vgmstream/src/coding/libs/utkdec.c

605 lines
20 KiB
C
Raw Normal View History

2024-01-20 14:35:50 +01:00
#include <stdbool.h>
#include <stdlib.h>
#include <string.h>
#include "utkdec.h"
struct utk_context_t {
/* config */
utk_type_t type;
int parsed_header;
/* state */
struct bitreader_t {
const uint8_t* ptr;
uint32_t bits_value;
int bits_count;
/* extra (OG MT/CBX just loads ptr memory externally) */
const uint8_t* end;
void* arg;
uint8_t* buffer;
size_t buffer_size;
size_t (*read_callback)(void* dst, int size, void* arg);
} br;
bool reduced_bandwidth;
int multipulse_threshold;
float fixed_gains[64];
float rc_data[12];
float synth_history[12];
float subframes[324 + 432];
/* adapt_cb indexes may read from samples, join both + ptr to avoid
* struct aligment issues (typically doesn't matter but for completeness) */
float* adapt_cb; /* subframes + 0 */
float* samples; /* subframes + 324 */
};
/* bit mask; (1 << count) - 1 is probably faster now but OG code uses a table */
static const uint8_t mask_table[8] = {
0x01,0x03,0x07,0x0F,0x1F,0x3F,0x7F,0xFF
};
/* reflection coefficients, rounded that correspond to hex values in exes (actual float is longer)
* note this table is mirrored: for (i = 1 .. 32) t[64 - i] = -t[i]) */
static const float utk_rc_table[64] = {
/* 6b index start */
+0.000000, -0.996776, -0.990327, -0.983879,
-0.977431, -0.970982, -0.964534, -0.958085,
-0.951637, -0.930754, -0.904960, -0.879167,
-0.853373, -0.827579, -0.801786, -0.775992,
/* 5b index start */
-0.750198, -0.724405, -0.698611, -0.670635,
-0.619048, -0.567460, -0.515873, -0.464286,
-0.412698, -0.361111, -0.309524, -0.257937,
-0.206349, -0.154762, -0.103175, -0.051587,
+0.000000, +0.051587, +0.103175, +0.154762,
+0.206349, +0.257937, +0.309524, +0.361111,
+0.412698, +0.464286, +0.515873, +0.567460,
+0.619048, +0.670635, +0.698611, +0.724405,
+0.750198, +0.775992, +0.801786, +0.827579,
+0.853373, +0.879167, +0.904960, +0.930754,
+0.951637, +0.958085, +0.964534, +0.970982,
+0.977431, +0.983879, +0.990327, +0.996776,
};
static const uint8_t utk_codebooks[2][256] = {
/* normal model */
{
4, 6, 5, 9, 4, 6, 5, 13, 4, 6, 5, 10, 4, 6, 5, 17,
4, 6, 5, 9, 4, 6, 5, 14, 4, 6, 5, 10, 4, 6, 5, 21,
4, 6, 5, 9, 4, 6, 5, 13, 4, 6, 5, 10, 4, 6, 5, 18,
4, 6, 5, 9, 4, 6, 5, 14, 4, 6, 5, 10, 4, 6, 5, 25,
4, 6, 5, 9, 4, 6, 5, 13, 4, 6, 5, 10, 4, 6, 5, 17,
4, 6, 5, 9, 4, 6, 5, 14, 4, 6, 5, 10, 4, 6, 5, 22,
4, 6, 5, 9, 4, 6, 5, 13, 4, 6, 5, 10, 4, 6, 5, 18,
