winamp/Src/Plugins/Visualization/vis_milk2/milkdropfs.cpp

4801 lines
181 KiB
C++
Raw Normal View History

2024-09-24 14:54:57 +02:00
/*
LICENSE
-------
Copyright 2005-2013 Nullsoft, Inc.
All rights reserved.
Redistribution and use in source and binary forms, with or without modification,
are permitted provided that the following conditions are met:
* Redistributions of source code must retain the above copyright notice,
this list of conditions and the following disclaimer.
* Redistributions in binary form must reproduce the above copyright notice,
this list of conditions and the following disclaimer in the documentation
and/or other materials provided with the distribution.
* Neither the name of Nullsoft nor the names of its contributors may be used to
endorse or promote products derived from this software without specific prior written permission.
THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND ANY EXPRESS OR
IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND
FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR
CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER
IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT
OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
#include "api__vis_milk2.h"
#include "plugin.h"
#include "resource.h"
#include "support.h"
//#include "evallib\eval.h" // for math. expr. eval - thanks Francis! (in SourceOffSite, it's the 'vis_avs\evallib' project.)
//#include "evallib\compiler.h"
#include "ns-eel2/ns-eel.h"
#include "utility.h"
#include <assert.h>
#include <math.h>
#define D3DCOLOR_RGBA_01(r,g,b,a) D3DCOLOR_RGBA(((int)(r*255)),((int)(g*255)),((int)(b*255)),((int)(a*255)))
#define FRAND ((warand() % 7381)/7380.0f)
#define VERT_CLIP 0.75f // warning: top/bottom can get clipped if you go < 0.65!
int g_title_font_sizes[] =
{
// NOTE: DO NOT EXCEED 64 FONTS HERE.
6, 8, 10, 12, 14, 16,
20, 26, 32, 38, 44, 50, 56,
64, 72, 80, 88, 96, 104, 112, 120, 128, 136, 144,
160, 192, 224, 256, 288, 320, 352, 384, 416, 448,
480, 512 /**/
};
//#define COMPILE_MULTIMON_STUBS 1
//#include <multimon.h>
// This function evaluates whether the floating-point
// control Word is set to single precision/round to nearest/
// exceptions disabled. If not, the
// function changes the control Word to set them and returns
// TRUE, putting the old control Word value in the passback
// location pointed to by pwOldCW.
static void MungeFPCW( WORD *pwOldCW )
{
#if 0
BOOL ret = FALSE;
WORD wTemp, wSave;
__asm fstcw wSave
if (wSave & 0x300 || // Not single mode
0x3f != (wSave & 0x3f) || // Exceptions enabled
wSave & 0xC00) // Not round to nearest mode
{
__asm
{
mov ax, wSave
and ax, not 300h ;; single mode
or ax, 3fh ;; disable all exceptions
and ax, not 0xC00 ;; round to nearest mode
mov wTemp, ax
fldcw wTemp
}
ret = TRUE;
}
if (pwOldCW) *pwOldCW = wSave;
// return ret;
#else
_controlfp(_PC_24, _MCW_PC); // single precision
_controlfp(_RC_NEAR, _MCW_RC); // round to nearest mode
_controlfp(_EM_ZERODIVIDE, _EM_ZERODIVIDE); // disable divide-by-zero
#endif
}
void RestoreFPCW(WORD wSave)
{
__asm fldcw wSave
}
int GetNumToSpawn(float fTime, float fDeltaT, float fRate, float fRegularity, int iNumSpawnedSoFar)
{
// PARAMETERS
// ------------
// fTime: sum of all fDeltaT's so far (excluding this one)
// fDeltaT: time window for this frame
// fRate: avg. rate (spawns per second) of generation
// fRegularity: regularity of generation
// 0.0: totally chaotic
// 0.2: getting chaotic / very jittered
// 0.4: nicely jittered
// 0.6: slightly jittered
// 0.8: almost perfectly regular
// 1.0: perfectly regular
// iNumSpawnedSoFar: the total number of spawnings so far
//
// RETURN VALUE
// ------------
// The number to spawn for this frame (add this to your net count!).
//
// COMMENTS
// ------------
// The spawn values returned will, over time, match
// (within 1%) the theoretical totals expected based on the
// amount of time passed and the average generation rate.
