mirror of
https://github.com/Anjok07/ultimatevocalremovergui.git
synced 2024-11-28 09:21:03 +01:00
243 lines
9.2 KiB
Python
243 lines
9.2 KiB
Python
# Copyright (c) Facebook, Inc. and its affiliates.
|
|
# All rights reserved.
|
|
#
|
|
# This source code is licensed under the license found in the
|
|
# LICENSE file in the root directory of this source tree.
|
|
"""Loading wav based datasets, including MusdbHQ."""
|
|
|
|
from collections import OrderedDict
|
|
import hashlib
|
|
import math
|
|
import json
|
|
import os
|
|
from pathlib import Path
|
|
import tqdm
|
|
|
|
import musdb
|
|
import julius
|
|
import torch as th
|
|
from torch import distributed
|
|
import torchaudio as ta
|
|
from torch.nn import functional as F
|
|
|
|
from .audio import convert_audio_channels
|
|
from . import distrib
|
|
|
|
MIXTURE = "mixture"
|
|
EXT = ".wav"
|
|
|
|
|
|
def _track_metadata(track, sources, normalize=True, ext=EXT):
|
|
track_length = None
|
|
track_samplerate = None
|
|
mean = 0
|
|
std = 1
|
|
for source in sources + [MIXTURE]:
|
|
file = track / f"{source}{ext}"
|
|
try:
|
|
info = ta.info(str(file))
|
|
except RuntimeError:
|
|
print(file)
|
|
raise
|
|
length = info.num_frames
|
|
if track_length is None:
|
|
track_length = length
|
|
track_samplerate = info.sample_rate
|
|
elif track_length != length:
|
|
raise ValueError(
|
|
f"Invalid length for file {file}: "
|
|
f"expecting {track_length} but got {length}.")
|
|
elif info.sample_rate != track_samplerate:
|
|
raise ValueError(
|
|
f"Invalid sample rate for file {file}: "
|
|
f"expecting {track_samplerate} but got {info.sample_rate}.")
|
|
if source == MIXTURE and normalize:
|
|
try:
|
|
wav, _ = ta.load(str(file))
|
|
except RuntimeError:
|
|
print(file)
|
|
raise
|
|
wav = wav.mean(0)
|
|
mean = wav.mean().item()
|
|
std = wav.std().item()
|
|
|
|
return {"length": length, "mean": mean, "std": std, "samplerate": track_samplerate}
|
|
|
|
|
|
def build_metadata(path, sources, normalize=True, ext=EXT):
|
|
"""
|
|
Build the metadata for `Wavset`.
|
|
|
|
Args:
|
|
path (str or Path): path to dataset.
|
|
sources (list[str]): list of sources to look for.
|
|
normalize (bool): if True, loads full track and store normalization
|
|
values based on the mixture file.
|
|
ext (str): extension of audio files (default is .wav).
|
|
"""
|
|
|
|
meta = {}
|
|
path = Path(path)
|
|
pendings = []
|
|
from concurrent.futures import ThreadPoolExecutor
|
|
with ThreadPoolExecutor(8) as pool:
|
|
for root, folders, files in os.walk(path, followlinks=True):
|
|
root = Path(root)
|
|
if root.name.startswith('.') or folders or root == path:
|
|
continue
|
|
name = str(root.relative_to(path))
|
|
pendings.append((name, pool.submit(_track_metadata, root, sources, normalize, ext)))
|
|
# meta[name] = _track_metadata(root, sources, normalize, ext)
|
|
for name, pending in tqdm.tqdm(pendings, ncols=120):
|
|
meta[name] = pending.result()
|
|
return meta
|
|
|
|
|
|
class Wavset:
|
|
def __init__(
|
|
self,
|
|
root, metadata, sources,
|
|
segment=None, shift=None, normalize=True,
|
|
samplerate=44100, channels=2, ext=EXT):
|
|
"""
|
|
Waveset (or mp3 set for that matter). Can be used to train
|
|
with arbitrary sources. Each track should be one folder inside of `path`.
|
|
The folder should contain files named `{source}.{ext}`.
|
|
|
|
Args:
|
|
root (Path or str): root folder for the dataset.
|
|
metadata (dict): output from `build_metadata`.
|
|
sources (list[str]): list of source names.
|
|
segment (None or float): segment length in seconds. If `None`, returns entire tracks.
|
|
shift (None or float): stride in seconds bewteen samples.
|
|
normalize (bool): normalizes input audio, **based on the metadata content**,
|
|
i.e. the entire track is normalized, not individual extracts.
|
|
samplerate (int): target sample rate. if the file sample rate
|
|
is different, it will be resampled on the fly.
|
|
channels (int): target nb of channels. if different, will be
|
|
changed onthe fly.
|
|
ext (str): extension for audio files (default is .wav).
|
|
|
|
samplerate and channels are converted on the fly.