4, 6, 5, 9, 4, 6, 5, 14, 4, 6, 5, 10, 4, 6, 5, 0,
4, 6, 5, 9, 4, 6, 5, 13, 4, 6, 5, 10, 4, 6, 5, 17,
4, 6, 5, 9, 4, 6, 5, 14, 4, 6, 5, 10, 4, 6, 5, 21,
4, 6, 5, 9, 4, 6, 5, 13, 4, 6, 5, 10, 4, 6, 5, 18,
4, 6, 5, 9, 4, 6, 5, 14, 4, 6, 5, 10, 4, 6, 5, 26,
4, 6, 5, 9, 4, 6, 5, 13, 4, 6, 5, 10, 4, 6, 5, 17,
4, 6, 5, 9, 4, 6, 5, 14, 4, 6, 5, 10, 4, 6, 5, 22,
4, 6, 5, 9, 4, 6, 5, 13, 4, 6, 5, 10, 4, 6, 5, 18,
4, 6, 5, 9, 4, 6, 5, 14, 4, 6, 5, 10, 4, 6, 5, 2
},
/* large-pulse model */
{
4, 11, 7, 15, 4, 12, 8, 19, 4, 11, 7, 16, 4, 12, 8, 23,
4, 11, 7, 15, 4, 12, 8, 20, 4, 11, 7, 16, 4, 12, 8, 27,
4, 11, 7, 15, 4, 12, 8, 19, 4, 11, 7, 16, 4, 12, 8, 24,
4, 11, 7, 15, 4, 12, 8, 20, 4, 11, 7, 16, 4, 12, 8, 1,
4, 11, 7, 15, 4, 12, 8, 19, 4, 11, 7, 16, 4, 12, 8, 23,
4, 11, 7, 15, 4, 12, 8, 20, 4, 11, 7, 16, 4, 12, 8, 28,
4, 11, 7, 15, 4, 12, 8, 19, 4, 11, 7, 16, 4, 12, 8, 24,
4, 11, 7, 15, 4, 12, 8, 20, 4, 11, 7, 16, 4, 12, 8, 3,
4, 11, 7, 15, 4, 12, 8, 19, 4, 11, 7, 16, 4, 12, 8, 23,
4, 11, 7, 15, 4, 12, 8, 20, 4, 11, 7, 16, 4, 12, 8, 27,
4, 11, 7, 15, 4, 12, 8, 19, 4, 11, 7, 16, 4, 12, 8, 24,
4, 11, 7, 15, 4, 12, 8, 20, 4, 11, 7, 16, 4, 12, 8, 1,
4, 11, 7, 15, 4, 12, 8, 19, 4, 11, 7, 16, 4, 12, 8, 23,
4, 11, 7, 15, 4, 12, 8, 20, 4, 11, 7, 16, 4, 12, 8, 28,
4, 11, 7, 15, 4, 12, 8, 19, 4, 11, 7, 16, 4, 12, 8, 24,
4, 11, 7, 15, 4, 12, 8, 20, 4, 11, 7, 16, 4, 12, 8, 3
},
};
enum {
MDL_NORMAL = 0,
MDL_LARGEPULSE = 1
};
static const struct {
int next_model;
int code_size;
float pulse_value;
} utk_commands[29] = {
{MDL_LARGEPULSE, 8, 0.0f},
{MDL_LARGEPULSE, 7, 0.0f},
{MDL_NORMAL, 8, 0.0f},
{MDL_NORMAL, 7, 0.0f},
{MDL_NORMAL, 2, 0.0f},
{MDL_NORMAL, 2, -1.0f},
{MDL_NORMAL, 2, +1.0f},
{MDL_NORMAL, 3, -1.0f},
{MDL_NORMAL, 3, +1.0f},
{MDL_LARGEPULSE, 4, -2.0f},
{MDL_LARGEPULSE, 4, +2.0f},
{MDL_LARGEPULSE, 3, -2.0f},
{MDL_LARGEPULSE, 3, +2.0f},
{MDL_LARGEPULSE, 5, -3.0f},
{MDL_LARGEPULSE, 5, +3.0f},
{MDL_LARGEPULSE, 4, -3.0f},
{MDL_LARGEPULSE, 4, +3.0f},
{MDL_LARGEPULSE, 6, -4.0f},
{MDL_LARGEPULSE, 6, +4.0f},
{MDL_LARGEPULSE, 5, -4.0f},
{MDL_LARGEPULSE, 5, +4.0f},
{MDL_LARGEPULSE, 7, -5.0f},
{MDL_LARGEPULSE, 7, +5.0f},
{MDL_LARGEPULSE, 6, -5.0f},
{MDL_LARGEPULSE, 6, +5.0f},
{MDL_LARGEPULSE, 8, -6.0f},
{MDL_LARGEPULSE, 8, +6.0f},
{MDL_LARGEPULSE, 7, -6.0f},
{MDL_LARGEPULSE, 7, +6.0f}
};
static const float cbx_fixed_gains[64] = {
1.068, 68.351997, 72.999931, 77.963921,
83.265465, 88.927513, 94.974579, 101.43285,
