\n')
|
|
text_widget.write(base_text + 'See the \"Updates\" tab in the Help Guide for installation instructions.\n')
|
|
text_widget.write(f'Time Elapsed: {time.strftime("%H:%M:%S", time.gmtime(int(time.perf_counter() - stime)))}') # nopep8
|
|
torch.cuda.empty_cache()
|
|
button_widget.configure(state=tk.NORMAL)
|
|
return
|
|
|
|
presentmodel = Path(c['model_location'])
|
|
|
|
if presentmodel.is_file():
|
|
print(f'The file {presentmodel} exist')
|
|
else:
|
|
text_widget.write(base_text + 'Model "' + c['model_name'] + '.pth" is missing, moving to next... \n\n')
|
|
continue
|
|
|
|
text_widget.write(c['loop_name'] + '\n\n')
|
|
|
|
text_widget.write(base_text + 'Loading ' + c['model_name_c'] + '... ')
|
|
|
|
aggresive_set = float(data['agg']/100)
|
|
|
|
model_size = math.ceil(os.stat(c['model_location']).st_size / 1024)
|
|
nn_architecture = '{}KB'.format(min(nn_arch_sizes, key=lambda x:abs(x-model_size)))
|
|
|
|
nets = importlib.import_module('lib_v5.nets' + f'_{nn_architecture}'.replace('_{}KB'.format(nn_arch_sizes[0]), ''), package=None)
|
|
|
|
text_widget.write('Done!\n')
|
|
|
|
ModelName=(c['model_location'])
|
|
|
|
#Package Models
|
|
|
|
model_hash = hashlib.md5(open(ModelName,'rb').read()).hexdigest()
|
|
print(model_hash)
|
|
|
|
#v5 Models
|
|
|
|
if model_hash == '47939caf0cfe52a0e81442b85b971dfd':
|
|
model_params_d=str('lib_v5/modelparams/4band_44100.json')
|
|
param_name=str('4band_44100')
|
|
if model_hash == '4e4ecb9764c50a8c414fee6e10395bbe':
|
|
model_params_d=str('lib_v5/modelparams/4band_v2.json')
|
|
param_name=str('4band_v2')
|
|
if model_hash == 'e60a1e84803ce4efc0a6551206cc4b71':
|
|
model_params_d=str('lib_v5/modelparams/4band_44100.json')
|
|
param_name=str('4band_44100')
|
|
if model_hash == 'a82f14e75892e55e994376edbf0c8435':
|
|
model_params_d=str('lib_v5/modelparams/4band_44100.json')
|
|
param_name=str('4band_44100')
|
|
if model_hash == '6dd9eaa6f0420af9f1d403aaafa4cc06':
|
|
model_params_d=str('lib_v5/modelparams/4band_v2_sn.json')
|
|
param_name=str('4band_v2_sn')
|
|
if model_hash == '5c7bbca45a187e81abbbd351606164e5':
|
|
model_params_d=str('lib_v5/modelparams/3band_44100_msb2.json')
|
|
param_name=str('3band_44100_msb2')
|
|
if model_hash == 'd6b2cb685a058a091e5e7098192d3233':
|
|
model_params_d=str('lib_v5/modelparams/3band_44100_msb2.json')
|
|
param_name=str('3band_44100_msb2')
|
|
if model_hash == 'c1b9f38170a7c90e96f027992eb7c62b':
|
|
model_params_d=str('lib_v5/modelparams/4band_44100.json')
|
|
param_name=str('4band_44100')
|
|
if model_hash == 'c3448ec923fa0edf3d03a19e633faa53':
|
|
model_params_d=str('lib_v5/modelparams/4band_44100.json')
|
|
param_name=str('4band_44100')
|
|
|
|
#v4 Models
|
|
|
|
if model_hash == '6a00461c51c2920fd68937d4609ed6c8':
|
|
model_params_d=str('lib_v5/modelparams/1band_sr16000_hl512.json')
|
|
param_name=str('1band_sr16000_hl512')
|
|
if model_hash == '0ab504864d20f1bd378fe9c81ef37140':
|
|
model_params_d=str('lib_v5/modelparams/1band_sr32000_hl512.json')
|
|
param_name=str('1band_sr32000_hl512')
|
|
if model_hash == '7dd21065bf91c10f7fccb57d7d83b07f':
|
|
model_params_d=str('lib_v5/modelparams/1band_sr32000_hl512.json')
|
|
param_name=str('1band_sr32000_hl512')
|
|
if model_hash == '80ab74d65e515caa3622728d2de07d23':
|
|
model_params_d=str('lib_v5/modelparams/1band_sr32000_hl512.json')
|
|
param_name=str('1band_sr32000_hl512')
|
|
if model_hash == 'edc115e7fc523245062200c00caa847f':
|
|
model_params_d=str('lib_v5/modelparams/1band_sr33075_hl384.json')
|
|
param_name=str('1band_sr33075_hl384')
|
|
if model_hash == '28063e9f6ab5b341c5f6d3c67f2045b7':
|
|
model_params_d=str('lib_v5/modelparams/1band_sr33075_hl384.json')
|
|
param_name=str('1band_sr33075_hl384')
|
|
if model_hash == 'b58090534c52cbc3e9b5104bad666ef2':
|
|
model_params_d=str('lib_v5/modelparams/1band_sr44100_hl512.json')
|
|
param_name=str('1band_sr44100_hl512')
|
|
if model_hash == '0cdab9947f1b0928705f518f3c78ea8f':
|
|
model_params_d=str('lib_v5/modelparams/1band_sr44100_hl512.json')
|
|
param_name=str('1band_sr44100_hl512')
|
|
if model_hash == 'ae702fed0238afb5346db8356fe25f13':
|
|
model_params_d=str('lib_v5/modelparams/1band_sr44100_hl1024.json')
|
|
param_name=str('1band_sr44100_hl1024')
|
|
|
|
def determineenseFolderName():
|
|
"""
|
|
Determine the name that is used for the folder and appended
|
|
to the back of the music files
|
|
"""
|
|
enseFolderName = ''
|
|
|
|
if str(ensefolder):
|
|
enseFolderName += os.path.splitext(os.path.basename(ensefolder))[0]
|
|
|
|
if enseFolderName:
|
|
enseFolderName = '/' + enseFolderName
|
|
|
|
return enseFolderName
|
|
|
|
enseFolderName = determineenseFolderName()
|
|
if enseFolderName:
|
|
folder_path = f'{data["export_path"]}{enseFolderName}'
|
|
if not os.path.isdir(folder_path):
|
|
os.mkdir(folder_path)
|
|
|
|
# Determine File Name
|
|
base_name = f'{data["export_path"]}{enseFolderName}/{file_num}_{os.path.splitext(os.path.basename(music_file))[0]}'
