ultimatevocalremovergui/inference_demucs.py
Christian Clauss cb487fb2ed
Fix typo
2022-07-18 07:18:23 +02:00

1321 lines
66 KiB
Python

import os
from pathlib import Path
import os.path
from datetime import datetime
import pydub
import shutil
from random import randrange
#MDX-Net
#----------------------------------------
import soundfile as sf
import torch
import numpy as np
from demucs.pretrained import get_model as _gm
from demucs.hdemucs import HDemucs
from demucs.apply import BagOfModels, apply_model
from demucs.audio import AudioFile
import time
import os
from tqdm import tqdm
import warnings
import sys
import librosa
import psutil
#----------------------------------------
from lib_v5 import spec_utils
from lib_v5.model_param_init import ModelParameters
import torch
# Command line text parsing and widget manipulation
import tkinter as tk
import traceback # Error Message Recent Calls
import time # Timer
class Predictor():
def __init__(self):
pass
def prediction_setup(self):
global device
if data['gpu'] >= 0:
device = torch.device('cuda:0' if torch.cuda.is_available() else 'cpu')
if data['gpu'] == -1:
device = torch.device('cpu')
self.demucs = HDemucs(sources=["drums", "bass", "other", "vocals"])
widget_text.write(base_text + 'Loading Demucs model... ')
update_progress(**progress_kwargs,
step=0.05)
path_d = Path('models/Demucs_Models')
print('What Demucs model was chosen? ', data['DemucsModel'])
self.demucs = _gm(name=data['DemucsModel'], repo=path_d)
widget_text.write('Done!\n')
if 'UVR' in data['DemucsModel']:
widget_text.write(base_text + "2 stem model selected.\n")
if isinstance(self.demucs, BagOfModels):
widget_text.write(base_text + f"Selected model is a bag of {len(self.demucs.models)} models.\n")
if data['segment'] == 'None':
segment = None
if isinstance(self.demucs, BagOfModels):
if segment is not None:
for sub in self.demucs.models:
sub.segment = segment
else:
if segment is not None:
sub.segment = segment
else:
try:
segment = int(data['segment'])
if isinstance(self.demucs, BagOfModels):
if segment is not None:
for sub in self.demucs.models:
sub.segment = segment
else:
if segment is not None:
sub.segment = segment
widget_text.write(base_text + "Segments set to "f"{segment}.\n")
except:
segment = None
if isinstance(self.demucs, BagOfModels):
if segment is not None:
for sub in self.demucs.models:
sub.segment = segment
else:
if segment is not None:
sub.segment = segment
self.demucs.to(device)
self.demucs.eval()
update_progress(**progress_kwargs,
step=0.1)
def prediction(self, m):
mix, samplerate = librosa.load(m, mono=False, sr=44100)
if mix.ndim == 1:
mix = np.asfortranarray([mix,mix])
mix = mix.T
sources = self.demix(mix.T)
widget_text.write(base_text + 'Inferences complete!\n')
#Main Save Path
save_path = os.path.dirname(_basename)
vocals_name = '(Vocals)'
other_name = '(Other)'
drums_name = '(Drums)'
bass_name = '(Bass)'
vocals_path = '{save_path}/{file_name}.wav'.format(
save_path=save_path,
file_name = f'{os.path.basename(_basename)}_{vocals_name}',)
vocals_path_mp3 = '{save_path}/{file_name}.mp3'.format(
save_path=save_path,
file_name = f'{os.path.basename(_basename)}_{vocals_name}',)
vocals_path_flac = '{save_path}/{file_name}.flac'.format(
save_path=save_path,
file_name = f'{os.path.basename(_basename)}_{vocals_name}',)
#Other
other_path = '{save_path}/{file_name}.wav'.format(
save_path=save_path,
file_name = f'{os.path.basename(_basename)}_{other_name}',)
other_path_mp3 = '{save_path}/{file_name}.mp3'.format(
save_path=save_path,
file_name = f'{os.path.basename(_basename)}_{other_name}',)
other_path_flac = '{save_path}/{file_name}.flac'.format(
save_path=save_path,
file_name = f'{os.path.basename(_basename)}_{other_name}',)
#Drums
drums_path = '{save_path}/{file_name}.wav'.format(
save_path=save_path,
file_name = f'{os.path.basename(_basename)}_{drums_name}',)
drums_path_mp3 = '{save_path}/{file_name}.mp3'.format(
save_path=save_path,
file_name = f'{os.path.basename(_basename)}_{drums_name}',)
drums_path_flac = '{save_path}/{file_name}.flac'.format(
save_path=save_path,
file_name = f'{os.path.basename(_basename)}_{drums_name}',)
#Bass
bass_path = '{save_path}/{file_name}.wav'.format(
save_path=save_path,
file_name = f'{os.path.basename(_basename)}_{bass_name}',)
bass_path_mp3 = '{save_path}/{file_name}.mp3'.format(
save_path=save_path,
file_name = f'{os.path.basename(_basename)}_{bass_name}',)
bass_path_flac = '{save_path}/{file_name}.flac'.format(
save_path=save_path,
file_name = f'{os.path.basename(_basename)}_{bass_name}',)
#If not 'All Stems'
if stemset_n == '(Vocals)':
vocal_name = '(Vocals)'
elif stemset_n == '(Other)':
vocal_name = '(Other)'
elif stemset_n == '(Drums)':
vocal_name = '(Drums)'
elif stemset_n == '(Bass)':
vocal_name = '(Bass)'
elif stemset_n == '(Instrumental)':
vocal_name = '(Instrumental)'
vocal_path = '{save_path}/{file_name}.wav'.format(
save_path=save_path,
file_name = f'{os.path.basename(_basename)}_{vocal_name}',)
vocal_path_mp3 = '{save_path}/{file_name}.mp3'.format(
save_path=save_path,
file_name = f'{os.path.basename(_basename)}_{vocal_name}',)
vocal_path_flac = '{save_path}/{file_name}.flac'.format(
save_path=save_path,
file_name = f'{os.path.basename(_basename)}_{vocal_name}',)
#Instrumental Path
if stemset_n == '(Vocals)':
Instrumental_name = '(Instrumental)'
elif stemset_n == '(Other)':
Instrumental_name = '(No_Other)'
elif stemset_n == '(Drums)':
Instrumental_name = '(No_Drums)'
elif stemset_n == '(Bass)':
Instrumental_name = '(No_Bass)'
elif stemset_n == '(Instrumental)':
if data['demucs_stems'] == 'All Stems':
Instrumental_name = '(Instrumental)'
else:
Instrumental_name = '(Vocals)'
Instrumental_path = '{save_path}/{file_name}.wav'.format(
save_path=save_path,
file_name = f'{os.path.basename(_basename)}_{Instrumental_name}',)
Instrumental_path_mp3 = '{save_path}/{file_name}.mp3'.format(
save_path=save_path,
file_name = f'{os.path.basename(_basename)}_{Instrumental_name}',)
Instrumental_path_flac = '{save_path}/{file_name}.flac'.format(
save_path=save_path,
file_name = f'{os.path.basename(_basename)}_{Instrumental_name}',)
if os.path.isfile(vocal_path):
file_exists_n = 'there'
else:
file_exists_n = 'not_there'
if os.path.isfile(vocal_path):
file_exists_v = 'there'
else:
file_exists_v = 'not_there'
if os.path.isfile(Instrumental_path):
file_exists_i = 'there'
else:
file_exists_i = 'not_there'
if not data['demucs_stems'] == 'All Stems':
if data['inst_only_b']:
widget_text.write(base_text + 'Preparing mixture without selected stem...')