108.33028, 115.69673, 123.5641, 131.96646,
140.94017, 150.52409, 160.75972, 171.69138,
183.36638, 195.83528, 209.15207, 223.3744,
238.56386, 254.78619, 272.11163, 290.6152,
310.37701, 331.48264, 354.02344, 378.09702,
403.80759, 431.26648, 460.59259, 491.91287,
525.36292, 561.08759, 599.24152, 639.98993,
683.50922, 729.98779, 779.62695, 832.64154,
889.26111, 949.73083, 1014.3125, 1083.2858,
1156.9491, 1235.6216, 1319.6438, 1409.3795,
1505.2173, 1607.572, 1716.8868, 1833.6351,
1958.3223, 2091.488, 2233.7092, 2385.6013,
2547.822, 2721.0737, 2906.1067, 3103.7219,
3314.7749, 3540.1794, 3780.9116, 4038.0134,
};
/* Bitreader in OG code can only read from set ptr; doesn't seem to check bounds though.
* Incidentally bitreader functions seem to be used only in MT and not in other EA stuff. */
static uint8_t read_byte(struct bitreader_t* br) {
if (br->ptr < br->end)
return *br->ptr++;
if (br->read_callback) {
size_t bytes_copied = br->read_callback(br->buffer, br->buffer_size, br->arg);
if (bytes_copied > 0 && bytes_copied <= br->buffer_size) {
br->ptr = br->buffer;
br->end = br->buffer + bytes_copied;
return *br->ptr++;
}
}
return 0;
}
static int16_t read_s16(struct bitreader_t* br) {
int x = read_byte(br);
x = (x << 8) | read_byte(br);
return x;
}
static void init_bits(struct bitreader_t* br) {
if (!br->bits_count) {
br->bits_value = read_byte(br);
br->bits_count = 8;
}
}
static uint8_t peek_bits(struct bitreader_t* br, int count) {
uint8_t mask = mask_table[count - 1];
return br->bits_value & mask;
}
/* assumes count <= 8, which is always true since sizes are known and don't depend on the bitstream. */
static uint8_t read_bits(struct bitreader_t* br, int count) {
uint8_t mask = mask_table[count - 1];
uint8_t ret = br->bits_value & mask;
br->bits_value >>= count;
br->bits_count -= count;
if (br->bits_count < 8) {
/* read another byte */
br->bits_value |= read_byte(br) << br->bits_count;
br->bits_count += 8;
}
return ret;
}
/* for clarity, as found in OG code (no return) */
static void consume_bits(struct bitreader_t* br, int count) {
read_bits(br, count);
}
static void parse_header(utk_context_t* ctx) {
if (ctx->type == UTK_CBX) {
/* CBX uses fixed parameters unlike EA-MT, probably encoder defaults for MT10:1 */
ctx->reduced_bandwidth = true;
ctx->multipulse_threshold = 32 - 8;
/* equivalent to EA-MT with base_gain = 8, base_mult = 28 (plus rounding diffs)
* then fixed_gain[0] is set to 1.068 afterwards.