|
|
enseExport = f'{data["export_path"]}{enseFolderName}/'
|
|
trackname = f'{file_num}_{os.path.splitext(os.path.basename(music_file))[0]}'
|
|
|
|
ModelName_1=(c['model_name'])
|
|
|
|
try:
|
|
ModelName_2=(c['mdx_model_name'])
|
|
except:
|
|
pass
|
|
|
|
print('Model Parameters:', model_params_d)
|
|
text_widget.write(base_text + 'Loading assigned model parameters ' + '\"' + param_name + '\"... ')
|
|
|
|
mp = ModelParameters(model_params_d)
|
|
|
|
text_widget.write('Done!\n')
|
|
|
|
#Load model
|
|
if os.path.isfile(c['model_location']):
|
|
device = torch.device('cpu')
|
|
model = nets.CascadedASPPNet(mp.param['bins'] * 2)
|
|
model.load_state_dict(torch.load(c['model_location'],
|
|
map_location=device))
|
|
if torch.cuda.is_available() and data['gpu'] >= 0:
|
|
device = torch.device('cuda:{}'.format(data['gpu']))
|
|
model.to(device)
|
|
|
|
model_name = os.path.basename(c["model_name"])
|
|
|
|
# -Go through the different steps of seperation-
|
|
# Wave source
|
|
text_widget.write(base_text + 'Loading audio source... ')
|
|
|
|
X_wave, y_wave, X_spec_s, y_spec_s = {}, {}, {}, {}
|
|
|
|
bands_n = len(mp.param['band'])
|
|
|
|
for d in range(bands_n, 0, -1):
|
|
bp = mp.param['band'][d]
|
|
|
|
if d == bands_n: # high-end band
|
|
X_wave[d], _ = librosa.load(
|
|
music_file, bp['sr'], False, dtype=np.float32, res_type=bp['res_type'])
|
|
|
|
if X_wave[d].ndim == 1:
|
|
X_wave[d] = np.asarray([X_wave[d], X_wave[d]])
|
|
else: # lower bands
|
|
X_wave[d] = librosa.resample(X_wave[d+1], mp.param['band'][d+1]['sr'], bp['sr'], res_type=bp['res_type'])
|
|
|
|
# Stft of wave source
|
|
|
|
X_spec_s[d] = spec_utils.wave_to_spectrogram_mt(X_wave[d], bp['hl'], bp['n_fft'], mp.param['mid_side'],
|
|
mp.param['mid_side_b2'], mp.param['reverse'])
|
|
|
|
if d == bands_n and data['high_end_process'] != 'none':
|
|
input_high_end_h = (bp['n_fft']//2 - bp['crop_stop']) + (mp.param['pre_filter_stop'] - mp.param['pre_filter_start'])
|
|
input_high_end = X_spec_s[d][:, bp['n_fft']//2-input_high_end_h:bp['n_fft']//2, :]
|
|
|
|
text_widget.write('Done!\n')
|
|
|
|
update_progress(**progress_kwargs,
|
|
step=0.1)
|
|
|
|
text_widget.write(base_text + 'Loading the stft of audio source... ')
|
|
text_widget.write('Done!\n')
|
|
text_widget.write(base_text + "Please Wait...\n")
|
|
|
|
X_spec_m = spec_utils.combine_spectrograms(X_spec_s, mp)
|
|
|
|
del X_wave, X_spec_s
|
|
|
|
def inference(X_spec, device, model, aggressiveness):
|
|
|
|
def _execute(X_mag_pad, roi_size, n_window, device, model, aggressiveness):
|
|
model.eval()
|
|
|
|
with torch.no_grad():
|
|
preds = []
|
|
|
|
iterations = [n_window]
|
|
|
|
total_iterations = sum(iterations)
|
|
|
|
text_widget.write(base_text + "Processing "f"{total_iterations} Slices... ")
|
|
|
|
for i in tqdm(range(n_window)):
|
|
update_progress(**progress_kwargs,
|
|
step=(0.1 + (0.8/n_window * i)))
|
|
start = i * roi_size
|
|
X_mag_window = X_mag_pad[None, :, :, start:start + data['window_size']]
|
|
X_mag_window = torch.from_numpy(X_mag_window).to(device)
|
|
|
|
pred = model.predict(X_mag_window, aggressiveness)
|
|
|
|
pred = pred.detach().cpu().numpy()
|
|
preds.append(pred[0])
|
|
|
|
pred = np.concatenate(preds, axis=2)
|
|
|
|
text_widget.write('Done!\n')
|
|
return pred
|
|
|
|
def preprocess(X_spec):
|
|
X_mag = np.abs(X_spec)
|
|
X_phase = np.angle(X_spec)
|
|
|
|
return X_mag, X_phase
|
|
|
|
X_mag, X_phase = preprocess(X_spec)
|
|
|
|
coef = X_mag.max()
|
|
X_mag_pre = X_mag / coef
|
|
|
|
n_frame = X_mag_pre.shape[2]
|
|
pad_l, pad_r, roi_size = dataset.make_padding(n_frame,
|
|
data['window_size'], model.offset)
|
|
n_window = int(np.ceil(n_frame / roi_size))
|
|
|
|
X_mag_pad = np.pad(
|
|
X_mag_pre, ((0, 0), (0, 0), (pad_l, pad_r)), mode='constant')
|
|
|
|
pred = _execute(X_mag_pad, roi_size, n_window,
|
|
device, model, aggressiveness)
|
|
pred = pred[:, :, :n_frame]
|
|
|
|
if data['tta']:
|
|
pad_l += roi_size // 2
|
|
pad_r += roi_size // 2
|
|
n_window += 1
|
|
|
|
X_mag_pad = np.pad(
|
|
X_mag_pre, ((0, 0), (0, 0), (pad_l, pad_r)), mode='constant')
|
|
|
|
pred_tta = _execute(X_mag_pad, roi_size, n_window,
|
|
device, model, aggressiveness)
|
|
pred_tta = pred_tta[:, :, roi_size // 2:]
|
|
pred_tta = pred_tta[:, :, :n_frame]
|
|
|
|
return (pred + pred_tta) * 0.5 * coef, X_mag, np.exp(1.j * X_phase)
|
|
else:
|
|
return pred * coef, X_mag, np.exp(1.j * X_phase)
|
|
|
|
aggressiveness = {'value': aggresive_set, 'split_bin': mp.param['band'][1]['crop_stop']}
|
|
|
|
if data['tta']:
|
|
text_widget.write(base_text + "Running Inferences (TTA)... \n")
|
|
else:
|
|
text_widget.write(base_text + "Running Inference... \n")
|
|
|
|
pred, X_mag, X_phase = inference(X_spec_m,
|
|
device,
|
|
model, aggressiveness)
|
|
|
|
update_progress(**progress_kwargs,
|
|
step=0.85)
|
|
|
|
# Postprocess
|
|
if data['postprocess']:
|
|
try:
|
|
text_widget.write(base_text + 'Post processing...')