else:
widget_text.write(base_text + 'Saving Stem(s)... ')
else:
pass
if data['demucs_stems'] == 'All Stems':
if data['saveFormat'] == 'Wav':
widget_text.write(base_text + 'Saving Stem(s)... ')
else:
pass
if 'UVR' in model_set_name:
sf.write(Instrumental_path, normalization_set(sources[0]).T, samplerate, subtype=wav_type_set)
sf.write(vocals_path, normalization_set(sources[1]).T, samplerate, subtype=wav_type_set)
else:
sf.write(bass_path, normalization_set(sources[0]).T, samplerate, subtype=wav_type_set)
sf.write(drums_path, normalization_set(sources[1]).T, samplerate, subtype=wav_type_set)
sf.write(other_path, normalization_set(sources[2]).T, samplerate, subtype=wav_type_set)
sf.write(vocals_path, normalization_set(sources[3]).T, samplerate, subtype=wav_type_set)
if data['saveFormat'] == 'Mp3':
try:
if 'UVR' in model_set_name:
widget_text.write(base_text + 'Saving Stem(s) as Mp3(s)... ')
musfile = pydub.AudioSegment.from_wav(vocals_path)
musfile.export(vocals_path_mp3, format="mp3", bitrate=mp3_bit_set)
musfile = pydub.AudioSegment.from_wav(Instrumental_path)
musfile.export(Instrumental_path_mp3, format="mp3", bitrate=mp3_bit_set)
try:
os.remove(Instrumental_path)
os.remove(vocals_path)
except:
pass
else:
widget_text.write(base_text + 'Saving Stem(s) as Mp3(s)... ')
musfile = pydub.AudioSegment.from_wav(drums_path)
musfile.export(drums_path_mp3, format="mp3", bitrate=mp3_bit_set)
musfile = pydub.AudioSegment.from_wav(bass_path)
musfile.export(bass_path_mp3, format="mp3", bitrate=mp3_bit_set)
musfile = pydub.AudioSegment.from_wav(other_path)
musfile.export(other_path_mp3, format="mp3", bitrate=mp3_bit_set)
musfile = pydub.AudioSegment.from_wav(vocals_path)
musfile.export(vocals_path_mp3, format="mp3", bitrate=mp3_bit_set)
try:
os.remove(drums_path)
os.remove(bass_path)
os.remove(other_path)
os.remove(vocals_path)
except:
pass
except Exception as e:
traceback_text = ''.join(traceback.format_tb(e.__traceback__))
errmessage = f'Traceback Error: "{traceback_text}"\n{type(e).__name__}: "{e}"\n'
if "ffmpeg" in errmessage:
widget_text.write('\n' + base_text + 'Failed to save output(s) as Mp3(s).\n')
widget_text.write(base_text + 'FFmpeg might be missing or corrupted, please check error log.\n')
widget_text.write(base_text + 'Moving on...\n')
else:
widget_text.write(base_text + 'Failed to save output(s) as Mp3(s).\n')
widget_text.write(base_text + 'Please check error log.\n')
widget_text.write(base_text + 'Moving on...\n')
try:
with open('errorlog.txt', 'w') as f:
f.write(f'Last Error Received:\n\n' +
f'Error Received while attempting to save file as mp3 "{os.path.basename(music_file)}":\n\n' +
f'Process Method: Demucs v3\n\n' +
f'FFmpeg might be missing or corrupted.\n\n' +
f'If this error persists, please contact the developers.\n\n' +
f'Raw error details:\n\n' +
errmessage + f'\nError Time Stamp: [{datetime.now().strftime("%Y-%m-%d %H:%M:%S")}]\n')
except:
pass
elif data['saveFormat'] == 'Flac':
try:
if 'UVR' in model_set_name:
widget_text.write(base_text + 'Saving Stem(s) as flac(s)... ')
musfile = pydub.AudioSegment.from_wav(vocals_path)
musfile.export(vocals_path_flac, format="flac")
musfile = pydub.AudioSegment.from_wav(Instrumental_path)
musfile.export(Instrumental_path_flac, format="flac")
try:
os.remove(Instrumental_path)
os.remove(vocals_path)
except:
pass
else:
widget_text.write(base_text + 'Saving Stem(s) as Flac(s)... ')
musfile = pydub.AudioSegment.from_wav(drums_path)
musfile.export(drums_path_flac, format="flac")
musfile = pydub.AudioSegment.from_wav(bass_path)
musfile.export(bass_path_flac, format="flac")
musfile = pydub.AudioSegment.from_wav(other_path)
musfile.export(other_path_flac, format="flac")
musfile = pydub.AudioSegment.from_wav(vocals_path)
musfile.export(vocals_path_flac, format="flac")
try:
os.remove(drums_path)
os.remove(bass_path)
os.remove(other_path)
os.remove(vocals_path)
except:
pass
except Exception as e:
traceback_text = ''.join(traceback.format_tb(e.__traceback__))
errmessage = f'Traceback Error: "{traceback_text}"\n{type(e).__name__}: "{e}"\n'
if "ffmpeg" in errmessage:
widget_text.write('\n' + base_text + 'Failed to save output(s) as Flac(s).\n')
widget_text.write(base_text + 'FFmpeg might be missing or corrupted, please check error log.\n')
widget_text.write(base_text + 'Moving on...\n')
else:
widget_text.write(base_text + 'Failed to save output(s) as flac(s).\n')
widget_text.write(base_text + 'Please check error log.\n')
widget_text.write(base_text + 'Moving on...\n')
try:
with open('errorlog.txt', 'w') as f:
f.write(f'Last Error Received:\n\n' +
f'Error Received while attempting to save file as flac "{os.path.basename(music_file)}":\n\n' +
f'Process Method: Demucs v3\n\n' +
f'FFmpeg might be missing or corrupted.\n\n' +
f'If this error persists, please contact the developers.\n\n' +
f'Raw error details:\n\n' +
errmessage + f'\nError Time Stamp: [{datetime.now().strftime("%Y-%m-%d %H:%M:%S")}]\n')
except:
pass
elif data['saveFormat'] == 'Wav':
pass
widget_text.write('Done!\n')
else:
if 'UVR' in model_set_name:
if stemset_n == '(Vocals)':
sf.write(vocal_path, sources[1].T, samplerate, subtype=wav_type_set)
else:
sf.write(vocal_path, sources[source_val].T, samplerate, subtype=wav_type_set)
else:
sf.write(vocal_path, sources[source_val].T, samplerate, subtype=wav_type_set)
widget_text.write('Done!\n')
update_progress(**progress_kwargs,
step=(0.9))
if data['demucs_stems'] == 'All Stems':
pass
else:
if data['voc_only_b'] and not data['inst_only_b']:
pass
else:
finalfiles = [
{
'model_params':'lib_v5/modelparams/1band_sr44100_hl512.json',
'files':[str(music_file), vocal_path],
}
]
widget_text.write(base_text + 'Saving Instrumental... ')