//
// UNRESOLVED ISSUES
// -----------------
// actual results of mixed gen. (0 < reg < 1) are about 1% too low
// in the long run (vs. analytical expectations). Decided not
// to bother fixing it since it's only 1% (and VERY consistent).
float fNumToSpawnReg;
float fNumToSpawnIrreg;
float fNumToSpawn;
// compute # spawned based on regular generation
fNumToSpawnReg = ((fTime + fDeltaT) * fRate) - iNumSpawnedSoFar;
// compute # spawned based on irregular (random) generation
if (fDeltaT <= 1.0f / fRate)
{
// case 1: avg. less than 1 spawn per frame
if ((warand() % 16384)/16384.0f < fDeltaT * fRate)
fNumToSpawnIrreg = 1.0f;
else
fNumToSpawnIrreg = 0.0f;
}
else
{
// case 2: avg. more than 1 spawn per frame
fNumToSpawnIrreg = fDeltaT * fRate;
fNumToSpawnIrreg *= 2.0f*(warand() % 16384)/16384.0f;
}
// get linear combo. of regular & irregular
fNumToSpawn = fNumToSpawnReg*fRegularity + fNumToSpawnIrreg*(1.0f - fRegularity);
// round to nearest integer for result
return (int)(fNumToSpawn + 0.49f);
}
bool CPlugin::OnResizeTextWindow()
{
/*
if (!m_hTextWnd)
return false;
RECT rect;
GetClientRect(m_hTextWnd, &rect);
if (rect.right - rect.left != m_nTextWndWidth ||
rect.bottom - rect.top != m_nTextWndHeight)
{
m_nTextWndWidth = rect.right - rect.left;
m_nTextWndHeight = rect.bottom - rect.top;
// first, resize fonts if necessary
//if (!InitFont())
//return false;
// then resize the memory bitmap used for double buffering
if (m_memDC)
{
SelectObject(m_memDC, m_oldBM); // delete our doublebuffer
DeleteObject(m_memDC);
DeleteObject(m_memBM);
m_memDC = NULL;
m_memBM = NULL;
m_oldBM = NULL;
}
HDC hdc = GetDC(m_hTextWnd);
if (!hdc) return false;
m_memDC = CreateCompatibleDC(hdc);
m_memBM = CreateCompatibleBitmap(hdc, rect.right - rect.left, rect.bottom - rect.top);
m_oldBM = (HBITMAP)SelectObject(m_memDC,m_memBM);
ReleaseDC(m_hTextWnd, hdc);
// save new window pos
WriteRealtimeConfig();
}*/
return true;
}
void CPlugin::ClearGraphicsWindow()
{
// clear the window contents, to avoid a 1-pixel-thick border of noise that sometimes sticks around
/*
RECT rect;
GetClientRect(GetPluginWindow(), &rect);
HDC hdc = GetDC(GetPluginWindow());
FillRect(hdc, &rect, m_hBlackBrush);
ReleaseDC(GetPluginWindow(), hdc);
*/
}
/*
bool CPlugin::OnResizeGraphicsWindow()
{
// NO LONGER NEEDED, SINCE PLUGIN SHELL CREATES A NEW DIRECTX
// OBJECT WHENEVER WINDOW IS RESIZED.
}
*/
bool CPlugin::RenderStringToTitleTexture() // m_szSongMessage
{
if (!m_lpDDSTitle) // this *can* be NULL, if not much video mem!
return false;
if (m_supertext.szTextW[0]==0)
return false;
LPDIRECT3DDEVICE9 lpDevice = GetDevice();
if (!lpDevice)
return false;
wchar_t szTextToDraw[512];
swprintf(szTextToDraw, L" %s ", m_supertext.szTextW); //add a space @ end for italicized fonts; and at start, too, because it's centered!
// Remember the original backbuffer and zbuffer
LPDIRECT3DSURFACE9 pBackBuffer=NULL;//, pZBuffer=NULL;
lpDevice->GetRenderTarget( 0, &pBackBuffer );
//lpDevice->GetDepthStencilSurface( &pZBuffer );
// set render target to m_lpDDSTitle
{
lpDevice->SetTexture(0, NULL);
IDirect3DSurface9* pNewTarget = NULL;
if (m_lpDDSTitle->GetSurfaceLevel(0, &pNewTarget) != D3D_OK)
{
SafeRelease(pBackBuffer);
//SafeRelease(pZBuffer);
return false;
}
lpDevice->SetRenderTarget(0, pNewTarget);
//lpDevice->SetDepthStencilSurface( NULL );
pNewTarget->Release();
lpDevice->SetTexture(0, NULL);
}
// clear the texture to black
{
lpDevice->SetVertexShader( NULL );
lpDevice->SetFVF( WFVERTEX_FORMAT );
lpDevice->SetTexture(0, NULL);
lpDevice->SetRenderState( D3DRS_ALPHABLENDENABLE, FALSE );
// set up a quad
WFVERTEX verts[4];
for (int i=0; i<4; i++)
{
verts[i].x = (i%2==0) ? -1.f : 1.f;
verts[i].y = (i/2==0) ? -1.f : 1.f;
verts[i].z = 0;
verts[i].Diffuse = 0xFF000000;
}
lpDevice->DrawPrimitiveUP(D3DPT_TRIANGLESTRIP, 2, verts, sizeof(WFVERTEX));
}
/*// 1. clip title if too many chars
if (m_supertext.bIsSongTitle)
{
// truncate song title if too long; don't clip custom messages, though!