|
|
pred_inv = np.clip(X_mag - pred, 0, np.inf)
|
|
pred = spec_utils.mask_silence(pred, pred_inv)
|
|
text_widget.write(' Done!\n')
|
|
except Exception as e:
|
|
text_widget.write('\n' + base_text + 'Post process failed, check error log.\n')
|
|
text_widget.write(base_text + 'Moving on...\n')
|
|
traceback_text = ''.join(traceback.format_tb(e.__traceback__))
|
|
errmessage = f'Traceback Error: "{traceback_text}"\n{type(e).__name__}: "{e}"\n'
|
|
try:
|
|
with open('errorlog.txt', 'w') as f:
|
|
f.write(f'Last Error Received:\n\n' +
|
|
f'Error Received while attempting to run Post Processing on "{os.path.basename(music_file)}":\n' +
|
|
f'Process Method: Ensemble Mode\n\n' +
|
|
f'If this error persists, please contact the developers.\n\n' +
|
|
f'Raw error details:\n\n' +
|
|
errmessage + f'\nError Time Stamp: [{datetime.now().strftime("%Y-%m-%d %H:%M:%S")}]\n')
|
|
except:
|
|
pass
|
|
|
|
# Inverse stft
|
|
# nopep8
|
|
y_spec_m = pred * X_phase
|
|
v_spec_m = X_spec_m - y_spec_m
|
|
|
|
if data['voc_only']:
|
|
pass
|
|
else:
|
|
text_widget.write(base_text + 'Saving Instrumental... ')
|
|
|
|
if data['high_end_process'].startswith('mirroring'):
|
|
input_high_end_ = spec_utils.mirroring(data['high_end_process'], y_spec_m, input_high_end, mp)
|
|
wav_instrument = spec_utils.cmb_spectrogram_to_wave(y_spec_m, mp, input_high_end_h, input_high_end_)
|
|
if data['voc_only']:
|
|
pass
|
|
else:
|
|
text_widget.write('Done!\n')
|
|
else:
|
|
wav_instrument = spec_utils.cmb_spectrogram_to_wave(y_spec_m, mp)
|
|
if data['voc_only']:
|
|
pass
|
|
else:
|
|
text_widget.write('Done!\n')
|
|
|
|
if data['inst_only']:
|
|
pass
|
|
else:
|
|
text_widget.write(base_text + 'Saving Vocals... ')
|
|
|
|
if data['high_end_process'].startswith('mirroring'):
|
|
input_high_end_ = spec_utils.mirroring(data['high_end_process'], v_spec_m, input_high_end, mp)
|
|
|
|
wav_vocals = spec_utils.cmb_spectrogram_to_wave(v_spec_m, mp, input_high_end_h, input_high_end_)
|
|
if data['inst_only']:
|
|
pass
|
|
else:
|
|
text_widget.write('Done!\n')
|
|
else:
|
|
wav_vocals = spec_utils.cmb_spectrogram_to_wave(v_spec_m, mp)
|
|
if data['inst_only']:
|
|
pass
|
|
else:
|
|
text_widget.write('Done!\n')
|
|
|
|
|
|
update_progress(**progress_kwargs,
|
|
step=0.9)
|
|
|
|
# Save output music files
|
|
save_files(wav_instrument, wav_vocals)
|
|
|
|
# Save output image
|
|
if data['output_image']:
|
|
with open('{}_Instruments.jpg'.format(base_name), mode='wb') as f:
|
|
image = spec_utils.spectrogram_to_image(y_spec_m)
|
|
_, bin_image = cv2.imencode('.jpg', image)
|
|
bin_image.tofile(f)
|
|
with open('{}_Vocals.jpg'.format(base_name), mode='wb') as f:
|
|
image = spec_utils.spectrogram_to_image(v_spec_m)
|
|
_, bin_image = cv2.imencode('.jpg', image)
|
|
bin_image.tofile(f)
|
|
|
|
text_widget.write(base_text + 'Completed Seperation!\n\n')
|
|
|
|
|
|
if data['ensChoose'] == 'MDX-Net/VR Ensemble':
|
|
text_widget.write('Ensemble Mode - Model 2/2\n\n')
|
|
|
|
update_progress(**progress_kwargs,
|
|
step=0)
|
|
|
|
if data['noisereduc_s'] == 'None':
|
|
pass
|
|
else:
|
|
if not os.path.isfile("lib_v5\sox\sox.exe"):
|
|
data['noisereduc_s'] = 'None'
|
|
data['non_red'] = False
|
|
widget_text.write(base_text + 'SoX is missing and required for noise reduction.\n')
|
|
widget_text.write(base_text + 'See the \"More Info\" tab in the Help Guide.\n')
|
|
widget_text.write(base_text + 'Noise Reduction will be disabled until SoX is available.\n\n')
|
|
|
|
e = os.path.join(data["export_path"])
|
|
|
|
demucsmodel = 'models/Demucs_Model/demucs_extra-3646af93_org.th'
|
|
|
|
pred = Predictor()
|
|
pred.prediction_setup(demucs_name=demucsmodel,
|
|
channels=channel_set)
|
|
|
|
# split
|
|
pred.prediction(
|
|
m=music_file,
|
|
)
|
|
else:
|
|
pass
|
|
|
|
|
|
# Emsembling Outputs
|
|
def get_files(folder="", prefix="", suffix=""):
|
|
return [f"{folder}{i}" for i in os.listdir(folder) if i.startswith(prefix) if i.endswith(suffix)]
|
|
|
|
voc_inst = [
|
|
{
|
|
'algorithm':'min_mag',
|
|
'model_params':'lib_v5/modelparams/1band_sr44100_hl512.json',
|
|
'files':get_files(folder=enseExport, prefix=trackname, suffix="_(Instrumental).wav"),
|
|
'output':'{}_Ensembled_{}_(Instrumental)'.format(trackname, ensemode),
|
|
'type': 'Instrumentals'
|
|
},
|
|
{
|
|
'algorithm':'max_mag',
|
|
'model_params':'lib_v5/modelparams/1band_sr44100_hl512.json',
|
|
'files':get_files(folder=enseExport, prefix=trackname, suffix="_(Vocals).wav"),
|
|
'output': '{}_Ensembled_{}_(Vocals)'.format(trackname, ensemode),
|
|
'type': 'Vocals'
|
|
}
|
|
]
|
|
|
|
inst = [
|
|
{
|
|
'algorithm':'min_mag',
|
|
'model_params':'lib_v5/modelparams/1band_sr44100_hl512.json',
|
|
'files':get_files(folder=enseExport, prefix=trackname, suffix="_(Instrumental).wav"),
|
|
'output':'{}_Ensembled_{}_(Instrumental)'.format(trackname, ensemode),
|
|
'type': 'Instrumentals'
|
|
}
|
|
]
|
|
|
|
vocal = [
|
|
{
|
|
'algorithm':'max_mag',
|
|
'model_params':'lib_v5/modelparams/1band_sr44100_hl512.json',
|
|
'files':get_files(folder=enseExport, prefix=trackname, suffix="_(Vocals).wav"),
|
|
'output': '{}_Ensembled_{}_(Vocals)'.format(trackname, ensemode),
|
|
'type': 'Vocals'
|
|
}
|
|
]
|
|
|
|
if data['voc_only']:
|
|
ensembles = vocal
|
|
elif data['inst_only']:
|
|
ensembles = inst
|
|
else:
|
|
ensembles = voc_inst
|
|
|
|
try:
|
|
for i, e in tqdm(enumerate(ensembles), desc="Ensembling..."):
|
|
|
|
text_widget.write(base_text + "Ensembling " + e['type'] + "... ")
|
|
|
|
wave, specs = {}, {}
|
|
|
|
mp = ModelParameters(e['model_params'])
|
|
|
|
for i in range(len(e['files'])):
|
|
|
|
spec = {}
|
|
|
|
for d in range(len(mp.param['band']), 0, -1):
|
|
bp = mp.param['band'][d]
|
|
|
|
if d == len(mp.param['band']): # high-end band
|
|
wave[d], _ = librosa.load(
|
|
e['files'][i], bp['sr'], False, dtype=np.float32, res_type=bp['res_type'])
|
|
|
|
if len(wave[d].shape) == 1: # mono to stereo
|
|
wave[d] = np.array([wave[d], wave[d]])
|
|
else: # lower bands
|
|
wave[d] = librosa.resample(wave[d+1], mp.param['band'][d+1]['sr'], bp['sr'], res_type=bp['res_type'])
|
|
|
|
spec[d] = spec_utils.wave_to_spectrogram(wave[d], bp['hl'], bp['n_fft'], mp.param['mid_side'], mp.param['mid_side_b2'], mp.param['reverse'])
|
|
|
|
specs[i] = spec_utils.combine_spectrograms(spec, mp)
|
|
|
|
del wave
|
|
|
|
sf.write(os.path.join('{}'.format(data['export_path']),'{}.wav'.format(e['output'])),
|
|
spec_utils.cmb_spectrogram_to_wave(spec_utils.ensembling(e['algorithm'],
|
|
specs), mp), mp.param['sr'])
|
|
|
|
|
|
if data['saveFormat'] == 'Mp3':
