vgmstream/src/base/mixer_ops_fade.c
2024-08-07 23:13:12 +02:00

174 lines
6.1 KiB
C

#include "mixer_priv.h"
#include <limits.h>
#include <math.h>
#define MIXING_PI 3.14159265358979323846f
static inline float get_fade_gain_curve(char shape, float index) {
float gain;
/* don't bother doing calcs near 0.0/1.0 */
if (index <= 0.0001f || index >= 0.9999f) {
return index;
}
//TODO optimizations: interleave calcs
/* (curve math mostly from SoX/FFmpeg) */
switch(shape) {
/* 2.5f in L/E 'pow' is the attenuation factor, where 5.0 (100db) is common but a bit fast
* (alt calculations with 'exp' from FFmpeg use (factor)*ln(0.1) = -NN.N... */
case 'E': /* exponential (for fade-outs, closer to natural decay of sound) */
//gain = powf(0.1f, (1.0f - index) * 2.5f);
gain = expf(-5.75646273248511f * (1.0f - index));
break;
case 'L': /* logarithmic (inverse of the above, maybe for crossfades) */
//gain = 1 - powf(0.1f, (index) * 2.5f);
gain = 1 - expf(-5.75646273248511f * (index));
break;
case 'H': /* raised sine wave or cosine wave (for more musical crossfades) */
gain = (1.0f - cosf(index * MIXING_PI)) / 2.0f;
break;
case 'Q': /* quarter of sine wave (for musical fades) */
gain = sin(index * MIXING_PI / 2.0f);
break;
case 'p': /* parabola (maybe for crossfades) */
gain = 1.0f - sqrtf(1.0f - index);
break;
case 'P': /* inverted parabola (maybe for fades) */
gain = (1.0f - (1.0f - index) * (1.0f - index));
break;
case 'T': /* triangular/linear (simpler/sharper fades) */
default:
gain = index;
break;
}
return gain;
}
static bool get_fade_gain(mix_op_t* op, float* out_cur_vol, int32_t current_subpos) {
float cur_vol = 0.0f;
if ((current_subpos >= op->time_pre || op->time_pre < 0) && current_subpos < op->time_start) {
cur_vol = op->vol_start; /* before */
}
else if (current_subpos >= op->time_end && (current_subpos < op->time_post || op->time_post < 0)) {
cur_vol = op->vol_end; /* after */
}
else if (current_subpos >= op->time_start && current_subpos < op->time_end) {
/* in between */
float range_vol, range_dur, range_idx, index, gain;
if (op->vol_start < op->vol_end) { /* fade in */
range_vol = op->vol_end - op->vol_start;
range_dur = op->time_end - op->time_start;
range_idx = current_subpos - op->time_start;
index = range_idx / range_dur;
} else { /* fade out */
range_vol = op->vol_end - op->vol_start;
range_dur = op->time_end - op->time_start;
range_idx = op->time_end - current_subpos;
index = range_idx / range_dur;
}
/* Fading is done like this:
* - find current position within fade duration
* - get linear % (or rather, index from 0.0 .. 1.0) of duration
* - apply shape to % (from linear fade to curved fade)
* - get final volume for that point
*
* Roughly speaking some curve shapes are better for fades (decay rate is more natural
* sounding in that highest to mid/low happens faster but low to lowest takes more time,
* kinda like a gunshot or bell), and others for crossfades (decay of fade-in + fade-out
* is adjusted so that added volume level stays constant-ish).
*
* As curves can fade in two ways ('normal' and curving 'the other way'), they are adjusted
* to get 'normal' shape on both fades (by reversing index and making 1 - gain), thus some
* curves are complementary (exponential fade-in ~= logarithmic fade-out); the following
* are described taking fade-in = normal.
*/
gain = get_fade_gain_curve(op->shape, index);
if (op->vol_start < op->vol_end) { /* fade in */
cur_vol = op->vol_start + range_vol * gain;
} else { /* fade out */
cur_vol = op->vol_end - range_vol * gain; //mix->vol_start - range_vol * (1 - gain);
}
}
else {
/* fade is outside reach */
return false;
}
*out_cur_vol = cur_vol;
return true;
}
void mixer_op_fade(mixer_t* mixer, int32_t sample_count, mix_op_t* mix) {
float* sbuf = mixer->mixbuf;
float new_gain = 0.0f;
int channels = mixer->current_channels;
int32_t current_subpos = mixer->current_subpos;
//TODO optimize for case 0?
for (int s = 0; s < sample_count; s++) {
bool fade_applies = get_fade_gain(mix, &new_gain, current_subpos);
if (!fade_applies) //TODO optimize?
continue;
if (mix->ch_dst < 0) {
for (int ch = 0; ch < channels; ch++) {
sbuf[ch] = sbuf[ch] * new_gain;
}
}
else {
sbuf[mix->ch_dst] = sbuf[mix->ch_dst] * new_gain;
}
sbuf += channels;
current_subpos++;
}
mixer->current_subpos = current_subpos;
}
bool mixer_op_fade_is_active(mixer_t* mixer, int32_t current_start, int32_t current_end) {
for (int i = 0; i < mixer->chain_count; i++) {
mix_op_t* mix = &mixer->chain[i];
int32_t fade_start, fade_end;
float vol_start = mix->vol_start;
if (mix->type != MIX_FADE)
continue;
/* check is current range falls within a fade
* (assuming fades were already optimized on add) */
if (mix->time_pre < 0 && vol_start == 1.0f) {
fade_start = mix->time_start; /* ignore unused */
}
else {
fade_start = mix->time_pre < 0 ? 0 : mix->time_pre;
}
fade_end = mix->time_post < 0 ? INT_MAX : mix->time_post;
//;VGM_LOG("MIX: fade test, tp=%i, te=%i, cs=%i, ce=%i\n", mix->time_pre, mix->time_post, current_start, current_end);
if (current_start < fade_end && current_end > fade_start) {
//;VGM_LOG("MIX: fade active, cs=%i < fe=%i and ce=%i > fs=%i\n", current_start, fade_end, current_end, fade_start);
return true;
}
}
return false;
}