* OG CBX code uses config/tables directly rather than copying though */
for (int i = 0; i < 64; i++) {
ctx->fixed_gains[i] = cbx_fixed_gains[i];
}
}
else {
ctx->reduced_bandwidth = read_bits(&ctx->br, 1) == 1;
int base_thre = read_bits(&ctx->br, 4);
int base_gain = read_bits(&ctx->br, 4);
int base_mult = read_bits(&ctx->br, 6);
ctx->multipulse_threshold = 32 - base_thre;
ctx->fixed_gains[0] = 8.0f * (1 + base_gain);
float multiplier = 1.04f + base_mult * 0.001f;
for (int i = 1; i < 64; i++) {
ctx->fixed_gains[i] = ctx->fixed_gains[i-1] * multiplier;
}
}
}
static void decode_excitation(utk_context_t* ctx, bool use_multipulse, float* out, int stride) {
int i = 0;
if (use_multipulse) {
/* multi-pulse model: n pulses are coded explicitly; the rest are zero */
int model = 0;
while (i < 108) {
int huffman_code = peek_bits(&ctx->br, 8); /* variable-length, may consume less */
int cmd = utk_codebooks[model][huffman_code];
model = utk_commands[cmd].next_model;
consume_bits(&ctx->br, utk_commands[cmd].code_size);
if (cmd > 3) {
/* insert a pulse with magnitude <= 6.0f */
out[i] = utk_commands[cmd].pulse_value;
i += stride;
}
else if (cmd > 1) {
/* insert between 7 and 70 zeros */
int count = 7 + read_bits(&ctx->br, 6);
if (i + count * stride > 108)
count = (108 - i) / stride;
while (count > 0) {
out[i] = 0.0f;
i += stride;
count--;
}
}
else {
/* insert a pulse with magnitude >= 7.0f */
int x = 7;
while (read_bits(&ctx->br, 1)) {
x++;
}
if (!read_bits(&ctx->br, 1))
x *= -1;
out[i] = (float)x;
i += stride;
}
}
}
else {
/* RELP model: entire residual (excitation) signal is coded explicitly */
while (i < 108) {
int bits = 0;
float val = 0.0f;
/* peek + partial consume code (odd to use 2 codes for 0.0 but seen in multiple exes) */
int huffman_code = peek_bits(&ctx->br, 2); /* variable-length, may consume less */
switch (huffman_code) {
case 0: //code: 0
case 2: //code: 1 (maybe meant to be -0.0?)
val = 0.0f;
bits = 1;
break;
case 1: //code: 01
val = -2.0f;
bits = 2;
break;
case 3: //code: 11
val = 2.0f;
bits = 2;
break;
default:
break;
}
consume_bits(&ctx->br, bits);
out[i] = val;
i += stride;
}
}
}
static void rc_to_lpc(const float* rc_data, float* lpc) {
int j;
float tmp1[12];
float tmp2[12];
for (int i = 10; i >= 0; i--) {
tmp2[i + 1] = rc_data[i];
}
tmp2[0] = 1.0f;
for (int i = 0; i < 12; i++) {
float x = -(rc_data[11] * tmp2[11]);
for (j = 10; j >= 0; j--) {
x -= (rc_data[j] * tmp2[j]);
tmp2[j + 1] = x * rc_data[j] + tmp2[j];
}
tmp2[0] = x;
tmp1[i] = x;
for (j = 0; j < i; j++) {
x -= tmp1[i - 1 - j] * lpc[j];
}
lpc[i] = x;
}
}
static void lp_synthesis_filter(utk_context_t* ctx, int offset, int blocks) {
int i, j, k;
float lpc[12];
float* ptr = &ctx->samples[offset];
rc_to_lpc(ctx->rc_data, lpc);
for (i = 0; i < blocks; i++) {
/* OG: unrolled x12*12 */
for (j = 0; j < 12; j++) {
float x = *ptr;
for (k = 0; k < j; k++) {
x += lpc[k] * ctx->synth_history[k - j + 12];
}
for (; k < 12; k++) {
x += lpc[k] * ctx->synth_history[k - j + 0];
}
ctx->synth_history[11 - j] = x;