for i, e in tqdm(enumerate(finalfiles)):
wave, specs = {}, {}
mp = ModelParameters(e['model_params'])
for i in range(len(e['files'])):
spec = {}
for d in range(len(mp.param['band']), 0, -1):
bp = mp.param['band'][d]
if d == len(mp.param['band']): # high-end band
wave[d], _ = librosa.load(
e['files'][i], bp['sr'], False, dtype=np.float32, res_type=bp['res_type'])
if len(wave[d].shape) == 1: # mono to stereo
wave[d] = np.array([wave[d], wave[d]])
else: # lower bands
wave[d] = librosa.resample(wave[d+1], mp.param['band'][d+1]['sr'], bp['sr'], res_type=bp['res_type'])
spec[d] = spec_utils.wave_to_spectrogram(wave[d], bp['hl'], bp['n_fft'], mp.param['mid_side'], mp.param['mid_side_b2'], mp.param['reverse'])
specs[i] = spec_utils.combine_spectrograms(spec, mp)
del wave
ln = min([specs[0].shape[2], specs[1].shape[2]])
specs[0] = specs[0][:,:,:ln]
specs[1] = specs[1][:,:,:ln]
X_mag = np.abs(specs[0])
y_mag = np.abs(specs[1])
max_mag = np.where(X_mag >= y_mag, X_mag, y_mag)
v_spec = specs[1] - max_mag * np.exp(1.j * np.angle(specs[0]))
update_progress(**progress_kwargs,
step=(1))
sf.write(Instrumental_path, normalization_set(spec_utils.cmb_spectrogram_to_wave(-v_spec, mp)), mp.param['sr'], subtype=wav_type_set)
if data['inst_only_b']:
if file_exists_v == 'there':
pass
else:
try:
os.remove(vocal_path)
except:
pass
widget_text.write('Done!\n')
if not data['demucs_stems'] == 'All Stems':
if data['saveFormat'] == 'Mp3':
try:
if data['inst_only_b'] == True:
pass
else:
musfile = pydub.AudioSegment.from_wav(vocal_path)
musfile.export(vocal_path_mp3, format="mp3", bitrate=mp3_bit_set)
if file_exists_v == 'there':
pass
else:
try:
os.remove(vocal_path)
except:
pass
if data['voc_only_b'] == True:
pass
else:
musfile = pydub.AudioSegment.from_wav(Instrumental_path)
musfile.export(Instrumental_path_mp3, format="mp3", bitrate=mp3_bit_set)
if file_exists_i == 'there':
pass
else:
try:
os.remove(Instrumental_path)
except:
pass
except Exception as e:
traceback_text = ''.join(traceback.format_tb(e.__traceback__))
errmessage = f'Traceback Error: "{traceback_text}"\n{type(e).__name__}: "{e}"\n'
if "ffmpeg" in errmessage:
widget_text.write(base_text + 'Failed to save output(s) as Mp3(s).\n')
widget_text.write(base_text + 'FFmpeg might be missing or corrupted, please check error log.\n')
widget_text.write(base_text + 'Moving on...\n')
else:
widget_text.write(base_text + 'Failed to save output(s) as Mp3(s).\n')
widget_text.write(base_text + 'Please check error log.\n')
widget_text.write(base_text + 'Moving on...\n')
try:
with open('errorlog.txt', 'w') as f:
f.write(f'Last Error Received:\n\n' +
f'Error Received while attempting to save file as mp3 "{os.path.basename(music_file)}":\n\n' +
f'Process Method: Demucs v3\n\n' +
f'FFmpeg might be missing or corrupted.\n\n' +
f'If this error persists, please contact the developers.\n\n' +
f'Raw error details:\n\n' +
errmessage + f'\nError Time Stamp: [{datetime.now().strftime("%Y-%m-%d %H:%M:%S")}]\n')
except:
pass
if data['saveFormat'] == 'Flac':
try:
if data['inst_only_b'] == True:
pass
else:
musfile = pydub.AudioSegment.from_wav(vocal_path)
musfile.export(vocal_path_flac, format="flac")
if file_exists_v == 'there':
pass
else:
try:
os.remove(vocal_path)
except:
pass
if data['voc_only_b'] == True:
pass
else:
musfile = pydub.AudioSegment.from_wav(Instrumental_path)
musfile.export(Instrumental_path_flac, format="flac")
if file_exists_i == 'there':
pass
else:
try:
os.remove(Instrumental_path)
except:
pass
except Exception as e:
traceback_text = ''.join(traceback.format_tb(e.__traceback__))
errmessage = f'Traceback Error: "{traceback_text}"\n{type(e).__name__}: "{e}"\n'
if "ffmpeg" in errmessage:
widget_text.write(base_text + 'Failed to save output(s) as Flac(s).\n')
widget_text.write(base_text + 'FFmpeg might be missing or corrupted, please check error log.\n')
widget_text.write(base_text + 'Moving on...\n')
else:
widget_text.write(base_text + 'Failed to save output(s) as Flac(s).\n')
widget_text.write(base_text + 'Please check error log.\n')
widget_text.write(base_text + 'Moving on...\n')
try:
with open('errorlog.txt', 'w') as f:
f.write(f'Last Error Received:\n\n' +
f'Error Received while attempting to save file as flac "{os.path.basename(music_file)}":\n\n' +
f'Process Method: Demucs v3\n\n' +
f'FFmpeg might be missing or corrupted.\n\n' +
f'If this error persists, please contact the developers.\n\n' +
f'Raw error details:\n\n' +
errmessage + f'\nError Time Stamp: [{datetime.now().strftime("%Y-%m-%d %H:%M:%S")}]\n')
except:
pass
if data['inst_only_b']:
if file_exists_n == 'there':
pass
else:
try:
os.remove(vocal_path)
except:
pass
else:
try:
os.remove(vocal_path)
except:
pass
widget_text.write(base_text + 'Completed Separation!\n')
def demix(self, mix):
# 1 = demucs only
# 0 = onnx only
if data['chunks_d'] == 'Full':
if split_mode == True:
chunk_set = 0
else:
widget_text.write(base_text + "Chunk size set to full... \n")
chunk_set = 0
else:
chunk_set = data['chunks']
if data['chunks_d'] == 'Auto':
if split_mode == True:
widget_text.write(base_text + "Split Mode is on (Chunks disabled).\n")
chunk_set = 0
else:
widget_text.write(base_text + "Split Mode is off (Chunks enabled).\n")
if data['gpu'] == 0:
try:
gpu_mem = round(torch.cuda.get_device_properties(0).total_memory/1.074e+9)
except:
widget_text.write(base_text + 'NVIDIA GPU Required for conversion!\n')
if int(gpu_mem) <= int(6):
chunk_set = int(10)
widget_text.write(base_text + 'Chunk size auto-set to 10... \n')
if gpu_mem in [7, 8, 9]:
chunk_set = int(30)
widget_text.write(base_text + 'Chunk size auto-set to 30... \n')
if gpu_mem in [10, 11, 12, 13, 14, 15]:
chunk_set = int(50)