|
|
try:
|
|
musfile = pydub.AudioSegment.from_wav(os.path.join('{}'.format(data['export_path']),'{}.wav'.format(e['output'])))
|
|
musfile.export((os.path.join('{}'.format(data['export_path']),'{}.mp3'.format(e['output']))), format="mp3", bitrate="320k")
|
|
os.remove((os.path.join('{}'.format(data['export_path']),'{}.wav'.format(e['output']))))
|
|
except Exception as e:
|
|
traceback_text = ''.join(traceback.format_tb(e.__traceback__))
|
|
errmessage = f'Traceback Error: "{traceback_text}"\n{type(e).__name__}: "{e}"\n'
|
|
if "ffmpeg" in errmessage:
|
|
text_widget.write('\n' + base_text + 'Failed to save output(s) as Mp3(s).\n')
|
|
text_widget.write(base_text + 'FFmpeg might be missing or corrupted, please check error log.\n')
|
|
text_widget.write(base_text + 'Moving on... ')
|
|
else:
|
|
text_widget.write('\n' + base_text + 'Failed to save output(s) as Mp3(s).\n')
|
|
text_widget.write(base_text + 'Please check error log.\n')
|
|
text_widget.write(base_text + 'Moving on... ')
|
|
try:
|
|
with open('errorlog.txt', 'w') as f:
|
|
f.write(f'Last Error Received:\n\n' +
|
|
f'Error Received while attempting to save file as mp3 "{os.path.basename(music_file)}".\n\n' +
|
|
f'Process Method: Ensemble Mode\n\n' +
|
|
f'FFmpeg might be missing or corrupted.\n\n' +
|
|
f'If this error persists, please contact the developers.\n\n' +
|
|
f'Raw error details:\n\n' +
|
|
errmessage + f'\nError Time Stamp: [{datetime.now().strftime("%Y-%m-%d %H:%M:%S")}]\n')
|
|
except:
|
|
pass
|
|
|
|
if data['saveFormat'] == 'Flac':
|
|
try:
|
|
musfile = pydub.AudioSegment.from_wav(os.path.join('{}'.format(data['export_path']),'{}.wav'.format(e['output'])))
|
|
musfile.export((os.path.join('{}'.format(data['export_path']),'{}.flac'.format(e['output']))), format="flac")
|
|
os.remove((os.path.join('{}'.format(data['export_path']),'{}.wav'.format(e['output']))))
|
|
except Exception as e:
|
|
traceback_text = ''.join(traceback.format_tb(e.__traceback__))
|
|
errmessage = f'Traceback Error: "{traceback_text}"\n{type(e).__name__}: "{e}"\n'
|
|
if "ffmpeg" in errmessage:
|
|
text_widget.write('\n' + base_text + 'Failed to save output(s) as Flac(s).\n')
|
|
text_widget.write(base_text + 'FFmpeg might be missing or corrupted, please check error log.\n')
|
|
text_widget.write(base_text + 'Moving on... ')
|
|
else:
|
|
text_widget.write(base_text + 'Failed to save output(s) as Flac(s).\n')
|
|
text_widget.write(base_text + 'Please check error log.\n')
|
|
text_widget.write(base_text + 'Moving on... ')
|
|
try:
|
|
with open('errorlog.txt', 'w') as f:
|
|
f.write(f'Last Error Received:\n\n' +
|
|
f'Error Received while attempting to save file as flac "{os.path.basename(music_file)}".\n' +
|
|
f'Process Method: Ensemble Mode\n\n' +
|
|
f'FFmpeg might be missing or corrupted.\n\n' +
|
|
f'If this error persists, please contact the developers.\n\n' +
|
|
f'Raw error details:\n\n' +
|
|
errmessage + f'\nError Time Stamp: [{datetime.now().strftime("%Y-%m-%d %H:%M:%S")}]\n')
|
|
except:
|
|
pass
|
|
|
|
text_widget.write("Done!\n")
|
|
except:
|
|
text_widget.write('\n' + base_text + 'Not enough files to ensemble.')
|
|
pass
|
|
|
|
update_progress(**progress_kwargs,
|
|
step=0.95)
|
|
text_widget.write("\n")
|
|
|
|
try:
|
|
if not data['save']: # Deletes all outputs if Save All Outputs isn't checked
|
|
files = get_files(folder=enseExport, prefix=trackname, suffix="_(Vocals).wav")
|
|
for file in files:
|
|
os.remove(file)
|
|
if not data['save']:
|
|
files = get_files(folder=enseExport, prefix=trackname, suffix="_(Instrumental).wav")
|
|
for file in files:
|
|
os.remove(file)
|
|
except:
|
|
pass
|
|
|
|
if data['save'] and data['saveFormat'] == 'Mp3':
|
|
try:
|
|
text_widget.write(base_text + 'Saving all ensemble outputs in Mp3... ')
|
|
path = enseExport
|
|
#Change working directory
|
|
os.chdir(path)
|
|
audio_files = os.listdir()
|
|
for file in audio_files:
|
|
#spliting the file into the name and the extension
|
|
name, ext = os.path.splitext(file)
|
|
if ext == ".wav":
|
|
if trackname in file:
|
|
musfile = pydub.AudioSegment.from_wav(file)
|
|
#rename them using the old name + ".wav"
|
|
musfile.export("{0}.mp3".format(name), format="mp3", bitrate="320k")
|
|
try:
|
|
files = get_files(folder=enseExport, prefix=trackname, suffix="_(Vocals).wav")
|
|
for file in files:
|
|
os.remove(file)
|
|
except:
|
|
pass
|
|
try:
|
|
files = get_files(folder=enseExport, prefix=trackname, suffix="_(Instrumental).wav")
|
|
for file in files:
|
|
os.remove(file)
|
|
except:
|
|
pass
|
|
|
|
text_widget.write('Done!\n\n')
|
|
base_path = os.path.dirname(os.path.abspath(__file__))
|
|
os.chdir(base_path)
|
|
|
|
except Exception as e:
|
|
base_path = os.path.dirname(os.path.abspath(__file__))
|
|
os.chdir(base_path)
|
|
traceback_text = ''.join(traceback.format_tb(e.__traceback__))
|
|
errmessage = f'Traceback Error: "{traceback_text}"\n{type(e).__name__}: "{e}"\n'
|
|
if "ffmpeg" in errmessage:
|
|
text_widget.write('\n' + base_text + 'Failed to save output(s) as Mp3(s).\n')
|
|
text_widget.write(base_text + 'FFmpeg might be missing or corrupted, please check error log.\n')
|
|
text_widget.write(base_text + 'Moving on...\n')
|
|
else:
|
|
text_widget.write('\n' + base_text + 'Failed to save output(s) as Mp3(s).\n')
|
|
text_widget.write(base_text + 'Please check error log.\n')
|
|
text_widget.write(base_text + 'Moving on...\n')
|
|
try:
|
|
with open('errorlog.txt', 'w') as f:
|
|
f.write(f'Last Error Received:\n\n' +
|
|
f'\nError Received while attempting to save ensembled outputs as mp3s.\n' +
|
|
f'Process Method: Ensemble Mode\n\n' +
|
|
f'FFmpeg might be missing or corrupted.\n\n' +
|
|
f'If this error persists, please contact the developers.\n\n' +
|
|
f'Raw error details:\n\n' +
|
|
errmessage + f'\nError Time Stamp: [{datetime.now().strftime("%Y-%m-%d %H:%M:%S")}]\n')
|
|
except:
|
|
pass
|
|
|
|
if data['save'] and data['saveFormat'] == 'Flac':
|
|
try:
|
|
text_widget.write(base_text + 'Saving all ensemble outputs in Flac... ')
|
|
path = enseExport
|
|
#Change working directory
|
|
os.chdir(path)
|
|
audio_files = os.listdir()
|
|
for file in audio_files:
|
|
#spliting the file into the name and the extension
|
|
name, ext = os.path.splitext(file)
|
|
if ext == ".wav":
|
|
if trackname in file:
|
|
musfile = pydub.AudioSegment.from_wav(file)
|
|
#rename them using the old name + ".wav"
|
|
musfile.export("{0}.flac".format(name), format="flac")
|
|
try:
|
|
files = get_files(folder=enseExport, prefix=trackname, suffix="_(Vocals).wav")
|
|