|
|
"""
|
|
self.root = Path(root)
|
|
self.metadata = OrderedDict(metadata)
|
|
self.segment = segment
|
|
self.shift = shift or segment
|
|
self.normalize = normalize
|
|
self.sources = sources
|
|
self.channels = channels
|
|
self.samplerate = samplerate
|
|
self.ext = ext
|
|
self.num_examples = []
|
|
for name, meta in self.metadata.items():
|
|
track_duration = meta['length'] / meta['samplerate']
|
|
if segment is None or track_duration < segment:
|
|
examples = 1
|
|
else:
|
|
examples = int(math.ceil((track_duration - self.segment) / self.shift) + 1)
|
|
self.num_examples.append(examples)
|
|
|
|
def __len__(self):
|
|
return sum(self.num_examples)
|
|
|
|
def get_file(self, name, source):
|
|
return self.root / name / f"{source}{self.ext}"
|
|
|
|
def __getitem__(self, index):
|
|
for name, examples in zip(self.metadata, self.num_examples):
|
|
if index >= examples:
|
|
index -= examples
|
|
continue
|
|
meta = self.metadata[name]
|
|
num_frames = -1
|
|
offset = 0
|
|
if self.segment is not None:
|
|
offset = int(meta['samplerate'] * self.shift * index)
|
|
num_frames = int(math.ceil(meta['samplerate'] * self.segment))
|
|
wavs = []
|
|
for source in self.sources:
|
|
file = self.get_file(name, source)
|
|
wav, _ = ta.load(str(file), frame_offset=offset, num_frames=num_frames)
|
|
wav = convert_audio_channels(wav, self.channels)
|
|
wavs.append(wav)
|
|
|
|
example = th.stack(wavs)
|
|
example = julius.resample_frac(example, meta['samplerate'], self.samplerate)
|
|
if self.normalize:
|
|
example = (example - meta['mean']) / meta['std']
|
|
if self.segment:
|
|
length = int(self.segment * self.samplerate)
|
|
example = example[..., :length]
|
|
example = F.pad(example, (0, length - example.shape[-1]))
|
|
return example
|
|
|
|
|
|
def get_wav_datasets(args):
|
|
"""Extract the wav datasets from the XP arguments."""
|
|
sig = hashlib.sha1(str(args.wav).encode()).hexdigest()[:8]
|
|
metadata_file = Path(args.metadata) / ('wav_' + sig + ".json")
|
|
train_path = Path(args.wav) / "train"
|
|
valid_path = Path(args.wav) / "valid"
|
|
if not metadata_file.is_file() and distrib.rank == 0:
|
|
metadata_file.parent.mkdir(exist_ok=True, parents=True)
|
|
train = build_metadata(train_path, args.sources)
|
|
valid = build_metadata(valid_path, args.sources)
|
|
json.dump([train, valid], open(metadata_file, "w"))
|
|
if distrib.world_size > 1:
|
|
distributed.barrier()
|
|
train, valid = json.load(open(metadata_file))
|
|
if args.full_cv:
|
|
kw_cv = {}
|
|
else:
|
|
kw_cv = {'segment': args.segment, 'shift': args.shift}
|
|
train_set = Wavset(train_path, train, args.sources,
|
|
segment=args.segment, shift=args.shift,
|
|
samplerate=args.samplerate, channels=args.channels,
|
|
normalize=args.normalize)
|
|
valid_set = Wavset(valid_path, valid, [MIXTURE] + list(args.sources),
|
|
samplerate=args.samplerate, channels=args.channels,
|
|
normalize=args.normalize, **kw_cv)
|
|
return train_set, valid_set
|
|
|
|
|
|
def _get_musdb_valid():
|
|
# Return musdb valid set.
|
|
import yaml
|
|
setup_path = Path(musdb.__path__[0]) / 'configs' / 'mus.yaml'
|
|
setup = yaml.safe_load(open(setup_path, 'r'))
|
|
return setup['validation_tracks']
|
|
|
|
|
|
def get_musdb_wav_datasets(args):
|
|
"""Extract the musdb dataset from the XP arguments."""
|
|
sig = hashlib.sha1(str(args.musdb).encode()).hexdigest()[:8]
|
|
metadata_file = Path(args.metadata) / ('musdb_' + sig + ".json")
|
|
root = Path(args.musdb) / "train"
|
|
if not metadata_file.is_file() and distrib.rank == 0:
|
|
metadata_file.parent.mkdir(exist_ok=True, parents=True)
|
|
metadata = build_metadata(root, args.sources)
|
|
json.dump(metadata, open(metadata_file, "w"))
|
|
if distrib.world_size > 1:
|
|
distributed.barrier()
|
|
metadata = json.load(open(metadata_file))
|
|
|
|
valid_tracks = _get_musdb_valid()
|
|
if args.train_valid:
|
|
metadata_train = metadata
|
|
else:
|
|
metadata_train = {name: meta for name, meta in metadata.items() if name not in valid_tracks}
|
|
metadata_valid = {name: meta for name, meta in metadata.items() if name in valid_tracks}
|
|
if args.full_cv:
|
|
kw_cv = {}
|
|
else:
|
|
kw_cv = {'segment': args.segment, 'shift': args.shift}
|
|
train_set = Wavset(root, metadata_train, args.sources,
|
|
segment=args.segment, shift=args.shift,
|
|
samplerate=args.samplerate, channels=args.channels,
|
|
normalize=args.normalize)
|
|
valid_set = Wavset(root, metadata_valid, [MIXTURE] + list(args.sources),
|
|
samplerate=args.samplerate, channels=args.channels,
|
|
normalize=args.normalize, **kw_cv)
|
|
return train_set, valid_set
|