int clip_chars = 32;
int user_title_size = GetFontHeight(SONGTITLE_FONT);
#define MIN_CHARS 8 // max clip_chars *for BIG FONTS*
#define MAX_CHARS 64 // max clip chars *for tiny fonts*
float t = (user_title_size-10)/(float)(128-10);
t = min(1,max(0,t));
clip_chars = (int)(MAX_CHARS - (MAX_CHARS-MIN_CHARS)*t);
if ((int)strlen(szTextToDraw) > clip_chars+3)
lstrcpy(&szTextToDraw[clip_chars], "...");
}*/
bool ret = true;
// use 2 lines; must leave room for bottom of 'g' characters and such!
RECT rect;
rect.left = 0;
rect.right = m_nTitleTexSizeX;
rect.top = m_nTitleTexSizeY* 1/21; // otherwise, top of '%' could be cut off (1/21 seems safe)
rect.bottom = m_nTitleTexSizeY*17/21; // otherwise, bottom of 'g' could be cut off (18/21 seems safe, but we want some leeway)
if (!m_supertext.bIsSongTitle)
{
// custom msg -> pick font to use that will best fill the texture
HFONT gdi_font = NULL;
LPD3DXFONT d3dx_font = NULL;
int lo = 0;
int hi = sizeof(g_title_font_sizes)/sizeof(int) - 1;
// limit the size of the font used:
//int user_title_size = GetFontHeight(SONGTITLE_FONT);
//while (g_title_font_sizes[hi] > user_title_size*2 && hi>4)
// hi--;
RECT temp;
while (1)//(lo < hi-1)
{
int mid = (lo+hi)/2;
// create new gdi font at 'mid' size:
gdi_font = CreateFontW( g_title_font_sizes[mid], 0, 0, 0, m_supertext.bBold ? 900 : 400, m_supertext.bItal, FALSE, FALSE, DEFAULT_CHARSET, OUT_DEFAULT_PRECIS, CLIP_DEFAULT_PRECIS,
m_fontinfo[SONGTITLE_FONT].bAntiAliased ? ANTIALIASED_QUALITY : DEFAULT_QUALITY,
DEFAULT_PITCH, m_supertext.nFontFace );
if (gdi_font)
{
// create new d3dx font at 'mid' size:
if (pCreateFontW(
lpDevice,
g_title_font_sizes[mid],
0,
m_supertext.bBold ? 900 : 400,
1,
m_supertext.bItal,
DEFAULT_CHARSET,
OUT_DEFAULT_PRECIS,
ANTIALIASED_QUALITY,//m_fontinfo[SONGTITLE_FONT].bAntiAliased ? ANTIALIASED_QUALITY : DEFAULT_QUALITY,
DEFAULT_PITCH,
m_supertext.nFontFace,
&d3dx_font
) == D3D_OK)
{
if (lo == hi-1)
break; // DONE; but the 'lo'-size font is ready for use!
// compute size of text if drawn w/font of THIS size:
temp = rect;
int h = d3dx_font->DrawTextW(NULL, szTextToDraw, -1, &temp, DT_SINGLELINE | DT_CALCRECT /*| DT_NOPREFIX*/, 0xFFFFFFFF);
// adjust & prepare to reiterate:
if (temp.right >= rect.right || h > rect.bottom-rect.top)
hi = mid;
else
lo = mid;
SafeRelease(d3dx_font);
}
DeleteObject(gdi_font); gdi_font=NULL;
}
}
if (gdi_font && d3dx_font)
{
// do actual drawing + set m_supertext.nFontSizeUsed; use 'lo' size
int h = d3dx_font->DrawTextW(NULL, szTextToDraw, -1, &temp, DT_SINGLELINE | DT_CALCRECT /*| DT_NOPREFIX*/ | DT_CENTER, 0xFFFFFFFF);
temp.left = 0;
temp.right = m_nTitleTexSizeX; // now allow text to go all the way over, since we're actually drawing!
temp.top = m_nTitleTexSizeY/2 - h/2;
temp.bottom = m_nTitleTexSizeY/2 + h/2;
m_supertext.nFontSizeUsed = d3dx_font->DrawTextW(NULL, szTextToDraw, -1, &temp, DT_SINGLELINE /*| DT_NOPREFIX*/ | DT_CENTER, 0xFFFFFFFF);
ret = true;
}
else
{
ret = false;
}
// clean up font:
SafeRelease(d3dx_font);
if (gdi_font) DeleteObject(gdi_font); gdi_font=NULL;
}
else // song title
{
wchar_t* str = m_supertext.szTextW;
// clip the text manually...