for file in files:
|
|
os.remove(file)
|
|
except:
|
|
pass
|
|
try:
|
|
files = get_files(folder=enseExport, prefix=trackname, suffix="_(Instrumental).wav")
|
|
for file in files:
|
|
os.remove(file)
|
|
except:
|
|
pass
|
|
|
|
text_widget.write('Done!\n\n')
|
|
base_path = os.path.dirname(os.path.abspath(__file__))
|
|
os.chdir(base_path)
|
|
|
|
except Exception as e:
|
|
base_path = os.path.dirname(os.path.abspath(__file__))
|
|
os.chdir(base_path)
|
|
traceback_text = ''.join(traceback.format_tb(e.__traceback__))
|
|
errmessage = f'Traceback Error: "{traceback_text}"\n{type(e).__name__}: "{e}"\n'
|
|
if "ffmpeg" in errmessage:
|
|
text_widget.write('\n' + base_text + 'Failed to save output(s) as Flac(s).\n')
|
|
text_widget.write(base_text + 'FFmpeg might be missing or corrupted, please check error log.\n')
|
|
text_widget.write(base_text + 'Moving on...\n')
|
|
else:
|
|
text_widget.write('\n' + base_text + 'Failed to save output(s) as Flac(s).\n')
|
|
text_widget.write(base_text + 'Please check error log.\n')
|
|
text_widget.write(base_text + 'Moving on...\n')
|
|
try:
|
|
with open('errorlog.txt', 'w') as f:
|
|
f.write(f'Last Error Received:\n\n' +
|
|
f'\nError Received while attempting to ensembled outputs as Flacs.\n' +
|
|
f'Process Method: Ensemble Mode\n\n' +
|
|
f'FFmpeg might be missing or corrupted.\n\n' +
|
|
f'If this error persists, please contact the developers.\n\n' +
|
|
f'Raw error details:\n\n' +
|
|
errmessage + f'\nError Time Stamp: [{datetime.now().strftime("%Y-%m-%d %H:%M:%S")}]\n')
|
|
except:
|
|
pass
|
|
|
|
|
|
try:
|
|
os.remove('temp.wav')
|
|
except:
|
|
pass
|
|
|
|
if len(os.listdir(enseExport)) == 0: #Check if the folder is empty
|
|
shutil.rmtree(folder_path) #Delete folder if empty
|
|
|
|
else:
|
|
progress_kwargs = {'progress_var': progress_var,
|
|
'total_files': len(data['input_paths']),
|
|
'file_num': len(data['input_paths'])}
|
|
base_text = get_baseText(total_files=len(data['input_paths']),
|
|
file_num=len(data['input_paths']))
|
|
|
|
try:
|
|
total, used, free = shutil.disk_usage("/")
|
|
|
|
total_space = int(total/1.074e+9)
|
|
used_space = int(used/1.074e+9)
|
|
free_space = int(free/1.074e+9)
|
|
|
|
if int(free/1.074e+9) <= int(2):
|
|
text_widget.write('Error: Not enough storage on main drive to continue. Your main drive must have \nat least 3 GB\'s of storage in order for this application function properly. \n\nPlease ensure your main drive has at least 3 GB\'s of storage and try again.\n\n')
|
|
text_widget.write('Detected Total Space: ' + str(total_space) + ' GB' + '\n')
|
|
text_widget.write('Detected Used Space: ' + str(used_space) + ' GB' + '\n')
|
|
text_widget.write('Detected Free Space: ' + str(free_space) + ' GB' + '\n')
|
|
progress_var.set(0)
|
|
button_widget.configure(state=tk.NORMAL) # Enable Button
|
|
return
|
|
|
|
if int(free/1.074e+9) in [3, 4, 5, 6, 7, 8]:
|
|
text_widget.write('Warning: Your main drive is running low on storage. Your main drive must have \nat least 3 GB\'s of storage in order for this application function properly.\n\n')
|
|
text_widget.write('Detected Total Space: ' + str(total_space) + ' GB' + '\n')
|
|
text_widget.write('Detected Used Space: ' + str(used_space) + ' GB' + '\n')
|
|
text_widget.write('Detected Free Space: ' + str(free_space) + ' GB' + '\n\n')
|
|
except:
|
|
pass
|
|
|
|
music_file = data['input_paths']
|
|
if len(data['input_paths']) <= 1:
|
|
text_widget.write(base_text + "Not enough files to process.\n")
|
|
pass
|
|
else:
|
|
update_progress(**progress_kwargs,
|
|
step=0.2)
|
|
|
|
savefilename = (data['input_paths'][0])
|
|
trackname1 = f'{os.path.splitext(os.path.basename(savefilename))[0]}'
|
|
|
|
insts = [
|
|
{
|
|
'algorithm':'min_mag',
|
|
'model_params':'lib_v5/modelparams/1band_sr44100_hl512.json',
|
|
'output':'{}_User_Ensembled_(Min Spec)'.format(trackname1),
|
|
'type': 'Instrumentals'
|
|
}
|
|
]
|
|
|
|
vocals = [
|
|
{
|
|
'algorithm':'max_mag',
|
|
'model_params':'lib_v5/modelparams/1band_sr44100_hl512.json',
|
|
'output': '{}_User_Ensembled_(Max Spec)'.format(trackname1),
|
|
'type': 'Vocals'
|
|
}
|
|
]
|
|
|
|
invert_spec = [
|
|
{
|
|
'model_params':'lib_v5/modelparams/1band_sr44100_hl512.json',
|
|
'output': '{}_diff_si'.format(trackname1),
|
|
'type': 'Spectral Inversion'
|
|
}
|
|
]
|
|
|
|
invert_nor = [
|
|
{
|
|
'model_params':'lib_v5/modelparams/1band_sr44100_hl512.json',
|
|
'output': '{}_diff_ni'.format(trackname1),
|
|
'type': 'Normal Inversion'
|
|
}
|
|
]
|
|
|
|
if data['algo'] == 'Instrumentals (Min Spec)':
|
|
ensem = insts
|
|
if data['algo'] == 'Vocals (Max Spec)':
|
|
ensem = vocals
|
|
if data['algo'] == 'Invert (Spectral)':
|
|
ensem = invert_spec
|
|
if data['algo'] == 'Invert (Normal)':
|
|
ensem = invert_nor
|
|
|
|
#Prepare to loop models
|
|
if data['algo'] == 'Instrumentals (Min Spec)' or data['algo'] == 'Vocals (Max Spec)':
|
|
for i, e in tqdm(enumerate(ensem), desc="Ensembling..."):
|
|
text_widget.write(base_text + "Ensembling " + e['type'] + "... ")
|
|
|
|
wave, specs = {}, {}
|
|
|
|
mp = ModelParameters(e['model_params'])
|
|
|
|
for i in range(len(data['input_paths'])):
|
|
spec = {}
|
|
|
|
for d in range(len(mp.param['band']), 0, -1):
|
|
bp = mp.param['band'][d]
|
|
|
|
if d == len(mp.param['band']): # high-end band
|
|
wave[d], _ = librosa.load(
|
|
data['input_paths'][i], bp['sr'], False, dtype=np.float32, res_type=bp['res_type'])
|
|
|
|
if len(wave[d].shape) == 1: # mono to stereo
|
|
wave[d] = np.array([wave[d], wave[d]])
|
|
else: # lower bands
|
|
wave[d] = librosa.resample(wave[d+1], mp.param['band'][d+1]['sr'], bp['sr'], res_type=bp['res_type'])
|
|
|
|
spec[d] = spec_utils.wave_to_spectrogram(wave[d], bp['hl'], bp['n_fft'], mp.param['mid_side'], mp.param['mid_side_b2'], mp.param['reverse'])
|
|
|
|
specs[i] = spec_utils.combine_spectrograms(spec, mp)
|
|
|
|
del wave
|
|
|
|
sf.write(os.path.join('{}'.format(data['export_path']),'{}.wav'.format(e['output'])),
|
|
spec_utils.cmb_spectrogram_to_wave(spec_utils.ensembling(e['algorithm'],
|
|
specs), mp), mp.param['sr'])
|
|
|
|
if data['saveFormat'] == 'Mp3':
|
|
try:
|
|
musfile = pydub.AudioSegment.from_wav(os.path.join('{}'.format(data['export_path']),'{}.wav'.format(e['output'])))
|
|
musfile.export((os.path.join('{}'.format(data['export_path']),'{}.mp3'.format(e['output']))), format="mp3", bitrate="320k")
|
|
os.remove((os.path.join('{}'.format(data['export_path']),'{}.wav'.format(e['output']))))
|
|
except Exception as e:
|
|
text_widget.write('\n' + base_text + 'Failed to save output(s) as Mp3.')