*ptr++ = x;
/* CBX only: samples are multiplied by 12582912.0, then coerce_int(sample[i]) on output
* to get final int16, as a pseudo-optimization; not sure if worth replicating */
}
}
}
/* OG sometimes inlines this (sx3, not B&B/CBX) */
static void interpolate_rest(float* excitation) {
for (int i = 0; i < 108; i += 2) {
float tmp1 = (excitation[i - 5] + excitation[i + 5]) * 0.01803268f;
float tmp2 = (excitation[i - 3] + excitation[i + 3]) * 0.11459156f;
float tmp3 = (excitation[i - 1] + excitation[i + 1]) * 0.59738597f;
excitation[i] = tmp1 - tmp2 + tmp3;
}
}
static void decode_frame_main(utk_context_t* ctx) {
bool use_multipulse = false;
float excitation[5 + 108 + 5]; /* extra +5*2 for interpolation */
float rc_delta[12];
/* OG code usually calls this init/parse header after creation rather than on frame decode,
* but use a flag for now since buffer can be set/reset after init */
init_bits(&ctx->br);
if (!ctx->parsed_header) {
parse_header(ctx);
ctx->parsed_header = 1;
}
/* read the reflection coefficients (OG unrolled) */
for (int i = 0; i < 12; i++) {
int idx;
if (i == 0) {
idx = read_bits(&ctx->br, 6);
if (idx < ctx->multipulse_threshold)
use_multipulse = true;
}
else if (i < 4) {
idx = read_bits(&ctx->br, 6);
}
else {
idx = 16 + read_bits(&ctx->br, 5);
}
rc_delta[i] = (utk_rc_table[idx] - ctx->rc_data[i]) * 0.25f;
}
/* decode four subframes */
for (int i = 0; i < 4; i++) {
int pitch_lag = read_bits(&ctx->br, 8);
int pitch_value = read_bits(&ctx->br, 4);
int gain_index = read_bits(&ctx->br, 6);
float pitch_gain = (float)pitch_value / 15.0f; /* may be compiled as: value * 0.6..67 (float or double) */
float fixed_gain = ctx->fixed_gains[gain_index];
if (!ctx->reduced_bandwidth) {
/* full bandwidth (probably MT5:1) */
decode_excitation(ctx, use_multipulse, &excitation[5 + 0], 1);
/* OG: CBX doesn't have this flag and removes the if (so not 100% same code as MT) */
}
else {
/* residual (excitation) signal is encoded at reduced bandwidth */
int align = read_bits(&ctx->br, 1);
int zero_flag = read_bits(&ctx->br, 1);
decode_excitation(ctx, use_multipulse, &excitation[5 + align], 2);
if (zero_flag) {
/* fill the remaining samples with zero (spectrum is duplicated into high frequencies) */
for (int j = 0; j < 54; j++) {
excitation[5 + (1 - align) + 2 * j] = 0.0f;
}
}
else {
/* 0'd first + last samples for interpolation */
memset(&excitation[0], 0, 5 * sizeof(float));
memset(&excitation[5 + 108], 0, 5 * sizeof(float));
/* interpolate the remaining samples (spectrum is low-pass filtered) */
interpolate_rest(&excitation[5 + (1 - align)]);
/* scale by 0.5f to give the sinc impulse response unit energy */
fixed_gain *= 0.5f;
}
}
/* OG: sometimes unrolled */
for (int j = 0; j < 108; j++) {
/* This has potential to read garbage from fixed_gains/samples (-39 ~ +648). The former
* seems avoided by the encoder but we'll clamp it just in case, while the later is common
* and seemingly used on purpose, so it's allowed via joining adapt_cb + samples bufs. */