// NOTE: DT_END_ELLIPSIS CAUSES NOTHING TO DRAW, IF YOU USE W/D3DX9!
int h;
int max_its = 6;
int it = 0;
while (it < max_its)
{
it++;
if (!str[0])
break;
RECT temp = rect;
h = m_d3dx_title_font_doublesize->DrawTextW(NULL, str, -1, &temp, DT_SINGLELINE | DT_CALCRECT /*| DT_NOPREFIX | DT_END_ELLIPSIS*/, 0xFFFFFFFF);
if (temp.right-temp.left <= m_nTitleTexSizeX)
break;
// 11/01/2009 DO - disabled as it was causing to users 'random' titles against
// what is expected so we now just work on the ellipse at the end approach which
// manually clip the text... chop segments off the front
/*wchar_t* p = wcsstr(str, L" - ");
if (p)
{
str = p+3;
continue;
}*/
// no more stuff to chop off the front; chop off the end w/ ...
int len = wcslen(str);
float fPercentToKeep = 0.91f * m_nTitleTexSizeX / (float)(temp.right-temp.left);
if (len > 8)
lstrcpyW( &str[ (int)(len*fPercentToKeep) ], L"...");
break;
}
// now actually draw it
RECT temp;
temp.left = 0;
temp.right = m_nTitleTexSizeX; // now allow text to go all the way over, since we're actually drawing!
temp.top = m_nTitleTexSizeY/2 - h/2;
temp.bottom = m_nTitleTexSizeY/2 + h/2;
// NOTE: DT_END_ELLIPSIS CAUSES NOTHING TO DRAW, IF YOU USE W/D3DX9!
m_supertext.nFontSizeUsed = m_d3dx_title_font_doublesize->DrawTextW(NULL, str, -1, &temp, DT_SINGLELINE /*| DT_NOPREFIX | DT_END_ELLIPSIS*/ | DT_CENTER , 0xFFFFFFFF);
}
// Change the rendertarget back to the original setup
lpDevice->SetTexture(0, NULL);
lpDevice->SetRenderTarget( 0, pBackBuffer );
//lpDevice->SetDepthStencilSurface( pZBuffer );
SafeRelease(pBackBuffer);
//SafeRelease(pZBuffer);
return ret;
}
void CPlugin::LoadPerFrameEvallibVars(CState* pState)
{
// load the 'var_pf_*' variables in this CState object with the correct values.
// for vars that affect pixel motion, that means evaluating them at time==-1,
// (i.e. no blending w/blendto value); the blending of the file dx/dy
// will be done *after* execution of the per-vertex code.
// for vars that do NOT affect pixel motion, evaluate them at the current time,
// so that if they're blending, both states see the blended value.
// 1. vars that affect pixel motion: (eval at time==-1)
*pState->var_pf_zoom = (double)pState->m_fZoom.eval(-1);//GetTime());
*pState->var_pf_zoomexp = (double)pState->m_fZoomExponent.eval(-1);//GetTime());
*pState->var_pf_rot = (double)pState->m_fRot.eval(-1);//GetTime());
*pState->var_pf_warp = (double)pState->m_fWarpAmount.eval(-1);//GetTime());
*pState->var_pf_cx = (double)pState->m_fRotCX.eval(-1);//GetTime());
*pState->var_pf_cy = (double)pState->m_fRotCY.eval(-1);//GetTime());
*pState->var_pf_dx = (double)pState->m_fXPush.eval(-1);//GetTime());
*pState->var_pf_dy = (double)pState->m_fYPush.eval(-1);//GetTime());
*pState->var_pf_sx = (double)pState->m_fStretchX.eval(-1);//GetTime());
*pState->var_pf_sy = (double)pState->m_fStretchY.eval(-1);//GetTime());
// read-only:
*pState->var_pf_time = (double)(GetTime() - m_fStartTime);
*pState->var_pf_fps = (double)GetFps();
*pState->var_pf_bass = (double)mysound.imm_rel[0];
*pState->var_pf_mid = (double)mysound.imm_rel[1];
*pState->var_pf_treb = (double)mysound.imm_rel[2];
*pState->var_pf_bass_att = (double)mysound.avg_rel[0];
*pState->var_pf_mid_att = (double)mysound.avg_rel[1];
*pState->var_pf_treb_att = (double)mysound.avg_rel[2];
*pState->var_pf_frame = (double)GetFrame();
//*pState->var_pf_monitor = 0; -leave this as it was set in the per-frame INIT code!