widget_text.write(base_text + 'Chunk size auto-set to 50... \n')
if int(gpu_mem) >= int(16):
chunk_set = int(0)
widget_text.write(base_text + 'Chunk size auto-set to Full... \n')
if data['gpu'] == -1:
sys_mem = psutil.virtual_memory().total >> 30
if int(sys_mem) <= int(4):
chunk_set = int(5)
widget_text.write(base_text + 'Chunk size auto-set to 5... \n')
if sys_mem in [5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16]:
chunk_set = int(10)
widget_text.write(base_text + 'Chunk size auto-set to 10... \n')
if sys_mem in [17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 32]:
chunk_set = int(40)
widget_text.write(base_text + 'Chunk size auto-set to 40... \n')
if int(sys_mem) >= int(33):
chunk_set = int(0)
widget_text.write(base_text + 'Chunk size auto-set to Full... \n')
else:
if split_mode == True:
widget_text.write(base_text + "Split Mode is on (Chunks disabled).\n")
chunk_set = 0
else:
widget_text.write(base_text + "Split Mode is off (Chunks enabled).\n")
chunk_set = int(data['chunks_d'])
widget_text.write(base_text + "Chunk size user-set to "f"{chunk_set}... \n")
samples = mix.shape[-1]
margin = margin_set
chunk_size = chunk_set*44100
assert not margin == 0, 'margin cannot be zero!'
if margin > chunk_size:
margin = chunk_size
segmented_mix = {}
if chunk_set == 0 or samples < chunk_size:
chunk_size = samples
counter = -1
for skip in range(0, samples, chunk_size):
counter+=1
s_margin = 0 if counter == 0 else margin
end = min(skip+chunk_size+margin, samples)
start = skip-s_margin
segmented_mix[skip] = mix[:,start:end].copy()
if end == samples:
break
sources = self.demix_demucs(segmented_mix, margin_size=margin)
return sources
def demix_demucs(self, mix, margin_size):
processed = {}
demucsitera = len(mix)
demucsitera_calc = demucsitera * 2
gui_progress_bar_demucs = 0
widget_text.write(base_text + "Running Demucs Inference...\n")
widget_text.write(base_text + "Processing "f"{len(mix)} slices... ")
print(' Running Demucs Inference...')
for nmix in mix:
gui_progress_bar_demucs += 1
update_progress(**progress_kwargs,
step=(0.1 + (1.7/demucsitera_calc * gui_progress_bar_demucs)))
cmix = mix[nmix]
cmix = torch.tensor(cmix, dtype=torch.float32)
ref = cmix.mean(0)
cmix = (cmix - ref.mean()) / ref.std()
with torch.no_grad():
sources = apply_model(self.demucs, cmix[None], split=split_mode, device=device, overlap=overlap_set, shifts=shift_set, progress=False)[0]
sources = (sources * ref.std() + ref.mean()).cpu().numpy()
sources[[0,1]] = sources[[1,0]]
start = 0 if nmix == 0 else margin_size
end = None if nmix == list(mix.keys())[::-1][0] else -margin_size
if margin_size == 0:
end = None
processed[nmix] = sources[:,:,start:end].copy()
sources = list(processed.values())
sources = np.concatenate(sources, axis=-1)
widget_text.write('Done!\n')
return sources
data = {
# Paths
'input_paths': None,
'export_path': None,
'saveFormat': 'Wav',
# Processing Options
'demucsmodel': True,
'gpu': -1,
'chunks_d': 'Full',
'settest': False,
'voc_only_b': False,
'inst_only_b': False,
'overlap_b': 0.25,
'shifts_b': 2,
'segment': 'None',
'margin': 44100,
'split_mode': False,
'normalize': False,
'compensate': 1.03597672895,
'demucs_stems': 'All Stems',
'DemucsModel': 'mdx_extra',
'audfile': True,
'wavtype': 'PCM_16',
'mp3bit': '320k',
}
default_chunks = data['chunks_d']
def update_progress(progress_var, total_files, file_num, step: float = 1):
"""Calculate the progress for the progress widget in the GUI"""
base = (100 / total_files)
progress = base * (file_num - 1)
progress += base * step
progress_var.set(progress)
def get_baseText(total_files, file_num):
"""Create the base text for the command widget"""
text = 'File {file_num}/{total_files} '.format(file_num=file_num,
total_files=total_files)
return text
warnings.filterwarnings("ignore")
cpu = torch.device('cpu')
def hide_opt():
with open(os.devnull, "w") as devnull:
old_stdout = sys.stdout
sys.stdout = devnull
try:
yield
finally:
sys.stdout = old_stdout
def main(window: tk.Wm, text_widget: tk.Text, button_widget: tk.Button, progress_var: tk.Variable,
**kwargs: dict):
global widget_text
global gui_progress_bar
global music_file
global default_chunks
global _basename
global _mixture
global progress_kwargs
global base_text
global model_set_name
global stemset_n
global channel_set
global margin_set
global overlap_set
global shift_set
global source_val
global split_mode
global wav_type_set
global flac_type_set
global mp3_bit_set
global normalization_set
wav_type_set = data['wavtype']
# Update default settings
default_chunks = data['chunks_d']
widget_text = text_widget
gui_progress_bar = progress_var
#Error Handling
onnxmissing = "[ONNXRuntimeError] : 3 : NO_SUCHFILE"
onnxmemerror = "onnxruntime::CudaCall CUDA failure 2: out of memory"
onnxmemerror2 = "onnxruntime::BFCArena::AllocateRawInternal"
systemmemerr = "DefaultCPUAllocator: not enough memory"
runtimeerr = "CUDNN error executing cudnnSetTensorNdDescriptor"
cuda_err = "CUDA out of memory"
mod_err = "ModuleNotFoundError"
file_err = "FileNotFoundError"
ffmp_err = """audioread\__init__.py", line 116, in audio_open"""
sf_write_err = "sf.write"
model_adv_set_err = "Got invalid dimensions for input"
try:
with open('errorlog.txt', 'w') as f:
f.write(f'No errors to report at this time.' + f'\n\nLast Process Method Used: MDX-Net' +
f'\nLast Conversion Time Stamp: [{datetime.now().strftime("%Y-%m-%d %H:%M:%S")}]\n')
except:
pass
timestampnum = round(datetime.utcnow().timestamp())
randomnum = randrange(100000, 1000000)
data.update(kwargs)
if data['wavtype'] == '32-bit Float':
wav_type_set = 'FLOAT'
elif data['wavtype'] == '64-bit Float':
wav_type_set = 'DOUBLE'
else:
wav_type_set = data['wavtype']
