mirror of
https://github.com/Anjok07/ultimatevocalremovergui.git
synced 2025-01-20 09:32:44 +01:00
245 lines
8.0 KiB
Python
245 lines
8.0 KiB
Python
import torch
|
|
from torch._C import has_mkl
|
|
import torch.nn as nn
|
|
import numpy as np
|
|
import librosa
|
|
|
|
dim_c = 4
|
|
k = 3
|
|
model_path = 'model'
|
|
n_fft_scale = {'bass': 8, 'drums':2, 'other':4, 'vocals':3, '*':2}
|
|
|
|
|
|
class Conv_TDF(nn.Module):
|
|
def __init__(self, c, l, f, k, bn, bias=True):
|
|
|
|
super(Conv_TDF, self).__init__()
|
|
|
|
self.use_tdf = bn is not None
|
|
|
|
self.H = nn.ModuleList()
|
|
for i in range(l):
|
|
self.H.append(
|
|
nn.Sequential(
|
|
nn.Conv2d(in_channels=c, out_channels=c, kernel_size=k, stride=1, padding=k//2),
|
|
nn.BatchNorm2d(c),
|
|
nn.ReLU(),
|
|
)
|
|
)
|
|
|
|
if self.use_tdf:
|
|
if bn==0:
|
|
self.tdf = nn.Sequential(
|
|
nn.Linear(f,f, bias=bias),
|
|
nn.BatchNorm2d(c),
|
|
nn.ReLU()
|
|
)
|
|
else:
|
|
self.tdf = nn.Sequential(
|
|
nn.Linear(f,f//bn, bias=bias),
|
|
nn.BatchNorm2d(c),
|
|
nn.ReLU(),
|
|
nn.Linear(f//bn,f, bias=bias),
|
|
nn.BatchNorm2d(c),
|
|
nn.ReLU()
|
|
)
|
|
|
|
def forward(self, x):
|
|
for h in self.H:
|
|
x = h(x)
|
|
|
|
return x + self.tdf(x) if self.use_tdf else x
|
|
|
|
|
|
class Conv_TDF_net_trim(nn.Module):
|
|
def __init__(self, device, load, model_name, target_name, lr, epoch,
|
|
L, l, g, dim_f, dim_t, k=3, hop=1024, bn=None, bias=True):
|
|
|
|
super(Conv_TDF_net_trim, self).__init__()
|
|
|
|
self.dim_f, self.dim_t = 2**dim_f, 2**dim_t
|
|
self.n_fft = self.dim_f * n_fft_scale[target_name]
|
|
self.hop = hop
|
|
self.n_bins = self.n_fft//2+1
|
|
self.chunk_size = hop * (self.dim_t-1)
|
|
self.window = torch.hann_window(window_length=self.n_fft, periodic=True).to(device)
|
|
self.target_name = target_name
|
|
self.blender = 'blender' in model_name
|
|
|
|
out_c = dim_c*4 if target_name=='*' else dim_c
|
|
in_c = dim_c*2 if self.blender else dim_c
|
|
#out_c = dim_c*2 if self.blender else dim_c
|
|
self.freq_pad = torch.zeros([1, out_c, self.n_bins-self.dim_f, self.dim_t]).to(device)
|
|
|
|
self.n = L//2
|
|
if load:
|
|
|
|
self.first_conv = nn.Sequential(
|
|
nn.Conv2d(in_channels=in_c, out_channels=g, kernel_size=1, stride=1),
|
|
nn.BatchNorm2d(g),
|
|
nn.ReLU(),
|
|
)
|
|
|
|
f = self.dim_f
|
|
c = g
|
|
self.ds_dense = nn.ModuleList()
|
|
self.ds = nn.ModuleList()
|
|
for i in range(self.n):
|
|
self.ds_dense.append(Conv_TDF(c, l, f, k, bn, bias=bias))
|
|
|
|
scale = (2,2)
|
|
self.ds.append(
|
|
nn.Sequential(
|
|
nn.Conv2d(in_channels=c, out_channels=c+g, kernel_size=scale, stride=scale),
|
|
nn.BatchNorm2d(c+g),
|
|
nn.ReLU()
|
|
)
|
|
)
|
|
f = f//2
|
|
c += g
|
|
|
|
self.mid_dense = Conv_TDF(c, l, f, k, bn, bias=bias)
|
|
#if bn is None and mid_tdf:
|
|
# self.mid_dense = Conv_TDF(c, l, f, k, bn=0, bias=False)
|
|
|
|
self.us_dense = nn.ModuleList()
|
|
self.us = nn.ModuleList()
|
|
for i in range(self.n):
|
|
scale = (2,2)
|
|
self.us.append(
|
|
nn.Sequential(
|
|
nn.ConvTranspose2d(in_channels=c, out_channels=c-g, kernel_size=scale, stride=scale),
|
|
nn.BatchNorm2d(c-g),
|
|
nn.ReLU()
|
|
)
|
|
)
|
|
f = f*2
|
|
c -= g
|
|
|
|
self.us_dense.append(Conv_TDF(c, l, f, k, bn, bias=bias))
|
|
|
|
|
|
self.final_conv = nn.Sequential(
|
|
nn.Conv2d(in_channels=c, out_channels=out_c, kernel_size=1, stride=1),
|
|
)
|
|
|
|
|
|
model_cfg = f'L{L}l{l}g{g}'
|
|
model_cfg += ', ' if (bn is None or bn==0) else f'bn{bn}, '
|
|
|
|
stft_cfg = f'f{dim_f}t{dim_t}, '
|
|
|
|