for (int vi=0; vi<NUM_Q_VAR; vi++)
*pState->var_pf_q[vi] = pState->q_values_after_init_code[vi];//0.0f;
*pState->var_pf_monitor = pState->monitor_after_init_code;
*pState->var_pf_progress = (GetTime() - m_fPresetStartTime) / (m_fNextPresetTime - m_fPresetStartTime);
// 2. vars that do NOT affect pixel motion: (eval at time==now)
*pState->var_pf_decay = (double)pState->m_fDecay.eval(GetTime());
*pState->var_pf_wave_a = (double)pState->m_fWaveAlpha.eval(GetTime());
*pState->var_pf_wave_r = (double)pState->m_fWaveR.eval(GetTime());
*pState->var_pf_wave_g = (double)pState->m_fWaveG.eval(GetTime());
*pState->var_pf_wave_b = (double)pState->m_fWaveB.eval(GetTime());
*pState->var_pf_wave_x = (double)pState->m_fWaveX.eval(GetTime());
*pState->var_pf_wave_y = (double)pState->m_fWaveY.eval(GetTime());
*pState->var_pf_wave_mystery= (double)pState->m_fWaveParam.eval(GetTime());
*pState->var_pf_wave_mode = (double)pState->m_nWaveMode; //?!?! -why won't it work if set to pState->m_nWaveMode???
*pState->var_pf_ob_size = (double)pState->m_fOuterBorderSize.eval(GetTime());
*pState->var_pf_ob_r = (double)pState->m_fOuterBorderR.eval(GetTime());
*pState->var_pf_ob_g = (double)pState->m_fOuterBorderG.eval(GetTime());
*pState->var_pf_ob_b = (double)pState->m_fOuterBorderB.eval(GetTime());
*pState->var_pf_ob_a = (double)pState->m_fOuterBorderA.eval(GetTime());
*pState->var_pf_ib_size = (double)pState->m_fInnerBorderSize.eval(GetTime());
*pState->var_pf_ib_r = (double)pState->m_fInnerBorderR.eval(GetTime());
*pState->var_pf_ib_g = (double)pState->m_fInnerBorderG.eval(GetTime());
*pState->var_pf_ib_b = (double)pState->m_fInnerBorderB.eval(GetTime());
*pState->var_pf_ib_a = (double)pState->m_fInnerBorderA.eval(GetTime());
*pState->var_pf_mv_x = (double)pState->m_fMvX.eval(GetTime());
*pState->var_pf_mv_y = (double)pState->m_fMvY.eval(GetTime());
*pState->var_pf_mv_dx = (double)pState->m_fMvDX.eval(GetTime());
*pState->var_pf_mv_dy = (double)pState->m_fMvDY.eval(GetTime());
*pState->var_pf_mv_l = (double)pState->m_fMvL.eval(GetTime());
*pState->var_pf_mv_r = (double)pState->m_fMvR.eval(GetTime());
*pState->var_pf_mv_g = (double)pState->m_fMvG.eval(GetTime());
*pState->var_pf_mv_b = (double)pState->m_fMvB.eval(GetTime());
*pState->var_pf_mv_a = (double)pState->m_fMvA.eval(GetTime());
*pState->var_pf_echo_zoom = (double)pState->m_fVideoEchoZoom.eval(GetTime());
*pState->var_pf_echo_alpha = (double)pState->m_fVideoEchoAlpha.eval(GetTime());
*pState->var_pf_echo_orient = (double)pState->m_nVideoEchoOrientation;
// new in v1.04:
*pState->var_pf_wave_usedots = (double)pState->m_bWaveDots;
*pState->var_pf_wave_thick = (double)pState->m_bWaveThick;
*pState->var_pf_wave_additive = (double)pState->m_bAdditiveWaves;
*pState->var_pf_wave_brighten = (double)pState->m_bMaximizeWaveColor;
*pState->var_pf_darken_center = (double)pState->m_bDarkenCenter;
*pState->var_pf_gamma = (double)pState->m_fGammaAdj.eval(GetTime());
*pState->var_pf_wrap = (double)pState->m_bTexWrap;
*pState->var_pf_invert = (double)pState->m_bInvert;
*pState->var_pf_brighten = (double)pState->m_bBrighten;
*pState->var_pf_darken = (double)pState->m_bDarken;
*pState->var_pf_solarize = (double)pState->m_bSolarize;
*pState->var_pf_meshx = (double)m_nGridX;
*pState->var_pf_meshy = (double)m_nGridY;
*pState->var_pf_pixelsx = (double)GetWidth();
*pState->var_pf_pixelsy = (double)GetHeight();
*pState->var_pf_aspectx = (double)m_fInvAspectX;
*pState->var_pf_aspecty = (double)m_fInvAspectY;
// new in v2.0:
*pState->var_pf_blur1min = (double)pState->m_fBlur1Min.eval(GetTime());
*pState->var_pf_blur2min = (double)pState->m_fBlur2Min.eval(GetTime());
*pState->var_pf_blur3min = (double)pState->m_fBlur3Min.eval(GetTime());
*pState->var_pf_blur1max = (double)pState->m_fBlur1Max.eval(GetTime());
*pState->var_pf_blur2max = (double)pState->m_fBlur2Max.eval(GetTime());
*pState->var_pf_blur3max = (double)pState->m_fBlur3Max.eval(GetTime());
*pState->var_pf_blur1_edge_darken = (double)pState->m_fBlur1EdgeDarken.eval(GetTime());
}
void CPlugin::RunPerFrameEquations(int code)
{
// run per-frame calculations
/*
code is only valid when blending.