flac_type_set = data['flactype']
mp3_bit_set = data['mp3bit']
if data['normalize'] == True:
normalization_set = spec_utils.normalize
print('normalization on')
else:
normalization_set = spec_utils.nonormalize
print('normalization off')
stime = time.perf_counter()
progress_var.set(0)
text_widget.clear()
button_widget.configure(state=tk.DISABLED) # Disable Button
try: #Load File(s)
for file_num, music_file in tqdm(enumerate(data['input_paths'], start=1)):
if data['wavtype'] == '64-bit Float':
if data['saveFormat'] == 'Flac':
text_widget.write('Please select \"WAV\" as your save format to use 64-bit Float.\n')
text_widget.write(f'Time Elapsed: {time.strftime("%H:%M:%S", time.gmtime(int(time.perf_counter() - stime)))}')
progress_var.set(0)
button_widget.configure(state=tk.NORMAL) # Enable Button
return
if data['wavtype'] == '64-bit Float':
if data['saveFormat'] == 'Mp3':
text_widget.write('Please select \"WAV\" as your save format to use 64-bit Float.\n')
text_widget.write(f'Time Elapsed: {time.strftime("%H:%M:%S", time.gmtime(int(time.perf_counter() - stime)))}')
progress_var.set(0)
button_widget.configure(state=tk.NORMAL) # Enable Button
return
model_set_name = data['DemucsModel']
if data['demucs_stems'] == 'Vocals':
source_val = 3
stemset_n = '(Vocals)'
if data['demucs_stems'] == 'Other':
if 'UVR' in model_set_name:
source_val = 0
stemset_n = '(Instrumental)'
else:
source_val = 2
stemset_n = '(Other)'
if data['demucs_stems'] == 'Drums':
if 'UVR' in model_set_name:
text_widget.write('You can only choose "Vocals" or "Other" stems when using this model.\n')
text_widget.write('Please select one of the stock Demucs models and try again.\n\n')
text_widget.write(f'Time Elapsed: {time.strftime("%H:%M:%S", time.gmtime(int(time.perf_counter() - stime)))}')
progress_var.set(0)
button_widget.configure(state=tk.NORMAL) # Enable Button
return
else:
source_val = 1
stemset_n = '(Drums)'
if data['demucs_stems'] == 'Bass':
if 'UVR' in model_set_name:
text_widget.write('You can only choose "Vocals" or "Other" stems when using this model.\n')
text_widget.write('Please select one of the stock Demucs models and try again.\n\n')
text_widget.write(f'Time Elapsed: {time.strftime("%H:%M:%S", time.gmtime(int(time.perf_counter() - stime)))}')
progress_var.set(0)
button_widget.configure(state=tk.NORMAL) # Enable Button
return
else:
source_val = 0
stemset_n = '(Bass)'
if data['demucs_stems'] == 'All Stems':
source_val = 3
stemset_n = '(Instrumental)'
overlap_set = float(data['overlap_b'])
channel_set = int(data['channel'])
margin_set = int(data['margin'])
shift_set = int(data['shifts_b'])
split_mode = data['split_mode']
def determinemusicfileFolderName():
"""
Determine the name that is used for the folder and appended
to the back of the music files
"""
songFolderName = ''
if str(music_file):
songFolderName += os.path.splitext(os.path.basename(music_file))[0]
if songFolderName:
songFolderName = '/' + songFolderName
return songFolderName
def determinemodelFolderName():
"""
Determine the name that is used for the folder and appended
to the back of the music files
"""
modelFolderName = ''
if str(model_set_name):
modelFolderName += os.path.splitext(os.path.basename(model_set_name))[0]
if modelFolderName:
modelFolderName = '/' + modelFolderName
return modelFolderName
if data['audfile'] == True:
modelFolderName = determinemodelFolderName()
songFolderName = determinemusicfileFolderName()
if modelFolderName:
folder_path = f'{data["export_path"]}{modelFolderName}'
if not os.path.isdir(folder_path):
os.mkdir(folder_path)
if songFolderName:
folder_path = f'{data["export_path"]}{modelFolderName}{songFolderName}'
if not os.path.isdir(folder_path):
os.mkdir(folder_path)
_mixture = f'{data["input_paths"]}'
if data['settest']:
try:
_basename = f'{data["export_path"]}{modelFolderName}{songFolderName}/{str(timestampnum)}_{file_num}_{os.path.splitext(os.path.basename(music_file))[0]}'
except:
_basename = f'{data["export_path"]}{modelFolderName}{songFolderName}/{str(randomnum)}_{file_num}_{os.path.splitext(os.path.basename(music_file))[0]}'
else:
_basename = f'{data["export_path"]}{modelFolderName}{songFolderName}/{file_num}_{os.path.splitext(os.path.basename(music_file))[0]}'
else:
_mixture = f'{data["input_paths"]}'
if data['settest']:
try:
_basename = f'{data["export_path"]}/{str(timestampnum)}_{file_num}_{model_set_name}_{os.path.splitext(os.path.basename(music_file))[0]}'
except:
_basename = f'{data["export_path"]}/{str(randomnum)}{file_num}_{model_set_name}_{os.path.splitext(os.path.basename(music_file))[0]}'
else:
_basename = f'{data["export_path"]}/{file_num}_{os.path.splitext(os.path.basename(music_file))[0]}'
#if ('models/MDX_Net_Models/' + model_set + '.onnx')
# -Get text and update progress-
base_text = get_baseText(total_files=len(data['input_paths']),
file_num=file_num)
progress_kwargs = {'progress_var': progress_var,
'total_files': len(data['input_paths']),
'file_num': file_num}
try:
total, used, free = shutil.disk_usage("/")
total_space = int(total/1.074e+9)
used_space = int(used/1.074e+9)
free_space = int(free/1.074e+9)
if int(free/1.074e+9) <= int(2):
text_widget.write('Error: Not enough storage on main drive to continue. Your main drive must have \nat least 3 GB\'s of storage in order for this application function properly. \n\nPlease ensure your main drive has at least 3 GB\'s of storage and try again.\n\n')
text_widget.write('Detected Total Space: ' + str(total_space) + ' GB' + '\n')
text_widget.write('Detected Used Space: ' + str(used_space) + ' GB' + '\n')
text_widget.write('Detected Free Space: ' + str(free_space) + ' GB' + '\n')
progress_var.set(0)
button_widget.configure(state=tk.NORMAL) # Enable Button