int idx = 108 * i + 216 - pitch_lag + j;
if (idx < 0) /* OG: not done but shouldn't matter */
idx = 0;
float tmp1 = fixed_gain * excitation[5 + j];
float tmp2 = pitch_gain * ctx->adapt_cb[idx];
ctx->samples[108 * i + j] = tmp1 + tmp2;
}
}
/* OG: may be compiler-optimized to memcpy */
for (int i = 0; i < 324; i++) {
ctx->adapt_cb[i] = ctx->samples[108 + i];
}
/* OG: unrolled x4 */
for (int i = 0; i < 4; i++) {
for (int j = 0; j < 12; j++) {
ctx->rc_data[j] += rc_delta[j];
}
int blocks = i < 3 ? 1 : 33;
lp_synthesis_filter(ctx, 12 * i, blocks);
}
}
static int decode_frame_pcm(utk_context_t* ctx) {
int pcm_data_present = (read_byte(&ctx->br) == 0xEE);
int i;
decode_frame_main(ctx);
/* unread the last 8 bits and reset the bit reader
* (a bit odd but should be safe in all cases, assuming ptr has been set) */
ctx->br.ptr--;
ctx->br.bits_count = 0;
if (pcm_data_present) {
/* Overwrite n samples at a given offset in the decoded frame with raw PCM data. */
int offset = read_s16(&ctx->br);
int count = read_s16(&ctx->br);
/* sx.exe does not do any bounds checking or clamping of these two
* fields (see 004274D1 in sx.exe v3.01.01), which means a specially
* crafted MT5:1 file can crash it. We will throw an error instead. */
if (offset < 0 || offset > 432) {
return -1; /* invalid PCM offset */
}
if (count < 0 || count > 432 - offset) {
return -2; /* invalid PCM count */
}
for (i = 0; i < count; i++) {
ctx->samples[offset+i] = (float)read_s16(&ctx->br);
}
}
return 432;
}
//
int utk_decode_frame(utk_context_t* ctx) {
if (ctx->type == UTK_EA_PCM) {
return decode_frame_pcm(ctx);
}
else {
decode_frame_main(ctx);
return 432;
}
}
utk_context_t* utk_init(utk_type_t type) {
utk_context_t* ctx = calloc(1, sizeof(utk_context_t));
if (!ctx) return NULL;
//memset(ctx, 0, sizeof(*ctx));
ctx->type = type;
ctx->adapt_cb = ctx->subframes + 0;
ctx->samples = ctx->subframes + 324;
return ctx;
}
void utk_free(utk_context_t* ctx) {
free(ctx);
}
void utk_reset(utk_context_t* ctx) {
/* resets the internal state, leaving the external config/buffers
* untouched (could be reset externally or using utk_set_x) */
ctx->parsed_header = 0;
ctx->br.bits_value = 0;
ctx->br.bits_count = 0;
ctx->reduced_bandwidth = 0;
ctx->multipulse_threshold = 0;
memset(ctx->fixed_gains, 0, sizeof(ctx->fixed_gains));
memset(ctx->rc_data, 0, sizeof(ctx->rc_data));
memset(ctx->synth_history, 0, sizeof(ctx->synth_history));
memset(ctx->subframes, 0, sizeof(ctx->subframes));
}
void utk_set_callback(utk_context_t* ctx, uint8_t* buffer, size_t buffer_size, void *arg, size_t (*read_callback)(void *, int , void *)) {
ctx->br.buffer = buffer;
ctx->br.buffer_size = buffer_size;
ctx->br.arg = arg;
ctx->br.read_callback = read_callback;
/* reset the bit reader */
ctx->br.bits_count = 0;
}
void utk_set_buffer(utk_context_t* ctx, const uint8_t* buf, size_t buf_size) {
ctx->br.ptr = buf;
ctx->br.end = buf + buf_size;
/* reset the bit reader */
ctx->br.bits_count = 0;
}
float* utk_get_samples(utk_context_t* ctx) {
return ctx->samples;
}