OLDcomp ~ blend-from preset has a composite shader;
NEWwarp ~ blend-to preset has a warp shader; etc.
code OLDcomp NEWcomp OLDwarp NEWwarp
0
1 1
2 1
3 1 1
4 1
5 1 1
6 1 1
7 1 1 1
8 1
9 1 1
10 1 1
11 1 1 1
12 1 1
13 1 1 1
14 1 1 1
15 1 1 1 1
*/
// when blending booleans (like darken, invert, etc) for pre-shader presets,
// if blending to/from a pixel-shader preset, we can tune the snap point
// (when it changes during the blend) for a less jumpy transition:
m_fSnapPoint = 0.5f;
if (m_pState->m_bBlending)
{
switch(code)
{
case 4:
case 6:
case 12:
case 14:
// old preset (only) had a comp shader
m_fSnapPoint = -0.01f;
break;
case 1:
case 3:
case 9:
case 11:
// new preset (only) has a comp shader
m_fSnapPoint = 1.01f;
break;
case 0:
case 2:
case 8:
case 10:
// neither old or new preset had a comp shader
m_fSnapPoint = 0.5f;
break;
case 5:
case 7:
case 13:
case 15:
// both old and new presets use a comp shader - so it won't matter
m_fSnapPoint = 0.5f;
break;
}
}
int num_reps = (m_pState->m_bBlending) ? 2 : 1;
for (int rep=0; rep<num_reps; rep++)
{
CState *pState;
if (rep==0)
pState = m_pState;
else
pState = m_pOldState;
// values that will affect the pixel motion (and will be automatically blended
// LATER, when the results of 2 sets of these params creates 2 different U/V
// meshes that get blended together.)
LoadPerFrameEvallibVars(pState);
// also do just a once-per-frame init for the *per-**VERTEX*** *READ-ONLY* variables
// (the non-read-only ones will be reset/restored at the start of each vertex)
*pState->var_pv_time = *pState->var_pf_time;
*pState->var_pv_fps = *pState->var_pf_fps;
*pState->var_pv_frame = *pState->var_pf_frame;
*pState->var_pv_progress = *pState->var_pf_progress;
*pState->var_pv_bass = *pState->var_pf_bass;
*pState->var_pv_mid = *pState->var_pf_mid;
*pState->var_pv_treb = *pState->var_pf_treb;
*pState->var_pv_bass_att = *pState->var_pf_bass_att;
*pState->var_pv_mid_att = *pState->var_pf_mid_att;
*pState->var_pv_treb_att = *pState->var_pf_treb_att;
*pState->var_pv_meshx = (double)m_nGridX;
*pState->var_pv_meshy = (double)m_nGridY;
*pState->var_pv_pixelsx = (double)GetWidth();
*pState->var_pv_pixelsy = (double)GetHeight();
*pState->var_pv_aspectx = (double)m_fInvAspectX;
*pState->var_pv_aspecty = (double)m_fInvAspectY;
//*pState->var_pv_monitor = *pState->var_pf_monitor;
// execute once-per-frame expressions:
#ifndef _NO_EXPR_
if (pState->m_pf_codehandle)
{
if (pState->m_pf_codehandle)
{
NSEEL_code_execute(pState->m_pf_codehandle);
}
}
#endif
// save some things for next frame:
pState->monitor_after_init_code = *pState->var_pf_monitor;
// save some things for per-vertex code:
for (int vi=0; vi<NUM_Q_VAR; vi++)
*pState->var_pv_q[vi] = *pState->var_pf_q[vi];
// (a few range checks:)
*pState->var_pf_gamma = max(0 , min( 8, *pState->var_pf_gamma ));
*pState->var_pf_echo_zoom = max(0.001, min( 1000, *pState->var_pf_echo_zoom));
/*
if (m_pState->m_bRedBlueStereo || m_bAlways3D)
{
// override wave colors
*pState->var_pf_wave_r = 0.35f*(*pState->var_pf_wave_r) + 0.65f;
*pState->var_pf_wave_g = 0.35f*(*pState->var_pf_wave_g) + 0.65f;
*pState->var_pf_wave_b = 0.35f*(*pState->var_pf_wave_b) + 0.65f;
}
*/
}
if (m_pState->m_bBlending)
{
// For all variables that do NOT affect pixel motion, blend them NOW,
// so later the user can just access m_pState->m_pf_whatever.