return
if int(free/1.074e+9) in [3, 4, 5, 6, 7, 8]:
text_widget.write('Warning: Your main drive is running low on storage. Your main drive must have \nat least 3 GB\'s of storage in order for this application function properly.\n\n')
text_widget.write('Detected Total Space: ' + str(total_space) + ' GB' + '\n')
text_widget.write('Detected Used Space: ' + str(used_space) + ' GB' + '\n')
text_widget.write('Detected Free Space: ' + str(free_space) + ' GB' + '\n\n')
except:
pass
update_progress(**progress_kwargs,
step=0)
e = os.path.join(data["export_path"])
demucsmodel = 'models/Demucs_Models/' + str(data['DemucsModel'])
pred = Predictor()
pred.prediction_setup()
# split
pred.prediction(
m=music_file,
)
except Exception as e:
traceback_text = ''.join(traceback.format_tb(e.__traceback__))
message = f'Traceback Error: "{traceback_text}"\n{type(e).__name__}: "{e}"\n'
if runtimeerr in message:
text_widget.write("\n" + base_text + f'Separation failed for the following audio file:\n')
text_widget.write(base_text + f'"{os.path.basename(music_file)}"\n')
text_widget.write(f'\nError Received:\n\n')
text_widget.write(f'Your PC cannot process this audio file with the chunk size selected.\nPlease lower the chunk size and try again.\n\n')
text_widget.write(f'If this error persists, please contact the developers.\n\n')
text_widget.write(f'Time Elapsed: {time.strftime("%H:%M:%S", time.gmtime(int(time.perf_counter() - stime)))}')
try:
with open('errorlog.txt', 'w') as f:
f.write(f'Last Error Received:\n\n' +
f'Error Received while processing "{os.path.basename(music_file)}":\n' +
f'Process Method: Demucs v3\n\n' +
f'Your PC cannot process this audio file with the chunk size selected.\nPlease lower the chunk size and try again.\n\n' +
f'If this error persists, please contact the developers.\n\n' +
f'Raw error details:\n\n' +
message + f'\nError Time Stamp: [{datetime.now().strftime("%Y-%m-%d %H:%M:%S")}]\n')
except:
pass
torch.cuda.empty_cache()
progress_var.set(0)
button_widget.configure(state=tk.NORMAL) # Enable Button
return
if cuda_err in message:
text_widget.write("\n" + base_text + f'Separation failed for the following audio file:\n')
text_widget.write(base_text + f'"{os.path.basename(music_file)}"\n')
text_widget.write(f'\nError Received:\n\n')
text_widget.write(f'The application was unable to allocate enough GPU memory to use this model.\n')
text_widget.write(f'Please close any GPU intensive applications and try again.\n')
text_widget.write(f'If the error persists, your GPU might not be supported.\n\n')
text_widget.write(f'Time Elapsed: {time.strftime("%H:%M:%S", time.gmtime(int(time.perf_counter() - stime)))}')
try:
with open('errorlog.txt', 'w') as f:
f.write(f'Last Error Received:\n\n' +
f'Error Received while processing "{os.path.basename(music_file)}":\n' +
f'Process Method: Demucs v3\n\n' +
f'The application was unable to allocate enough GPU memory to use this model.\n' +
f'Please close any GPU intensive applications and try again.\n' +
f'If the error persists, your GPU might not be supported.\n\n' +
f'Raw error details:\n\n' +
message + f'\nError Time Stamp [{datetime.now().strftime("%Y-%m-%d %H:%M:%S")}]\n')
except:
pass
torch.cuda.empty_cache()
progress_var.set(0)
button_widget.configure(state=tk.NORMAL) # Enable Button
return
if mod_err in message:
text_widget.write("\n" + base_text + f'Separation failed for the following audio file:\n')
text_widget.write(base_text + f'"{os.path.basename(music_file)}"\n')
text_widget.write(f'\nError Received:\n\n')
text_widget.write(f'Application files(s) are missing.\n')
text_widget.write("\n" + f'{type(e).__name__} - "{e}"' + "\n\n")
text_widget.write(f'Please check for missing files/scripts in the app directory and try again.\n')
text_widget.write(f'If the error persists, please reinstall application or contact the developers.\n\n')
text_widget.write(f'Time Elapsed: {time.strftime("%H:%M:%S", time.gmtime(int(time.perf_counter() - stime)))}')
try:
with open('errorlog.txt', 'w') as f:
f.write(f'Last Error Received:\n\n' +
f'Error Received while processing "{os.path.basename(music_file)}":\n' +
f'Process Method: Demucs v3\n\n' +
f'Application files(s) are missing.\n' +
f'Please check for missing files/scripts in the app directory and try again.\n' +
f'If the error persists, please reinstall application or contact the developers.\n\n' +
message + f'\nError Time Stamp [{datetime.now().strftime("%Y-%m-%d %H:%M:%S")}]\n')
except:
pass
torch.cuda.empty_cache()
progress_var.set(0)
button_widget.configure(state=tk.NORMAL) # Enable Button
return
if file_err in message:
text_widget.write("\n" + base_text + f'Separation failed for the following audio file:\n')
text_widget.write(base_text + f'"{os.path.basename(music_file)}"\n')
text_widget.write(f'\nError Received:\n\n')
text_widget.write(f'Missing file error raised.\n')
text_widget.write("\n" + f'{type(e).__name__} - "{e}"' + "\n\n")
text_widget.write("\n" + f'Please address the error and try again.' + "\n")
text_widget.write(f'If this error persists, please contact the developers.\n\n')
text_widget.write(f'Time Elapsed: {time.strftime("%H:%M:%S", time.gmtime(int(time.perf_counter() - stime)))}')
torch.cuda.empty_cache()
try:
with open('errorlog.txt', 'w') as f:
f.write(f'Last Error Received:\n\n' +
f'Error Received while processing "{os.path.basename(music_file)}":\n' +
f'Process Method: Demucs v3\n\n' +
f'Missing file error raised.\n' +
"\n" + f'Please address the error and try again.' + "\n" +
f'If this error persists, please contact the developers.\n\n' +
message + f'\nError Time Stamp [{datetime.now().strftime("%Y-%m-%d %H:%M:%S")}]\n')
except:
pass
progress_var.set(0)
