#include "../util.h" #include "coding.h" /* table values are interpreted as fixed point 8.8 signed values */ /* AdaptionTable */ static const int16_t msadpcm_steps[16] = { 230, 230, 230, 230, 307, 409, 512, 614, 768, 614, 512, 409, 307, 230, 230, 230 }; /* aCoeff table, normally included with container and (in theory) encoder may add extra coefs but first 7 are preset coefs */ static const int16_t msadpcm_coefs[7][2] = { { 256, 0 }, { 512, -256 }, { 0, 0 }, { 192, 64 }, { 240, 0 }, { 460, -208 }, { 392, -232 } }; /* Decodes MSADPCM as explained in the spec (RIFFNEW doc + msadpcm.c). * Though RIFFNEW writes "predictor / 256" (DIV), msadpcm.c uses "predictor >> 8" (SHR). They may seem the * same but on negative values SHR gets different results (-128 / 256 = 0; -128 >> 8 = -1) = some output diffs. * SHR is true in Windows msadp32.acm decoders (up to Win10), while some non-Windows implementations or * engines (like UE4) may use DIV. * * On invalid coef index, msadpcm.c returns 0 decoded samples but here we clamp and keep on trucking. * In theory blocks may be 0-padded and should use samples_per_frame from header, in practice seems to * decode up to block length or available data. */ static int16_t msadpcm_adpcm_expand_nibble_shr(VGMSTREAMCHANNEL* stream, uint8_t byte, int shift) { int32_t hist1, hist2, predicted; int code = (shift) ? get_high_nibble_signed(byte) : get_low_nibble_signed (byte); hist1 = stream->adpcm_history1_16; hist2 = stream->adpcm_history2_16; predicted = hist1 * stream->adpcm_coef[0] + hist2 * stream->adpcm_coef[1]; predicted = predicted >> 8; /* 256 = FIXED_POINT_COEF_BASE (uses SHR instead) */ predicted = predicted + (code * stream->adpcm_scale); predicted = clamp16(predicted); /* lNewSample */ stream->adpcm_history2_16 = stream->adpcm_history1_16; stream->adpcm_history1_16 = predicted; stream->adpcm_scale = (msadpcm_steps[code & 0xf] * stream->adpcm_scale) >> 8; /* not diffs vs DIV here (always >=0) */ if (stream->adpcm_scale < 16) /* min delta */ stream->adpcm_scale = 16; return predicted; } static int16_t msadpcm_adpcm_expand_nibble_div(VGMSTREAMCHANNEL* stream, uint8_t byte, int shift) { int32_t hist1, hist2, predicted; int code = (shift) ? get_high_nibble_signed(byte) : get_low_nibble_signed (byte); hist1 = stream->adpcm_history1_16; hist2 = stream->adpcm_history2_16; predicted = hist1 * stream->adpcm_coef[0] + hist2 * stream->adpcm_coef[1]; predicted = predicted / 256; /* 256 = FIXED_POINT_COEF_BASE */ predicted = predicted + (code * stream->adpcm_scale); predicted = clamp16(predicted); /* lNewSample */ stream->adpcm_history2_16 = stream->adpcm_history1_16; stream->adpcm_history1_16 = predicted; stream->adpcm_scale = (msadpcm_steps[code & 0xf] * stream->adpcm_scale) / 256; /* 256 = FIXED_POINT_ADAPTION_BASE */ if (stream->adpcm_scale < 16) /* min delta */ stream->adpcm_scale = 16; return predicted; } void decode_msadpcm_stereo(VGMSTREAM* vgmstream, sample_t* outbuf, int32_t first_sample, int32_t samples_to_do) { VGMSTREAMCHANNEL *stream1, *stream2; uint8_t frame[MSADPCM_MAX_BLOCK_SIZE] = {0}; int i, frames_in; size_t bytes_per_frame, samples_per_frame; off_t frame_offset; stream1 = &vgmstream->ch[0]; stream2 = &vgmstream->ch[1]; /* external interleave (variable size), stereo */ bytes_per_frame = vgmstream->frame_size; samples_per_frame = (vgmstream->frame_size - 0x07*vgmstream->channels)*2 / vgmstream->channels + 2; frames_in = first_sample / samples_per_frame; first_sample = first_sample % samples_per_frame; frame_offset = stream1->offset + frames_in * bytes_per_frame; read_streamfile(frame, frame_offset, bytes_per_frame, stream1->streamfile); /* ignore EOF errors */ /* parse frame header (ADPCMBLOCKHEADER) */ if (first_sample == 0) { stream1->adpcm_coef[0] = msadpcm_coefs[get_u8(frame+0x00) & 0x07][0]; /* bPredictor[0] index > iCoef1 */ stream1->adpcm_coef[1] = msadpcm_coefs[get_u8(frame+0x00) & 0x07][1]; /* bPredictor[0] index > iCoef2 */ stream2->adpcm_coef[0] = msadpcm_coefs[get_u8(frame+0x01) & 0x07][0]; /* bPredictor[1] index > iCoef1 */ stream2->adpcm_coef[1] = msadpcm_coefs[get_u8(frame+0x01) & 0x07][1]; /* bPredictor[1] index > iCoef2 */ stream1->adpcm_scale = get_s16le(frame+0x02); /* iDelta[0] */ stream2->adpcm_scale = get_s16le(frame+0x04); /* iDelta[0] */ stream1->adpcm_history1_16 = get_s16le(frame+0x06); /* iSamp1[0] */ stream2->adpcm_history1_16 = get_s16le(frame+0x08); /* iSamp1[0] */ stream1->adpcm_history2_16 = get_s16le(frame+0x0a); /* iSamp2[0] */ stream2->adpcm_history2_16 = get_s16le(frame+0x0c); /* iSamp2[1] */ } /* write header samples (needed) */ if (first_sample==0) { outbuf[0] = stream1->adpcm_history2_16; outbuf[1] = stream2->adpcm_history2_16; outbuf += 2; first_sample++; samples_to_do--; } if (first_sample == 1 && samples_to_do > 0) { outbuf[0] = stream1->adpcm_history1_16; outbuf[1] = stream2->adpcm_history1_16; outbuf += 2; first_sample++; samples_to_do--; } /* decode nibbles */ for (i = first_sample; i < first_sample + samples_to_do; i++) { uint8_t byte = get_u8(frame+0x07*2+(i-2)); *outbuf++ = msadpcm_adpcm_expand_nibble_shr(&vgmstream->ch[0], byte, 1); /* L */ *outbuf++ = msadpcm_adpcm_expand_nibble_shr(&vgmstream->ch[1], byte, 0); /* R */ } } void decode_msadpcm_mono(VGMSTREAM* vgmstream, sample_t* outbuf, int channelspacing, int32_t first_sample, int32_t samples_to_do, int channel, int config) { VGMSTREAMCHANNEL* stream = &vgmstream->ch[channel]; uint8_t frame[MSADPCM_MAX_BLOCK_SIZE] = {0}; int i, frames_in; size_t bytes_per_frame, samples_per_frame; off_t frame_offset; int is_shr = (config == 0); /* external interleave (variable size), mono */ bytes_per_frame = vgmstream->frame_size; samples_per_frame = (vgmstream->frame_size - 0x07)*2 + 2; frames_in = first_sample / samples_per_frame; first_sample = first_sample % samples_per_frame; frame_offset = stream->offset + frames_in * bytes_per_frame; read_streamfile(frame, frame_offset, bytes_per_frame, stream->streamfile); /* ignore EOF errors */ /* parse frame header */ if (first_sample == 0) { stream->adpcm_coef[0] = msadpcm_coefs[get_u8(frame+0x00) & 0x07][0]; stream->adpcm_coef[1] = msadpcm_coefs[get_u8(frame+0x00) & 0x07][1]; stream->adpcm_scale = get_s16le(frame+0x01); stream->adpcm_history1_16 = get_s16le(frame+0x03); stream->adpcm_history2_16 = get_s16le(frame+0x05); } /* write header samples (needed) */ if (first_sample == 0) { outbuf[0] = stream->adpcm_history2_16; outbuf += channelspacing; first_sample++; samples_to_do--; } if (first_sample == 1 && samples_to_do > 0) { outbuf[0] = stream->adpcm_history1_16; outbuf += channelspacing; first_sample++; samples_to_do--; } /* decode nibbles */ for (i = first_sample; i < first_sample + samples_to_do; i++) { uint8_t byte = get_u8(frame+0x07+(i-2)/2); int shift = !