|
|
text_widget.write('\n' + base_text + 'FFmpeg might be missing or corrupted, please check error log.\n')
|
|
text_widget.write(base_text + 'Moving on...\n')
|
|
text_widget.write(base_text + f'Complete!\n')
|
|
traceback_text = ''.join(traceback.format_tb(e.__traceback__))
|
|
errmessage = f'Traceback Error: "{traceback_text}"\n{type(e).__name__}: "{e}"\n'
|
|
try:
|
|
with open('errorlog.txt', 'w') as f:
|
|
f.write(f'Last Error Received:\n\n' +
|
|
f'Error Received while attempting to run user ensemble:\n' +
|
|
f'Process Method: Ensemble Mode\n\n' +
|
|
f'FFmpeg might be missing or corrupted.\n\n' +
|
|
f'If this error persists, please contact the developers.\n\n' +
|
|
f'Raw error details:\n\n' +
|
|
errmessage + f'\nError Time Stamp: [{datetime.now().strftime("%Y-%m-%d %H:%M:%S")}]\n')
|
|
except:
|
|
pass
|
|
progress_var.set(0)
|
|
button_widget.configure(state=tk.NORMAL)
|
|
|
|
return
|
|
|
|
if data['saveFormat'] == 'Flac':
|
|
try:
|
|
musfile = pydub.AudioSegment.from_wav(os.path.join('{}'.format(data['export_path']),'{}.wav'.format(e['output'])))
|
|
musfile.export((os.path.join('{}'.format(data['export_path']),'{}.flac'.format(e['output']))), format="flac")
|
|
os.remove((os.path.join('{}'.format(data['export_path']),'{}.wav'.format(e['output']))))
|
|
except Exception as e:
|
|
text_widget.write('\n' + base_text + 'Failed to save output as Flac.\n')
|
|
text_widget.write(base_text + 'FFmpeg might be missing or corrupted, please check error log.\n')
|
|
text_widget.write(base_text + 'Moving on...\n')
|
|
text_widget.write(base_text + f'Complete!\n')
|
|
traceback_text = ''.join(traceback.format_tb(e.__traceback__))
|
|
errmessage = f'Traceback Error: "{traceback_text}"\n{type(e).__name__}: "{e}"\n'
|
|
try:
|
|
with open('errorlog.txt', 'w') as f:
|
|
f.write(f'Last Error Received:\n\n' +
|
|
f'Error Received while attempting to run user ensemble:\n' +
|
|
f'Process Method: Ensemble Mode\n\n' +
|
|
f'FFmpeg might be missing or corrupted.\n\n' +
|
|
f'If this error persists, please contact the developers.\n\n' +
|
|
f'Raw error details:\n\n' +
|
|
errmessage + f'\nError Time Stamp: [{datetime.now().strftime("%Y-%m-%d %H:%M:%S")}]\n')
|
|
except:
|
|
pass
|
|
progress_var.set(0)
|
|
button_widget.configure(state=tk.NORMAL)
|
|
return
|
|
|
|
text_widget.write("Done!\n")
|
|
if data['algo'] == 'Invert (Spectral)' and data['algo'] == 'Invert (Normal)':
|
|
if len(data['input_paths']) != 2:
|
|
text_widget.write(base_text + "Invalid file count.\n")
|
|
pass
|
|
else:
|
|
for i, e in tqdm(enumerate(ensem), desc="Inverting..."):
|
|
|
|
wave, specs = {}, {}
|
|
|
|
mp = ModelParameters(e['model_params'])
|
|
|
|
for i in range(len(data['input_paths'])):
|
|
spec = {}
|
|
|
|
for d in range(len(mp.param['band']), 0, -1):
|
|
bp = mp.param['band'][d]
|
|
|
|
if d == len(mp.param['band']): # high-end band
|
|
wave[d], _ = librosa.load(
|
|
data['input_paths'][i], bp['sr'], False, dtype=np.float32, res_type=bp['res_type'])
|
|
|
|
if len(wave[d].shape) == 1: # mono to stereo
|
|
wave[d] = np.array([wave[d], wave[d]])
|
|
else: # lower bands
|
|
wave[d] = librosa.resample(wave[d+1], mp.param['band'][d+1]['sr'], bp['sr'], res_type=bp['res_type'])
|
|
|
|
spec[d] = spec_utils.wave_to_spectrogram(wave[d], bp['hl'], bp['n_fft'], mp.param['mid_side'], mp.param['mid_side_b2'], mp.param['reverse'])
|
|
|
|
specs[i] = spec_utils.combine_spectrograms(spec, mp)
|
|
|
|
del wave
|
|
|
|
ln = min([specs[0].shape[2], specs[1].shape[2]])
|
|
specs[0] = specs[0][:,:,:ln]
|
|
specs[1] = specs[1][:,:,:ln]
|
|
if data['algo'] == 'Invert (Spectral)':
|
|
text_widget.write(base_text + "Performing " + e['type'] + "... ")
|
|
X_mag = np.abs(specs[0])
|
|
y_mag = np.abs(specs[1])
|
|
max_mag = np.where(X_mag >= y_mag, X_mag, y_mag)
|
|
v_spec = specs[1] - max_mag * np.exp(1.j * np.angle(specs[0]))
|
|
sf.write(os.path.join('{}'.format(data['export_path']),'{}.wav'.format(e['output'])),
|
|
spec_utils.cmb_spectrogram_to_wave(-v_spec, mp), mp.param['sr'])
|
|
if data['algo'] == 'Invert (Normal)':
|
|
v_spec = specs[0] - specs[1]
|
|
sf.write(os.path.join('{}'.format(data['export_path']),'{}.wav'.format(e['output'])),
|
|
spec_utils.cmb_spectrogram_to_wave(v_spec, mp), mp.param['sr'])
|
|
text_widget.write("Done!\n")
|
|
|
|
|
|
|
|
except Exception as e:
|
|
traceback_text = ''.join(traceback.format_tb(e.__traceback__))
|
|
message = f'Traceback Error: "{traceback_text}"\n{type(e).__name__}: "{e}"\n'
|
|
if runtimeerr in message:
|
|
text_widget.write("\n" + base_text + f'Separation failed for the following audio file:\n')
|
|
text_widget.write(base_text + f'"{os.path.basename(music_file)}"\n')
|
|
text_widget.write(f'\nError Received:\n\n')
|
|
text_widget.write(f'Your PC cannot process this audio file with the chunk size selected.\nPlease lower the chunk size and try again.\n\n')
|
|
text_widget.write(f'If this error persists, please contact the developers.\n\n')
|
|
text_widget.write(f'Time Elapsed: {time.strftime("%H:%M:%S", time.gmtime(int(time.perf_counter() - stime)))}')
|
|
try:
|
|
with open('errorlog.txt', 'w') as f:
|
|
f.write(f'Last Error Received:\n\n' +
|
|
f'Error Received while processing "{os.path.basename(music_file)}":\n' +
|
|
f'Process Method: Ensemble Mode\n\n' +
|
|
f'Your PC cannot process this audio file with the chunk size selected.\nPlease lower the chunk size and try again.\n\n' +
|
|
f'If this error persists, please contact the developers.\n\n' +
|
|
f'Raw error details:\n\n' +
|
|
message + f'\nError Time Stamp: [{datetime.now().strftime("%Y-%m-%d %H:%M:%S")}]\n')
|
|
except:
|
|
pass
|
|
torch.cuda.empty_cache()
|
|
progress_var.set(0)
|
|
button_widget.configure(state=tk.NORMAL) # Enable Button
|
|
return
|
|
|
|
if cuda_err in message:
|
|
text_widget.write("\n" + base_text + f'Separation failed for the following audio file:\n')
|
|
text_widget.write(base_text + f'"{os.path.basename(music_file)}"\n')
|
|
text_widget.write(f'\nError Received:\n\n')
|
|
text_widget.write(f'The application was unable to allocate enough GPU memory to use this model.\n')
