ultimatevocalremovergui/demucs/wav.py
2022-06-13 02:10:39 -05:00

243 lines
9.2 KiB
Python

# Copyright (c) Facebook, Inc. and its affiliates.
# All rights reserved.
#
# This source code is licensed under the license found in the
# LICENSE file in the root directory of this source tree.
"""Loading wav based datasets, including MusdbHQ."""
from collections import OrderedDict
import hashlib
import math
import json
import os
from pathlib import Path
import tqdm
import musdb
import julius
import torch as th
from torch import distributed
import torchaudio as ta
from torch.nn import functional as F
from .audio import convert_audio_channels
from . import distrib
MIXTURE = "mixture"
EXT = ".wav"
def _track_metadata(track, sources, normalize=True, ext=EXT):
track_length = None
track_samplerate = None
mean = 0
std = 1
for source in sources + [MIXTURE]:
file = track / f"{source}{ext}"
try:
info = ta.info(str(file))
except RuntimeError:
print(file)
raise
length = info.num_frames
if track_length is None:
track_length = length
track_samplerate = info.sample_rate
elif track_length != length:
raise ValueError(
f"Invalid length for file {file}: "
f"expecting {track_length} but got {length}.")
elif info.sample_rate != track_samplerate:
raise ValueError(
f"Invalid sample rate for file {file}: "
f"expecting {track_samplerate} but got {info.sample_rate}.")
if source == MIXTURE and normalize:
try:
wav, _ = ta.load(str(file))
except RuntimeError:
print(file)
raise
wav = wav.mean(0)
mean = wav.mean().item()
std = wav.std().item()
return {"length": length, "mean": mean, "std": std, "samplerate": track_samplerate}
def build_metadata(path, sources, normalize=True, ext=EXT):
"""
Build the metadata for `Wavset`.
Args:
path (str or Path): path to dataset.
sources (list[str]): list of sources to look for.
normalize (bool): if True, loads full track and store normalization
values based on the mixture file.
ext (str): extension of audio files (default is .wav).
"""
meta = {}
path = Path(path)
pendings = []
from concurrent.futures import ThreadPoolExecutor
with ThreadPoolExecutor(8) as pool:
for root, folders, files in os.walk(path, followlinks=True):
root = Path(root)
if root.name.startswith('.') or folders or root == path:
continue
name = str(root.relative_to(path))
pendings.append((name, pool.submit(_track_metadata, root, sources, normalize, ext)))
# meta[name] = _track_metadata(root, sources, normalize, ext)
for name, pending in tqdm.tqdm(pendings, ncols=120):
meta[name] = pending.result()
return meta
class Wavset:
def __init__(
self,
root, metadata, sources,
segment=None, shift=None, normalize=True,
samplerate=44100, channels=2, ext=EXT):
"""
Waveset (or mp3 set for that matter). Can be used to train
with arbitrary sources. Each track should be one folder inside of `path`.
The folder should contain files named `{source}.{ext}`.
Args:
root (Path or str): root folder for the dataset.
metadata (dict): output from `build_metadata`.
sources (list[str]): list of source names.
segment (None or float): segment length in seconds. If `None`, returns entire tracks.
shift (None or float): stride in seconds bewteen samples.
normalize (bool): normalizes input audio, **based on the metadata content**,
i.e. the entire track is normalized, not individual extracts.
samplerate (int): target sample rate. if the file sample rate
is different, it will be resampled on the fly.
channels (int): target nb of channels. if different, will be
changed onthe fly.
ext (str): extension for audio files (default is .wav).
samplerate and channels are converted on the fly.
