2020-07-20 16:52:35 -05:00

224 lines
8.2 KiB
Python

import argparse
from datetime import datetime as dt
import gc
import json
import os
import random
import numpy as np
import torch
import torch.nn as nn
from lib import dataset
from lib import nets
from lib import spec_utils
def train_val_split(mix_dir, inst_dir, val_rate, val_filelist_json):
input_exts = ['.wav', '.m4a', '.3gp', '.oma', '.mp3', '.mp4']
X_list = sorted([
os.path.join(mix_dir, fname)
for fname in os.listdir(mix_dir)
if os.path.splitext(fname)[1] in input_exts])
y_list = sorted([
os.path.join(inst_dir, fname)
for fname in os.listdir(inst_dir)
if os.path.splitext(fname)[1] in input_exts])
filelist = list(zip(X_list, y_list))
random.shuffle(filelist)
val_filelist = []
if val_filelist_json is not None:
with open(val_filelist_json, 'r', encoding='utf8') as f:
val_filelist = json.load(f)
if len(val_filelist) == 0:
val_size = int(len(filelist) * val_rate)
train_filelist = filelist[:-val_size]
val_filelist = filelist[-val_size:]
else:
train_filelist = [
pair for pair in filelist
if list(pair) not in val_filelist]
return train_filelist, val_filelist
def train_inner_epoch(X_train, y_train, model, optimizer, batchsize, instance_loss):
sum_loss = 0
model.train()
aux_crit = nn.L1Loss()
criterion = nn.L1Loss(reduction='none')
perm = np.random.permutation(len(X_train))
for i in range(0, len(X_train), batchsize):
local_perm = perm[i: i + batchsize]
X_batch = torch.from_numpy(X_train[local_perm]).cpu()
y_batch = torch.from_numpy(y_train[local_perm]).cpu()
model.zero_grad()
mask, aux = model(X_batch)
aux_loss = aux_crit(X_batch * aux, y_batch)
X_batch = spec_utils.crop_center(mask, X_batch, False)
y_batch = spec_utils.crop_center(mask, y_batch, False)
abs_diff = criterion(X_batch * mask, y_batch)
loss = abs_diff.mean() * 0.9 + aux_loss * 0.1
loss.backward()
optimizer.step()
abs_diff_np = abs_diff.detach().cpu().numpy()
instance_loss[local_perm] += abs_diff_np.mean(axis=(1, 2, 3))
sum_loss += float(loss.detach().cpu().numpy()) * len(X_batch)
return sum_loss / len(X_train)
def val_inner_epoch(dataloader, model):
sum_loss = 0
model.eval()
criterion = nn.L1Loss()
with torch.no_grad():
for X_batch, y_batch in dataloader:
X_batch = X_batch.cpu()
y_batch = y_batch.cpu()
mask = model.predict(X_batch)
X_batch = spec_utils.crop_center(mask, X_batch, False)
y_batch = spec_utils.crop_center(mask, y_batch, False)
loss = criterion(X_batch * mask, y_batch)
sum_loss += float(loss.detach().cpu().numpy()) * len(X_batch)
return sum_loss / len(dataloader.dataset)
def main():
p = argparse.ArgumentParser()
p.add_argument('--gpu', '-g', type=int, default=-1)
p.add_argument('--seed', '-s', type=int, default=2019)
p.add_argument('--sr', '-r', type=int, default=44100)
p.add_argument('--hop_length', '-l', type=int, default=1024)
p.add_argument('--mixture_dataset', '-m', required=True)
p.add_argument('--instrumental_dataset', '-i', required=True)
p.add_argument('--learning_rate', type=float, default=0.001)
p.add_argument('--lr_min', type=float, default=0.0001)
p.add_argument('--lr_decay_factor', type=float, default=0.9)
p.add_argument('--lr_decay_patience', type=int, default=6)
p.add_argument('--batchsize', '-B', type=int, default=4)
p.add_argument('--cropsize', '-c', type=int, default=256)
p.add_argument('--val_rate', '-v', type=float, default=0.1)
p.add_argument('--val_filelist', '-V', type=str, default=None)
p.add_argument('--val_batchsize', '-b', type=int, default=4)