(i & 1); /* high nibble first */ outbuf[0] = is_shr ? msadpcm_adpcm_expand_nibble_shr(stream, byte, shift) : msadpcm_adpcm_expand_nibble_div(stream, byte, shift); outbuf += channelspacing; } } /* Cricket Audio's MSADPCM, same thing with reversed hist and nibble order, reverse engineered from the exe. * (their tools may convert to float/others but internally it's all PCM16). */ void decode_msadpcm_ck(VGMSTREAM* vgmstream, sample_t* outbuf, int channelspacing, int32_t first_sample, int32_t samples_to_do, int channel) { VGMSTREAMCHANNEL* stream = &vgmstream->ch[channel]; uint8_t frame[MSADPCM_MAX_BLOCK_SIZE] = {0}; int i, frames_in; size_t bytes_per_frame, samples_per_frame; off_t frame_offset; /* external interleave (variable size), mono */ bytes_per_frame = vgmstream->frame_size; samples_per_frame = (vgmstream->frame_size - 0x07)*2 + 2; frames_in = first_sample / samples_per_frame; first_sample = first_sample % samples_per_frame; frame_offset = stream->offset + frames_in * bytes_per_frame; read_streamfile(frame, frame_offset, bytes_per_frame, stream->streamfile); /* ignore EOF errors */ /* parse frame header */ if (first_sample == 0) { stream->adpcm_coef[0] = msadpcm_coefs[get_u8(frame+0x00) & 0x07][0]; stream->adpcm_coef[1] = msadpcm_coefs[get_u8(frame+0x00) & 0x07][1]; stream->adpcm_scale = get_s16le(frame+0x01); stream->adpcm_history2_16 = get_s16le(frame+0x03); /* hist2 first, unlike normal MSADPCM */ stream->adpcm_history1_16 = get_s16le(frame+0x05); } /* write header samples (needed) */ if (first_sample == 0) { outbuf[0] = stream->adpcm_history2_16; outbuf += channelspacing; first_sample++; samples_to_do--; } if (first_sample == 1 && samples_to_do > 0) { outbuf[0] = stream->adpcm_history1_16; outbuf += channelspacing; first_sample++; samples_to_do--; } /* decode nibbles */ for (i = first_sample; i < first_sample + samples_to_do; i++) { uint8_t byte = get_u8(frame+0x07+(i-2)/2); int shift = (i & 1); /* low nibble first, unlike normal MSADPCM */ outbuf[0] = msadpcm_adpcm_expand_nibble_shr(stream, byte, shift); outbuf += channelspacing; } } long msadpcm_bytes_to_samples(long bytes, int block_size, int channels) { if (block_size <= 0 || channels <= 0) return 0; return (bytes / block_size) * (block_size - (7-1)*channels) * 2 / channels + ((bytes % block_size) ? ((bytes % block_size) - (7-1)*channels) * 2 / channels : 0); } /* test if MSADPCM coefs were re-defined (possible in theory but not used in practice) */ int msadpcm_check_coefs(STREAMFILE* sf, uint32_t offset) { int i; int count = read_u16le(offset, sf); if (count != 7) { vgm_logi("MSADPCM: bad count %i at %x (report)\n", count, offset); goto fail; } offset += 0x02; for (i = 0; i < 7; i++) { int16_t coef1 = read_s16le(offset + 0x00, sf); int16_t coef2 = read_s16le(offset + 0x02, sf); if (coef1 != msadpcm_coefs[i][0] || coef2 != msadpcm_coefs[i][1]) { vgm_logi("MSADPCM: bad coef %i/%i vs %i/%i (report)\n", coef1, coef2, msadpcm_coefs[i][0], msadpcm_coefs[i][1]); goto fail; } offset += 0x02 + 0x02; } return 1; fail: return 0; }