double mix = (double)CosineInterp(m_pState->m_fBlendProgress);
double mix2 = 1.0 - mix;
*m_pState->var_pf_decay = mix*(*m_pState->var_pf_decay ) + mix2*(*m_pOldState->var_pf_decay );
*m_pState->var_pf_wave_a = mix*(*m_pState->var_pf_wave_a ) + mix2*(*m_pOldState->var_pf_wave_a );
*m_pState->var_pf_wave_r = mix*(*m_pState->var_pf_wave_r ) + mix2*(*m_pOldState->var_pf_wave_r );
*m_pState->var_pf_wave_g = mix*(*m_pState->var_pf_wave_g ) + mix2*(*m_pOldState->var_pf_wave_g );
*m_pState->var_pf_wave_b = mix*(*m_pState->var_pf_wave_b ) + mix2*(*m_pOldState->var_pf_wave_b );
*m_pState->var_pf_wave_x = mix*(*m_pState->var_pf_wave_x ) + mix2*(*m_pOldState->var_pf_wave_x );
*m_pState->var_pf_wave_y = mix*(*m_pState->var_pf_wave_y ) + mix2*(*m_pOldState->var_pf_wave_y );
*m_pState->var_pf_wave_mystery = mix*(*m_pState->var_pf_wave_mystery) + mix2*(*m_pOldState->var_pf_wave_mystery);
// wave_mode: exempt (integer)
*m_pState->var_pf_ob_size = mix*(*m_pState->var_pf_ob_size ) + mix2*(*m_pOldState->var_pf_ob_size );
*m_pState->var_pf_ob_r = mix*(*m_pState->var_pf_ob_r ) + mix2*(*m_pOldState->var_pf_ob_r );
*m_pState->var_pf_ob_g = mix*(*m_pState->var_pf_ob_g ) + mix2*(*m_pOldState->var_pf_ob_g );
*m_pState->var_pf_ob_b = mix*(*m_pState->var_pf_ob_b ) + mix2*(*m_pOldState->var_pf_ob_b );
*m_pState->var_pf_ob_a = mix*(*m_pState->var_pf_ob_a ) + mix2*(*m_pOldState->var_pf_ob_a );
*m_pState->var_pf_ib_size = mix*(*m_pState->var_pf_ib_size ) + mix2*(*m_pOldState->var_pf_ib_size );
*m_pState->var_pf_ib_r = mix*(*m_pState->var_pf_ib_r ) + mix2*(*m_pOldState->var_pf_ib_r );
*m_pState->var_pf_ib_g = mix*(*m_pState->var_pf_ib_g ) + mix2*(*m_pOldState->var_pf_ib_g );
*m_pState->var_pf_ib_b = mix*(*m_pState->var_pf_ib_b ) + mix2*(*m_pOldState->var_pf_ib_b );
*m_pState->var_pf_ib_a = mix*(*m_pState->var_pf_ib_a ) + mix2*(*m_pOldState->var_pf_ib_a );
*m_pState->var_pf_mv_x = mix*(*m_pState->var_pf_mv_x ) + mix2*(*m_pOldState->var_pf_mv_x );
*m_pState->var_pf_mv_y = mix*(*m_pState->var_pf_mv_y ) + mix2*(*m_pOldState->var_pf_mv_y );
*m_pState->var_pf_mv_dx = mix*(*m_pState->var_pf_mv_dx ) + mix2*(*m_pOldState->var_pf_mv_dx );
*m_pState->var_pf_mv_dy = mix*(*m_pState->var_pf_mv_dy ) + mix2*(*m_pOldState->var_pf_mv_dy );
*m_pState->var_pf_mv_l = mix*(*m_pState->var_pf_mv_l ) + mix2*(*m_pOldState->var_pf_mv_l );
*m_pState->var_pf_mv_r = mix*(*m_pState->var_pf_mv_r ) + mix2*(*m_pOldState->var_pf_mv_r );
*m_pState->var_pf_mv_g = mix*(*m_pState->var_pf_mv_g ) + mix2*(*m_pOldState->var_pf_mv_g );
*m_pState->var_pf_mv_b = mix*(*m_pState->var_pf_mv_b ) + mix2*(*m_pOldState->var_pf_mv_b );
*m_pState->var_pf_mv_a = mix*(*m_pState->var_pf_mv_a ) + mix2*(*m_pOldState->var_pf_mv_a );
*m_pState->var_pf_echo_zoom = mix*(*m_pState->var_pf_echo_zoom ) + mix2*(*m_pOldState->var_pf_echo_zoom );
*m_pState->var_pf_echo_alpha = mix*(*m_pState->var_pf_echo_alpha ) + mix2*(*m_pOldState->var_pf_echo_alpha );
*m_pState->var_pf_echo_orient = (mix < m_fSnapPoint) ? *m_pOldState->var_pf_echo_orient : *m_pState->var_pf_echo_orient;
// added in v1.04:
*m_pState->var_pf_wave_usedots = (mix < m_fSnapPoint) ? *m_pOldState->var_pf_wave_usedots : *m_pState->var_pf_wave_usedots ;