p.add_argument('--val_cropsize', '-C', type=int, default=512)
p.add_argument('--patches', '-p', type=int, default=16)
p.add_argument('--epoch', '-E', type=int, default=100)
p.add_argument('--inner_epoch', '-e', type=int, default=4)
p.add_argument('--oracle_rate', '-O', type=float, default=0)
p.add_argument('--oracle_drop_rate', '-o', type=float, default=0.5)
p.add_argument('--mixup_rate', '-M', type=float, default=0.0)
p.add_argument('--mixup_alpha', '-a', type=float, default=1.0)
p.add_argument('--pretrained_model', '-P', type=str, default=None)
p.add_argument('--debug', '-d', action='store_true')
args = p.parse_args()
random.seed(args.seed)
np.random.seed(args.seed)
torch.manual_seed(args.seed)
timestamp = dt.now().strftime('%Y%m%d%H%M%S')
model = nets.CascadedASPPNet()
if args.pretrained_model is not None:
model.load_state_dict(torch.load(args.pretrained_model))
if args.gpu >= 0:
model.cuda()
optimizer = torch.optim.Adam(model.parameters(), lr=args.learning_rate)
scheduler = torch.optim.lr_scheduler.ReduceLROnPlateau(
optimizer,
factor=args.lr_decay_factor,
patience=args.lr_decay_patience,
min_lr=args.lr_min,
verbose=True)
train_filelist, val_filelist = train_val_split(
mix_dir=args.mixture_dataset,
inst_dir=args.instrumental_dataset,
val_rate=args.val_rate,
val_filelist_json=args.val_filelist)
if args.debug:
print('### DEBUG MODE')
train_filelist = train_filelist[:1]
val_filelist = val_filelist[:1]
with open('val_{}.json'.format(timestamp), 'w', encoding='utf8') as f:
json.dump(val_filelist, f, ensure_ascii=False)
for i, (X_fname, y_fname) in enumerate(val_filelist):
print(i + 1, os.path.basename(X_fname), os.path.basename(y_fname))
val_dataset = dataset.make_validation_set(
filelist=val_filelist,
cropsize=args.val_cropsize,
sr=args.sr,
hop_length=args.hop_length,
offset=model.offset)
val_dataloader = torch.utils.data.DataLoader(
dataset=val_dataset,
batch_size=args.val_batchsize,
shuffle=False,
num_workers=4)
log = []
oracle_X = None
oracle_y = None
best_loss = np.inf
for epoch in range(args.epoch):
X_train, y_train = dataset.make_training_set(
train_filelist, args.cropsize, args.patches, args.sr, args.hop_length, model.offset)
X_train, y_train = dataset.mixup_generator(
X_train, y_train, args.mixup_rate, args.mixup_alpha)
if oracle_X is not None and oracle_y is not None:
perm = np.random.permutation(len(oracle_X))
X_train[perm] = oracle_X
y_train[perm] = oracle_y
print('# epoch', epoch)
instance_loss = np.zeros(len(X_train), dtype=np.float32)
for inner_epoch in range(args.inner_epoch):
print(' * inner epoch {}'.format(inner_epoch))
train_loss = train_inner_epoch(
X_train, y_train, model, optimizer, args.batchsize, instance_loss)
val_loss = val_inner_epoch(val_dataloader, model)
print(' * training loss = {:.6f}, validation loss = {:.6f}'
.format(train_loss * 1000, val_loss * 1000))
scheduler.step(val_loss)
if val_loss < best_loss:
best_loss = val_loss
print(' * best validation loss')
model_path = 'models/model_iter{}.pth'.format(epoch)
torch.save(model.state_dict(), model_path)
log.append([train_loss, val_loss])
with open('log_{}.json'.format(timestamp), 'w', encoding='utf8') as f:
json.dump(log, f, ensure_ascii=False)
if args.oracle_rate > 0:
instance_loss /= args.inner_epoch
oracle_X, oracle_y, idx = dataset.get_oracle_data(
X_train, y_train, instance_loss, args.oracle_rate, args.oracle_drop_rate)
print(' * oracle loss = {:.6f}'.format(instance_loss[idx].mean()))
del X_train, y_train
gc.collect()
if __name__ == '__main__':
main()