|
|
text_widget.write(f'Please close any GPU intensive applications and try again.\n')
|
|
text_widget.write(f'If the error persists, your GPU might not be supported.\n\n')
|
|
text_widget.write(f'Time Elapsed: {time.strftime("%H:%M:%S", time.gmtime(int(time.perf_counter() - stime)))}')
|
|
try:
|
|
with open('errorlog.txt', 'w') as f:
|
|
f.write(f'Last Error Received:\n\n' +
|
|
f'Error Received while processing "{os.path.basename(music_file)}":\n' +
|
|
f'Process Method: Ensemble Mode\n\n' +
|
|
f'The application was unable to allocate enough GPU memory to use this model.\n' +
|
|
f'Please close any GPU intensive applications and try again.\n' +
|
|
f'If the error persists, your GPU might not be supported.\n\n' +
|
|
f'Raw error details:\n\n' +
|
|
message + f'\nError Time Stamp [{datetime.now().strftime("%Y-%m-%d %H:%M:%S")}]\n')
|
|
except:
|
|
pass
|
|
torch.cuda.empty_cache()
|
|
progress_var.set(0)
|
|
button_widget.configure(state=tk.NORMAL) # Enable Button
|
|
return
|
|
|
|
if mod_err in message:
|
|
text_widget.write("\n" + base_text + f'Separation failed for the following audio file:\n')
|
|
text_widget.write(base_text + f'"{os.path.basename(music_file)}"\n')
|
|
text_widget.write(f'\nError Received:\n\n')
|
|
text_widget.write(f'Application files(s) are missing.\n')
|
|
text_widget.write("\n" + f'{type(e).__name__} - "{e}"' + "\n\n")
|
|
text_widget.write(f'Please check for missing files/scripts in the app directory and try again.\n')
|
|
text_widget.write(f'If the error persists, please reinstall application or contact the developers.\n\n')
|
|
text_widget.write(f'Time Elapsed: {time.strftime("%H:%M:%S", time.gmtime(int(time.perf_counter() - stime)))}')
|
|
try:
|
|
with open('errorlog.txt', 'w') as f:
|
|
f.write(f'Last Error Received:\n\n' +
|
|
f'Error Received while processing "{os.path.basename(music_file)}":\n' +
|
|
f'Process Method: Ensemble Mode\n\n' +
|
|
f'Application files(s) are missing.\n' +
|
|
f'Please check for missing files/scripts in the app directory and try again.\n' +
|
|
f'If the error persists, please reinstall application or contact the developers.\n\n' +
|
|
message + f'\nError Time Stamp [{datetime.now().strftime("%Y-%m-%d %H:%M:%S")}]\n')
|
|
except:
|
|
pass
|
|
torch.cuda.empty_cache()
|
|
progress_var.set(0)
|
|
button_widget.configure(state=tk.NORMAL) # Enable Button
|
|
return
|
|
|
|
if file_err in message:
|
|
text_widget.write("\n" + base_text + f'Separation failed for the following audio file:\n')
|
|
text_widget.write(base_text + f'"{os.path.basename(music_file)}"\n')
|
|
text_widget.write(f'\nError Received:\n\n')
|
|
text_widget.write(f'Missing file error raised.\n')
|
|
text_widget.write("\n" + f'{type(e).__name__} - "{e}"' + "\n\n")
|
|
text_widget.write("\n" + f'Please address the error and try again.' + "\n")
|
|
text_widget.write(f'If this error persists, please contact the developers.\n\n')
|
|
text_widget.write(f'Time Elapsed: {time.strftime("%H:%M:%S", time.gmtime(int(time.perf_counter() - stime)))}')
|
|
torch.cuda.empty_cache()
|
|
try:
|
|
with open('errorlog.txt', 'w') as f:
|
|
f.write(f'Last Error Received:\n\n' +
|
|
f'Error Received while processing "{os.path.basename(music_file)}":\n' +
|
|
f'Process Method: Ensemble Mode\n\n' +
|
|
f'Missing file error raised.\n' +
|
|
"\n" + f'Please address the error and try again.' + "\n" +
|
|
f'If this error persists, please contact the developers.\n\n' +
|
|
message + f'\nError Time Stamp [{datetime.now().strftime("%Y-%m-%d %H:%M:%S")}]\n')
|
|
except:
|
|
pass
|
|
progress_var.set(0)
|
|
button_widget.configure(state=tk.NORMAL) # Enable Button
|
|
return
|
|
|
|
if ffmp_err in message:
|
|
text_widget.write("\n" + base_text + f'Separation failed for the following audio file:\n')
|
|
text_widget.write(base_text + f'"{os.path.basename(music_file)}"\n')
|
|
text_widget.write(f'\nError Received:\n\n')
|
|
text_widget.write(f'The input file type is not supported or FFmpeg is missing.\n')
|
|
text_widget.write(f'Please select a file type supported by FFmpeg and try again.\n\n')
|
|
text_widget.write(f'If FFmpeg is missing or not installed, you will only be able to process \".wav\" files \nuntil it is available on this system.\n\n')
|
|
text_widget.write(f'See the \"More Info\" tab in the Help Guide.\n\n')
|
|
text_widget.write(f'If this error persists, please contact the developers.\n\n')
|
|
text_widget.write(f'Time Elapsed: {time.strftime("%H:%M:%S", time.gmtime(int(time.perf_counter() - stime)))}')
|
|
torch.cuda.empty_cache()
|
|
try:
|
|
with open('errorlog.txt', 'w') as f:
|
|
f.write(f'Last Error Received:\n\n' +
|
|
f'Error Received while processing "{os.path.basename(music_file)}":\n' +
|
|
f'Process Method: Ensemble Mode\n\n' +
|
|
f'The input file type is not supported or FFmpeg is missing.\nPlease select a file type supported by FFmpeg and try again.\n\n' +
|
|
f'If FFmpeg is missing or not installed, you will only be able to process \".wav\" files until it is available on this system.\n\n' +
|
|
f'See the \"More Info\" tab in the Help Guide.\n\n' +
|
|
f'If this error persists, please contact the developers.\n\n' +
|
|
message + f'\nError Time Stamp [{datetime.now().strftime("%Y-%m-%d %H:%M:%S")}]\n')
|
|
except:
|
|
pass
|
|
progress_var.set(0)
|
|
button_widget.configure(state=tk.NORMAL) # Enable Button
|
|
return
|
|
|
|
if onnxmissing in message:
|
|
text_widget.write("\n" + base_text + f'Separation failed for the following audio file:\n')
|
|
text_widget.write(base_text + f'"{os.path.basename(music_file)}"\n')
|
|
text_widget.write(f'\nError Received:\n\n')
|
|
text_widget.write(f'The application could not detect this MDX-Net model on your system.\n')
|
|
text_widget.write(f'Please make sure all the models are present in the correct directory.\n')
|
|
text_widget.write(f'If the error persists, please reinstall application or contact the developers.\n\n')
|
|
text_widget.write(f'Time Elapsed: {time.strftime("%H:%M:%S", time.gmtime(int(time.perf_counter() - stime)))}')
|