model_name = model_name[:model_name.index('(')+1] + model_cfg + stft_cfg + model_name[model_name.index('(')+1:]
|
|
try:
|
|
self.load_state_dict(
|
|
torch.load('{0}/{1}/{2}_lr{3}_e{4:05}.ckpt'.format(model_path, model_name, target_name, lr, epoch), map_location=device)
|
|
)
|
|
print(f'Loading model ({target_name})')
|
|
except FileNotFoundError:
|
|
print(f'Random init ({target_name})')
|
|
|
|
|
|
def stft(self, x):
|
|
x = x.reshape([-1, self.chunk_size])
|
|
x = torch.stft(x, n_fft=self.n_fft, hop_length=self.hop, window=self.window, center=True)
|
|
x = x.permute([0,3,1,2])
|
|
x = x.reshape([-1,2,2,self.n_bins,self.dim_t]).reshape([-1,dim_c,self.n_bins,self.dim_t])
|
|
return x[:,:,:self.dim_f]
|
|
|
|
def istft(self, x, freq_pad=None):
|
|
freq_pad = self.freq_pad.repeat([x.shape[0],1,1,1]) if freq_pad is None else freq_pad
|
|
x = torch.cat([x, freq_pad], -2)
|
|
c = 4*2 if self.target_name=='*' else 2
|
|
x = x.reshape([-1,c,2,self.n_bins,self.dim_t]).reshape([-1,2,self.n_bins,self.dim_t])
|
|
x = x.permute([0,2,3,1])
|
|
x = torch.istft(x, n_fft=self.n_fft, hop_length=self.hop, window=self.window, center=True)
|
|
return x.reshape([-1,c,self.chunk_size])
|
|
|
|
|
|
def forward(self, x):
|
|
|
|
x = self.first_conv(x)
|
|
|
|
x = x.transpose(-1,-2)
|
|
|
|
ds_outputs = []
|
|
for i in range(self.n):
|
|
x = self.ds_dense[i](x)
|
|
ds_outputs.append(x)
|
|
x = self.ds[i](x)
|
|
|
|
x = self.mid_dense(x)
|
|
|
|
for i in range(self.n):
|
|
x = self.us[i](x)
|
|
x *= ds_outputs[-i-1]
|
|
x = self.us_dense[i](x)
|
|
|
|
x = x.transpose(-1,-2)
|
|
|
|
x = self.final_conv(x)
|
|
|
|
return x
|
|
|
|
def stft(wave, nfft, hl):
|
|
wave_left = np.asfortranarray(wave[0])
|
|
wave_right = np.asfortranarray(wave[1])
|
|
spec_left = librosa.stft(wave_left, nfft, hop_length=hl)
|
|
spec_right = librosa.stft(wave_right, nfft, hop_length=hl)
|
|
spec = np.asfortranarray([spec_left, spec_right])
|
|
|
|
return spec
|
|
|
|
def istft(spec, hl):
|
|
spec_left = np.asfortranarray(spec[0])
|
|
spec_right = np.asfortranarray(spec[1])
|
|
|
|
wave_left = librosa.istft(spec_left, hop_length=hl)
|
|
wave_right = librosa.istft(spec_right, hop_length=hl)
|
|
wave = np.asfortranarray([wave_left, wave_right])
|
|
|
|
return wave
|
|
|
|
def spec_effects(wave, algorithm='default', value=None):
|
|
spec = [stft(wave[0],2048,1024),stft(wave[1],2048,1024)]
|
|
if algorithm == 'min_mag':
|
|
v_spec_m = np.where(np.abs(spec[1]) <= np.abs(spec[0]), spec[1], spec[0])
|
|
wave = istft(v_spec_m,1024)
|
|
elif algorithm == 'max_mag':
|
|
v_spec_m = np.where(np.abs(spec[1]) >= np.abs(spec[0]), spec[1], spec[0])
|
|
wave = istft(v_spec_m,1024)
|
|
elif algorithm == 'default':
|
|
#wave = [istft(spec[0],1024),istft(spec[1],1024)]
|
|
wave = (wave[1] * value) + (wave[0] * (1-value))
|
|
elif algorithm == 'invert_p':
|
|
X_mag = np.abs(spec[0])
|
|
y_mag = np.abs(spec[1])
|
|
max_mag = np.where(X_mag >= y_mag, X_mag, y_mag)
|
|
v_spec = spec[1] - max_mag * np.exp(1.j * np.angle(spec[0]))
|
|
wave = istft(v_spec,1024)
|
|
return wave
|
|
|
|
|
|
def get_models(name, device, load=True, stems='vocals'):
|
|
|
|
if name=='tdf_extra':
|
|
models = []
|
|
if 'vocals' in stems:
|
|
models.append(
|
|
Conv_TDF_net_trim(
|
|
device=device, load=load,
|
|
model_name='Conv-TDF', target_name='vocals',
|
|
lr=0.0001, epoch=0,
|
|
L=11, l=3, g=32, bn=8, bias=False,
|
|
dim_f=11, dim_t=8
|
|
)
|
|
)
|
|
return models
|
|
|
|
else:
|
|
print('Model undefined')
|
|
return None
|
|
|
|
|
|
|