button_widget.configure(state=tk.NORMAL) # Enable Button
return
if ffmp_err in message:
text_widget.write("\n" + base_text + f'Separation failed for the following audio file:\n')
text_widget.write(base_text + f'"{os.path.basename(music_file)}"\n')
text_widget.write(f'\nError Received:\n\n')
text_widget.write(f'The input file type is not supported or FFmpeg is missing.\n')
text_widget.write(f'Please select a file type supported by FFmpeg and try again.\n\n')
text_widget.write(f'If FFmpeg is missing or not installed, you will only be able to process \".wav\" files \nuntil it is available on this system.\n\n')
text_widget.write(f'See the \"More Info\" tab in the Help Guide.\n\n')
text_widget.write(f'If this error persists, please contact the developers.\n\n')
text_widget.write(f'Time Elapsed: {time.strftime("%H:%M:%S", time.gmtime(int(time.perf_counter() - stime)))}')
torch.cuda.empty_cache()
try:
with open('errorlog.txt', 'w') as f:
f.write(f'Last Error Received:\n\n' +
f'Error Received while processing "{os.path.basename(music_file)}":\n' +
f'Process Method: Demucs v3\n\n' +
f'The input file type is not supported or FFmpeg is missing.\nPlease select a file type supported by FFmpeg and try again.\n\n' +
f'If FFmpeg is missing or not installed, you will only be able to process \".wav\" files until it is available on this system.\n\n' +
f'See the \"More Info\" tab in the Help Guide.\n\n' +
f'If this error persists, please contact the developers.\n\n' +
message + f'\nError Time Stamp [{datetime.now().strftime("%Y-%m-%d %H:%M:%S")}]\n')
except:
pass
progress_var.set(0)
button_widget.configure(state=tk.NORMAL) # Enable Button
return
if onnxmissing in message:
text_widget.write("\n" + base_text + f'Separation failed for the following audio file:\n')
text_widget.write(base_text + f'"{os.path.basename(music_file)}"\n')
text_widget.write(f'\nError Received:\n\n')
text_widget.write(f'The application could not detect this MDX-Net model on your system.\n')
text_widget.write(f'Please make sure all the models are present in the correct directory.\n')
text_widget.write(f'If the error persists, please reinstall application or contact the developers.\n\n')
text_widget.write(f'Time Elapsed: {time.strftime("%H:%M:%S", time.gmtime(int(time.perf_counter() - stime)))}')
try:
with open('errorlog.txt', 'w') as f:
f.write(f'Last Error Received:\n\n' +
f'Error Received while processing "{os.path.basename(music_file)}":\n' +
f'Process Method: Demucs v3\n\n' +
f'The application could not detect this MDX-Net model on your system.\n' +
f'Please make sure all the models are present in the correct directory.\n' +
f'If the error persists, please reinstall application or contact the developers.\n\n' +
message + f'\nError Time Stamp [{datetime.now().strftime("%Y-%m-%d %H:%M:%S")}]\n')
except:
pass
torch.cuda.empty_cache()
progress_var.set(0)
button_widget.configure(state=tk.NORMAL) # Enable Button
return
if onnxmemerror in message:
text_widget.write("\n" + base_text + f'Separation failed for the following audio file:\n')
text_widget.write(base_text + f'"{os.path.basename(music_file)}"\n')
text_widget.write(f'\nError Received:\n\n')
text_widget.write(f'The application was unable to allocate enough GPU memory to use this model.\n')
text_widget.write(f'Please do the following:\n\n1. Close any GPU intensive applications.\n2. Lower the set chunk size.\n3. Then try again.\n\n')
text_widget.write(f'If the error persists, your GPU might not be supported.\n\n')
text_widget.write(f'Time Elapsed: {time.strftime("%H:%M:%S", time.gmtime(int(time.perf_counter() - stime)))}')
try:
with open('errorlog.txt', 'w') as f:
f.write(f'Last Error Received:\n\n' +
f'Error Received while processing "{os.path.basename(music_file)}":\n' +
f'Process Method: Demucs v3\n\n' +
f'The application was unable to allocate enough GPU memory to use this model.\n' +
f'Please do the following:\n\n1. Close any GPU intensive applications.\n2. Lower the set chunk size.\n3. Then try again.\n\n' +
f'If the error persists, your GPU might not be supported.\n\n' +
message + f'\nError Time Stamp [{datetime.now().strftime("%Y-%m-%d %H:%M:%S")}]\n')
except:
pass
torch.cuda.empty_cache()
progress_var.set(0)
button_widget.configure(state=tk.NORMAL) # Enable Button
return
if onnxmemerror2 in message:
text_widget.write("\n" + base_text + f'Separation failed for the following audio file:\n')
text_widget.write(base_text + f'"{os.path.basename(music_file)}"\n')
text_widget.write(f'\nError Received:\n\n')
text_widget.write(f'The application was unable to allocate enough GPU memory to use this model.\n')
text_widget.write(f'Please do the following:\n\n1. Close any GPU intensive applications.\n2. Lower the set chunk size.\n3. Then try again.\n\n')
text_widget.write(f'If the error persists, your GPU might not be supported.\n\n')
text_widget.write(f'Time Elapsed: {time.strftime("%H:%M:%S", time.gmtime(int(time.perf_counter() - stime)))}')
try:
with open('errorlog.txt', 'w') as f:
f.write(f'Last Error Received:\n\n' +
f'Error Received while processing "{os.path.basename(music_file)}":\n' +
f'Process Method: Demucs v3\n\n' +
f'The application was unable to allocate enough GPU memory to use this model.\n' +
f'Please do the following:\n\n1. Close any GPU intensive applications.\n2. Lower the set chunk size.\n3. Then try again.\n\n' +
f'If the error persists, your GPU might not be supported.\n\n' +
message + f'\nError Time Stamp [{datetime.now().strftime("%Y-%m-%d %H:%M:%S")}]\n')
except:
pass
torch.cuda.empty_cache()
progress_var.set(0)
button_widget.configure(state=tk.NORMAL) # Enable Button
return
if sf_write_err in message:
text_widget.write("\n" + base_text + f'Separation failed for the following audio file:\n')
text_widget.write(base_text + f'"{os.path.basename(music_file)}"\n')
text_widget.write(f'\nError Received:\n\n')
text_widget.write(f'Could not write audio file.\n')
text_widget.write(f'This could be due to low storage on target device or a system permissions issue.\n')
text_widget.write(f"\nFor raw error details, go to the Error Log tab in the Help Guide.\n")
text_widget.write(f'\nIf the error persists, please contact the developers.\n\n')
text_widget.write(f'Time Elapsed: {time.strftime("%H:%M:%S", time.gmtime(int(time.perf_counter() - stime)))}')
try:
with open('errorlog.txt', 'w') as f:
f.write(f'Last Error Received:\n\n' +
f'Error Received while processing "{os.path.basename(music_file)}":\n' +
f'Process Method: Demucs v3\n\n' +
f'Could not write audio file.\n' +
f'This could be due to low storage on target device or a system permissions issue.\n' +
f'If the error persists, please contact the developers.\n\n' +
message + f'\nError Time Stamp [{datetime.now().strftime("%Y-%m-%d %H:%M:%S")}]\n')
except:
pass
torch.cuda.empty_cache()
progress_var.set(0)
button_widget.configure(state=tk.NORMAL) # Enable Button
return
if systemmemerr in message:
text_widget.write("\n" + base_text + f'Separation failed for the following audio file:\n')
text_widget.write(base_text + f'"{os.path.basename(music_file)}"\n')
text_widget.write(f'\nError Received:\n\n')
text_widget.write(f'The application was unable to allocate enough system memory to use this \nmodel.\n\n')
text_widget.write(f'Please do the following:\n\n1. Restart this application.\n2. Ensure any CPU intensive applications are closed.\n3. Then try again.\n\n')
text_widget.write(f'Please Note: Intel Pentium and Intel Celeron processors do not work well with \nthis application.\n\n')
text_widget.write(f'If the error persists, the system may not have enough RAM, or your CPU might \nnot be supported.\n\n')
text_widget.write(f'Time Elapsed: {time.strftime("%H:%M:%S", time.gmtime(int(time.perf_counter() - stime)))}')
try:
with open('errorlog.txt', 'w') as f:
f.write(f'Last Error Received:\n\n' +
f'Error Received while processing "{os.path.basename(music_file)}":\n' +
f'Process Method: Demucs v3\n\n' +
f'The application was unable to allocate enough system memory to use this model.\n' +
f'Please do the following:\n\n1. Restart this application.\n2. Ensure any CPU intensive applications are closed.\n3. Then try again.\n\n' +
f'Please Note: Intel Pentium and Intel Celeron processors do not work well with this application.\n\n' +
f'If the error persists, the system may not have enough RAM, or your CPU might \nnot be supported.\n\n' +
message + f'\nError Time Stamp [{datetime.now().strftime("%Y-%m-%d %H:%M:%S")}]\n')
except:
pass
torch.cuda.empty_cache()
progress_var.set(0)
button_widget.configure(state=tk.NORMAL) # Enable Button
return
if model_adv_set_err in message:
text_widget.write("\n" + base_text + f'Separation failed for the following audio file:\n')
text_widget.write(base_text + f'"{os.path.basename(music_file)}"\n')
text_widget.write(f'\nError Received:\n\n')
text_widget.write(f'The current ONNX model settings are not compatible with the selected \nmodel.\n\n')
text_widget.write(f'Please re-configure the advanced ONNX model settings accordingly and try \nagain.\n\n')
text_widget.write(f'Time Elapsed: {time.strftime("%H:%M:%S", time.gmtime(int(time.perf_counter() - stime)))}')
try:
with open('errorlog.txt', 'w') as f:
f.write(f'Last Error Received:\n\n' +
f'Error Received while processing "{os.path.basename(music_file)}":\n' +
f'Process Method: Demucs v3\n\n' +
f'The current ONNX model settings are not compatible with the selected model.\n\n' +
f'Please re-configure the advanced ONNX model settings accordingly and try again.\n\n' +
message + f'\nError Time Stamp [{datetime.now().strftime("%Y-%m-%d %H:%M:%S")}]\n')
except:
pass
torch.cuda.empty_cache()
progress_var.set(0)
button_widget.configure(state=tk.NORMAL) # Enable Button
return
print(traceback_text)
print(type(e).__name__, e)
print(message)
try:
with open('errorlog.txt', 'w') as f:
f.write(f'Last Error Received:\n\n' +
f'Error Received while processing "{os.path.basename(music_file)}":\n' +
f'Process Method: Demucs v3\n\n' +
f'If this error persists, please contact the developers with the error details.\n\n' +
message + f'\nError Time Stamp [{datetime.now().strftime("%Y-%m-%d %H:%M:%S")}]\n')
except:
tk.messagebox.showerror(master=window,
title='Error Details',
message=message)
progress_var.set(0)
text_widget.write("\n" + base_text + f'Separation failed for the following audio file:\n')
text_widget.write(base_text + f'"{os.path.basename(music_file)}"\n')
text_widget.write(f'\nError Received:\n')
text_widget.write("\nFor raw error details, go to the Error Log tab in the Help Guide.\n")
text_widget.write("\n" + f'Please address the error and try again.' + "\n")
text_widget.write(f'If this error persists, please contact the developers with the error details.\n\n')
text_widget.write(f'Time Elapsed: {time.strftime("%H:%M:%S", time.gmtime(int(time.perf_counter() - stime)))}')
try:
torch.cuda.empty_cache()
except:
pass
button_widget.configure(state=tk.NORMAL) # Enable Button
return
progress_var.set(0)
text_widget.write(f'\nConversion(s) Completed!\n')
text_widget.write(f'Time Elapsed: {time.strftime("%H:%M:%S", time.gmtime(int(time.perf_counter() - stime)))}') # nopep8
torch.cuda.empty_cache()
button_widget.configure(state=tk.NORMAL) # Enable Button
if __name__ == '__main__':
start_time = time.time()
main()
print("Successfully completed music demixing.");print('Total time: {0:.{1}f}s'.format(time.time() - start_time, 1))