|
try:
|
|
with open('errorlog.txt', 'w') as f:
|
|
f.write(f'Last Error Received:\n\n' +
|
|
f'Error Received while processing "{os.path.basename(music_file)}":\n' +
|
|
f'Process Method: Ensemble Mode\n\n' +
|
|
f'The application could not detect this MDX-Net model on your system.\n' +
|
|
f'Please make sure all the models are present in the correct directory.\n' +
|
|
f'If the error persists, please reinstall application or contact the developers.\n\n' +
|
|
message + f'\nError Time Stamp [{datetime.now().strftime("%Y-%m-%d %H:%M:%S")}]\n')
|
|
except:
|
|
pass
|
|
torch.cuda.empty_cache()
|
|
progress_var.set(0)
|
|
button_widget.configure(state=tk.NORMAL) # Enable Button
|
|
return
|
|
|
|
if onnxmemerror in message:
|
|
text_widget.write("\n" + base_text + f'Separation failed for the following audio file:\n')
|
|
text_widget.write(base_text + f'"{os.path.basename(music_file)}"\n')
|
|
text_widget.write(f'\nError Received:\n\n')
|
|
text_widget.write(f'The application was unable to allocate enough GPU memory to use this model.\n')
|
|
text_widget.write(f'Please do the following:\n\n1. Close any GPU intensive applications.\n2. Lower the set chunk size.\n3. Then try again.\n\n')
|
|
text_widget.write(f'If the error persists, your GPU might not be supported.\n\n')
|
|
text_widget.write(f'Time Elapsed: {time.strftime("%H:%M:%S", time.gmtime(int(time.perf_counter() - stime)))}')
|
|
try:
|
|
with open('errorlog.txt', 'w') as f:
|
|
f.write(f'Last Error Received:\n\n' +
|
|
f'Error Received while processing "{os.path.basename(music_file)}":\n' +
|
|
f'Process Method: Ensemble Mode\n\n' +
|
|
f'The application was unable to allocate enough GPU memory to use this model.\n' +
|
|
f'Please do the following:\n\n1. Close any GPU intensive applications.\n2. Lower the set chunk size.\n3. Then try again.\n\n' +
|
|
f'If the error persists, your GPU might not be supported.\n\n' +
|
|
message + f'\nError Time Stamp [{datetime.now().strftime("%Y-%m-%d %H:%M:%S")}]\n')
|
|
except:
|
|
pass
|
|
torch.cuda.empty_cache()
|
|
progress_var.set(0)
|
|
button_widget.configure(state=tk.NORMAL) # Enable Button
|
|
return
|
|
|
|
if sf_write_err in message:
|
|
text_widget.write("\n" + base_text + f'Separation failed for the following audio file:\n')
|
|
text_widget.write(base_text + f'"{os.path.basename(music_file)}"\n')
|
|
text_widget.write(f'\nError Received:\n\n')
|
|
text_widget.write(f'Could not write audio file.\n')
|
|
text_widget.write(f'This could be due to low storage on target device or a system permissions issue.\n')
|
|
text_widget.write(f"\nFor raw error details, go to the Error Log tab in the Help Guide.\n")
|
|
text_widget.write(f'\nIf the error persists, please contact the developers.\n\n')
|
|
text_widget.write(f'Time Elapsed: {time.strftime("%H:%M:%S", time.gmtime(int(time.perf_counter() - stime)))}')
|
|
try:
|
|
with open('errorlog.txt', 'w') as f:
|
|
f.write(f'Last Error Received:\n\n' +
|
|
f'Error Received while processing "{os.path.basename(music_file)}":\n' +
|
|
f'Process Method: Ensemble Mode\n\n' +
|
|
f'Could not write audio file.\n' +
|
|
f'This could be due to low storage on target device or a system permissions issue.\n' +
|
|
f'If the error persists, please contact the developers.\n\n' +
|
|
message + f'\nError Time Stamp [{datetime.now().strftime("%Y-%m-%d %H:%M:%S")}]\n')
|
|
except:
|
|
pass
|
|
torch.cuda.empty_cache()
|
|
progress_var.set(0)
|
|
button_widget.configure(state=tk.NORMAL) # Enable Button
|
|
return
|
|
|
|
print(traceback_text)
|
|
print(type(e).__name__, e)
|
|
print(message)
|
|
|
|
try:
|
|
with open('errorlog.txt', 'w') as f:
|
|
f.write(f'Last Error Received:\n\n' +
|
|
f'Error Received while processing "{os.path.basename(music_file)}":\n' +
|
|
f'Process Method: Ensemble Mode\n\n' +
|
|
f'If this error persists, please contact the developers with the error details.\n\n' +
|
|
message + f'\nError Time Stamp [{datetime.now().strftime("%Y-%m-%d %H:%M:%S")}]\n')
|
|
except:
|
|
tk.messagebox.showerror(master=window,
|
|
title='Error Details',
|
|
message=message)
|
|
progress_var.set(0)
|
|
text_widget.write("\n" + base_text + f'Separation failed for the following audio file:\n')
|
|
text_widget.write(base_text + f'"{os.path.basename(music_file)}"\n')
|
|
text_widget.write(f'\nError Received:\n')
|
|
text_widget.write("\nFor raw error details, go to the Error Log tab in the Help Guide.\n")
|
|
text_widget.write("\n" + f'Please address the error and try again.' + "\n")
|
|
text_widget.write(f'If this error persists, please contact the developers with the error details.\n\n')
|
|
text_widget.write(f'Time Elapsed: {time.strftime("%H:%M:%S", time.gmtime(int(time.perf_counter() - stime)))}')
|
|
torch.cuda.empty_cache()
|
|
button_widget.configure(state=tk.NORMAL) # Enable Button
|
|
return
|
|
|
|
update_progress(**progress_kwargs,
|
|
step=1)
|
|
|
|
|
|
print('Done!')
|
|
|
|
progress_var.set(0)
|
|
if not data['ensChoose'] == 'User Ensemble':
|
|
text_widget.write(base_text + f'Conversions Completed!\n')
|
|
elif data['algo'] == 'Instrumentals (Min Spec)' and len(data['input_paths']) <= 1 or data['algo'] == 'Vocals (Max Spec)' and len(data['input_paths']) <= 1:
|
|
text_widget.write(base_text + f'Please select 2 or more files to use this feature and try again.\n')
|
|
elif data['algo'] == 'Instrumentals (Min Spec)' or data['algo'] == 'Vocals (Max Spec)':
|
|
text_widget.write(base_text + f'Ensemble Complete!\n')
|
|
elif len(data['input_paths']) != 2 and data['algo'] == 'Invert (Spectral)' or len(data['input_paths']) != 2 and data['algo'] == 'Invert (Normal)':
|
|
text_widget.write(base_text + f'Please select exactly 2 files to extract difference.\n')
|
|
elif data['algo'] == 'Invert (Spectral)' or data['algo'] == 'Invert (Normal)':
|
|
text_widget.write(base_text + f'Complete!\n')
|
|
|
|
text_widget.write(f'Time Elapsed: {time.strftime("%H:%M:%S", time.gmtime(int(time.perf_counter() - stime)))}') # nopep8
|
|
torch.cuda.empty_cache()
|
|
button_widget.configure(state=tk.NORMAL) #Enable Button
|