import functools import os import cv2 import numpy as np import torch import torch.nn as nn import torch.nn.functional as F import torch.nn.init as init device = 'dml' result_path = os.getcwd()+'/baboon_upscaled.png' img = os.getcwd()+'/baboon.png' backend = 'GPU' def make_layer(block, n_layers): layers = [] for _ in range(n_layers): layers.append(block()) return nn.Sequential(*layers) class ResidualDenseBlock_5C(nn.Module): def __init__(self, nf=64, gc=32, bias=True): super(ResidualDenseBlock_5C, self).__init__() # gc: growth channel, i.e. intermediate channels self.conv1 = nn.Conv2d(nf, gc, 3, 1, 1, bias=bias) self.conv2 = nn.Conv2d(nf + gc, gc, 3, 1, 1, bias=bias) self.conv3 = nn.Conv2d(nf + 2 * gc, gc, 3, 1, 1, bias=bias) self.conv4 = nn.Conv2d(nf + 3 * gc, gc, 3, 1, 1, bias=bias) self.conv5 = nn.Conv2d(nf + 4 * gc, nf, 3, 1, 1, bias=bias) self.lrelu = nn.LeakyReLU(negative_slope=0.2, inplace=True) # initialization initialize_weights( [self.conv1, self.conv2, self.conv3, self.conv4, self.conv5], 0.1) def forward(self, x): x1 = self.lrelu(self.conv1(x)) x2 = self.lrelu(self.conv2(torch.cat((x, x1), 1))) x3 = self.lrelu(self.conv3(torch.cat((x, x1, x2), 1))) x4 = self.lrelu(self.conv4(torch.cat((x, x1, x2, x3), 1))) x5 = self.conv5(torch.cat((x, x1, x2, x3, x4), 1)) return x5 * 0.2 + x class RRDB(nn.Module): '''Residual in Residual Dense Block''' def __init__(self, nf, gc=32): super(RRDB, self).__init__() self.RDB1 = ResidualDenseBlock_5C(nf, gc) self.RDB2 = ResidualDenseBlock_5C(nf, gc) self.RDB3 = ResidualDenseBlock_5C(nf, gc) def forward(self, x): out = self.RDB1(x) out = self.RDB2(out) out = self.RDB3(out) return out * 0.2 + x class RRDBNet(nn.Module): def __init__(self, in_nc=3, out_nc=3, nf=64, nb=23, gc=32, sf=4): super(RRDBNet, self).__init__() RRDB_block_f = functools.partial(RRDB, nf=nf, gc=gc) self.sf = sf self.conv_first = nn.Conv2d(in_nc, nf, 3, 1, 1, bias=True) self.RRDB_trunk = make_layer(RRDB_block_f, nb) self.trunk_conv = nn.Conv2d(nf, nf, 3, 1, 1, bias=True) # upsampling self.upconv1 = nn.Conv2d(nf, nf, 3, 1, 1, bias=True) if self.sf == 4: self.upconv2 = nn.Conv2d(nf, nf, 3, 1, 1, bias=True) self.HRconv = nn.Conv2d(nf, nf, 3, 1, 1, bias=True) self.conv_last = nn.Conv2d(nf, out_nc, 3, 1, 1, bias=True) self.lrelu = nn.LeakyReLU(negative_slope=0.2, inplace=True) def forward(self, x): fea = self.conv_first(x) trunk = self.trunk_conv(self.RRDB_trunk(fea)) fea = fea + trunk fea = self.lrelu(self.upconv1(F.interpolate( fea, scale_factor=2, mode='nearest'))) if self.sf == 4: fea = self.lrelu(self.upconv2(F.interpolate( fea, scale_factor=2, mode='nearest'))) out = self.conv_last(self.lrelu(self.HRconv(fea))) return out def initialize_weights(net_l, scale=1): if not isinstance(net_l, list): net_l = [net_l] for net in net_l: for m in net.modules(): if isinstance(m, nn.Conv2d): init.kaiming_normal_(m.weight, a=0, mode='fan_in') m.weight.data *= scale # for residual block if m.bias is not None: m.bias.data.zero_() elif isinstance(m, nn.Linear): init.kaiming_normal_(m.weight, a=0, mode='fan_in') m.weight.data *= scale if m.bias is not None: m.bias.data.zero_() elif isinstance(m, nn.BatchNorm2d): init.constant_(m.weight, 1) init.constant_(m.bias.data, 0.0) def image_to_uint(path, n_channels=3): if n_channels == 1: img = cv2.imread(path, 0) # cv2.IMREAD_GRAYSCALE img = np.expand_dims(img, axis=2) # HxWx1 elif n_channels == 3: img = cv2.imread(path, cv2.IMREAD_UNCHANGED) # BGR or G if img.ndim == 2: img = cv2.cvtColor(img, cv2.COLOR_GRAY2RGB) # GGG else: img = cv2.cvtColor(img, cv2.COLOR_BGR2RGB) # RGB return img def uint_to_tensor4(img): if img.ndim == 2: img = np.expand_dims(img, axis=2) return torch.from_numpy(np.ascontiguousarray(img)).permute(2, 0, 1).float().div(255.).unsqueeze(0) def adapt_image_for_deeplearning(img, device): if 'cpu' in device: backend = torch.device('cpu') elif 'dml' in device: backend = torch.device('dml') img = image_to_uint(img, n_channels=3) img = uint_to_tensor4(img) img = img.to(backend, non_blocking=True) return img def tensor_to_uint(img): img = img.data.squeeze().float().clamp_(0, 1).cpu().numpy() if img.ndim == 3: img = np.transpose(img, (1, 2, 0)) return np.uint8((img*255.0).round()) def save_image(img, img_path): img = np.squeeze(img) if img.ndim == 3: img = img[:, :, [2, 1, 0]] cv2.imwrite(img_path, img) def prepare_AI_model(AI_model, device): if 'cpu' in device: backend = torch.device('cpu') elif 'dml' in device: backend = torch.device('dml') model_path = (r"C:\Users\ghosh\OneDrive\Documents\progams\QualityScaler\BSRGAN.pth") model = RRDBNet(in_nc=3, out_nc=3, nf=64, nb=23, gc=32, sf=4) model.load_state_dict(torch.load(model_path), strict=True) model.eval() for _, v in model.named_parameters(): v.requires_grad = False model = model.to(backend, non_blocking=True) return model model = prepare_AI_model('BSRGAN', device) img_adapted = adapt_image_for_deeplearning(img, device) img_upscaled = tensor_to_uint(model(img_adapted)) save_image(img_upscaled, result_path)