"""
self.root = Path(root)
self.metadata = OrderedDict(metadata)
self.segment = segment
self.shift = shift or segment
self.normalize = normalize
self.sources = sources
self.channels = channels
self.samplerate = samplerate
self.ext = ext
self.num_examples = []
for name, meta in self.metadata.items():
track_duration = meta['length'] / meta['samplerate']
if segment is None or track_duration < segment:
examples = 1
else:
examples = int(math.ceil((track_duration - self.segment) / self.shift) + 1)
self.num_examples.append(examples)
def __len__(self):
return sum(self.num_examples)
def get_file(self, name, source):
return self.root / name / f"{source}{self.ext}"
def __getitem__(self, index):
for name, examples in zip(self.metadata, self.num_examples):
if index >= examples:
index -= examples
continue
meta = self.metadata[name]
num_frames = -1
offset = 0
if self.segment is not None:
offset = int(meta['samplerate'] * self.shift * index)
num_frames = int(math.ceil(meta['samplerate'] * self.segment))
wavs = []
for source in self.sources:
file = self.get_file(name, source)
wav, _ = ta.load(str(file), frame_offset=offset, num_frames=num_frames)
wav = convert_audio_channels(wav, self.channels)
wavs.append(wav)
example = th.stack(wavs)
example = julius.resample_frac(example, meta['samplerate'], self.samplerate)
if self.normalize:
example = (example - meta['mean']) / meta['std']
if self.segment:
length = int(self.segment * self.samplerate)
example = example[..., :length]
example = F.pad(example, (0, length - example.shape[-1]))
return example
def get_wav_datasets(args):
"""Extract the wav datasets from the XP arguments."""
sig = hashlib.sha1(str(args.wav).encode()).hexdigest()[:8]
metadata_file = Path(args.metadata) / ('wav_' + sig + ".json")
train_path = Path(args.wav) / "train"
valid_path = Path(args.wav) / "valid"
if not metadata_file.is_file() and distrib.rank == 0:
metadata_file.parent.mkdir(exist_ok=True, parents=True)
train = build_metadata(train_path, args.sources)
valid = build_metadata(valid_path, args.sources)
json.dump([train, valid], open(metadata_file, "w"))
if distrib.world_size > 1:
distributed.barrier()
train, valid = json.load(open(metadata_file))
if args.full_cv:
kw_cv = {}
else:
kw_cv = {'segment': args.segment, 'shift': args.shift}
train_set = Wavset(train_path, train, args.sources,
segment=args.segment, shift=args.shift,
samplerate=args.samplerate, channels=args.channels,
normalize=args.normalize)
valid_set = Wavset(valid_path, valid, [MIXTURE] + list(args.sources),
samplerate=args.samplerate, channels=args.channels,
normalize=args.normalize, **kw_cv)
return train_set, valid_set
def _get_musdb_valid():
# Return musdb valid set.
import yaml
setup_path = Path(musdb.__path__[0]) / 'configs' / 'mus.yaml'
setup = yaml.safe_load(open(setup_path, 'r'))
return setup['validation_tracks']
def get_musdb_wav_datasets(args):
"""Extract the musdb dataset from the XP arguments."""
sig = hashlib.sha1(str(args.musdb).encode()).hexdigest()[:8]
metadata_file = Path(args.metadata) / ('musdb_' + sig + ".json")
root = Path(args.musdb) / "train"
if not metadata_file.is_file() and distrib.rank == 0:
metadata_file.parent.mkdir(exist_ok=True, parents=True)
metadata = build_metadata(root, args.sources)
json.dump(metadata, open(metadata_file, "w"))
if distrib.world_size > 1:
distributed.barrier()
metadata = json.load(open(metadata_file))
valid_tracks = _get_musdb_valid()
if args.train_valid:
metadata_train = metadata
else:
metadata_train = {name: meta for name, meta in metadata.items() if name not in valid_tracks}
metadata_valid = {name: meta for name, meta in metadata.items() if name in valid_tracks}
if args.full_cv:
kw_cv = {}
else:
kw_cv = {'segment': args.segment, 'shift': args.shift}
train_set = Wavset(root, metadata_train, args.sources,
segment=args.segment, shift=args.shift,
samplerate=args.samplerate, channels=args.channels,
normalize=args.normalize)
valid_set = Wavset(root, metadata_valid, [MIXTURE] + list(args.sources),
samplerate=args.samplerate, channels=args.channels,
normalize=args.normalize, **kw_cv)
return train_set, valid_set