*m_pState->var_pf_wave_thick = (mix < m_fSnapPoint) ? *m_pOldState->var_pf_wave_thick : *m_pState->var_pf_wave_thick ;
*m_pState->var_pf_wave_additive= (mix < m_fSnapPoint) ? *m_pOldState->var_pf_wave_additive : *m_pState->var_pf_wave_additive;
*m_pState->var_pf_wave_brighten= (mix < m_fSnapPoint) ? *m_pOldState->var_pf_wave_brighten : *m_pState->var_pf_wave_brighten;
*m_pState->var_pf_darken_center= (mix < m_fSnapPoint) ? *m_pOldState->var_pf_darken_center : *m_pState->var_pf_darken_center;
*m_pState->var_pf_gamma = mix*(*m_pState->var_pf_gamma ) + mix2*(*m_pOldState->var_pf_gamma );
*m_pState->var_pf_wrap = (mix < m_fSnapPoint) ? *m_pOldState->var_pf_wrap : *m_pState->var_pf_wrap ;
*m_pState->var_pf_invert = (mix < m_fSnapPoint) ? *m_pOldState->var_pf_invert : *m_pState->var_pf_invert ;
*m_pState->var_pf_brighten = (mix < m_fSnapPoint) ? *m_pOldState->var_pf_brighten : *m_pState->var_pf_brighten ;
*m_pState->var_pf_darken = (mix < m_fSnapPoint) ? *m_pOldState->var_pf_darken : *m_pState->var_pf_darken ;
*m_pState->var_pf_solarize = (mix < m_fSnapPoint) ? *m_pOldState->var_pf_solarize : *m_pState->var_pf_solarize ;
// added in v2.0:
*m_pState->var_pf_blur1min = mix*(*m_pState->var_pf_blur1min ) + mix2*(*m_pOldState->var_pf_blur1min );
*m_pState->var_pf_blur2min = mix*(*m_pState->var_pf_blur2min ) + mix2*(*m_pOldState->var_pf_blur2min );
*m_pState->var_pf_blur3min = mix*(*m_pState->var_pf_blur3min ) + mix2*(*m_pOldState->var_pf_blur3min );
*m_pState->var_pf_blur1max = mix*(*m_pState->var_pf_blur1max ) + mix2*(*m_pOldState->var_pf_blur1max );
*m_pState->var_pf_blur2max = mix*(*m_pState->var_pf_blur2max ) + mix2*(*m_pOldState->var_pf_blur2max );
*m_pState->var_pf_blur3max = mix*(*m_pState->var_pf_blur3max ) + mix2*(*m_pOldState->var_pf_blur3max );
*m_pState->var_pf_blur1_edge_darken = mix*(*m_pState->var_pf_blur1_edge_darken) + mix2*(*m_pOldState->var_pf_blur1_edge_darken);
}
}
void CPlugin::RenderFrame(int bRedraw)
{
int i;
float fDeltaT = 1.0f/GetFps();
if (bRedraw)
{
// pre-un-flip buffers, so we are redoing the same work as we did last frame...
IDirect3DTexture9* pTemp = m_lpVS[0];
m_lpVS[0] = m_lpVS[1];
m_lpVS[1] = pTemp;
}
// update time
/*
float fDeltaT = (GetFrame()==0) ? 1.0f/30.0f : GetTime() - m_prev_time;
DWORD dwTime = GetTickCount();
float fDeltaT = (dwTime - m_dwPrevTickCount)*0.001f;
if (GetFrame() > 64)
{
fDeltaT = (fDeltaT)*0.2f + 0.8f*(1.0f/m_fps);
if (fDeltaT > 2.0f/m_fps)
{
char buf[64];
sprintf(buf, "fixing time gap of %5.3f seconds", fDeltaT);
dumpmsg(buf);
fDeltaT = 1.0f/m_fps;
}
}
m_dwPrevTickCount = dwTime;
GetTime() += fDeltaT;
*/
if (GetFrame()==0)
{
m_fStartTime = GetTime();
m_fPresetStartTime = GetTime();
}
if (m_fNextPresetTime < 0)
{
float dt = m_fTimeBetweenPresetsRand * (warand()%1000)*0.001f;
m_fNextPresetTime = GetTime() + m_fBlendTimeAuto + m_fTimeBetweenPresets + dt;
}
/*
if (m_bPresetLockedByUser || m_bPresetLockedByCode)
{
// if the user has the preset LOCKED, or if they're in the middle of
// saving it, then keep extending the time at which the auto-switch will occur
// (by the length of this frame).
m_fPresetStartTime += fDeltaT;
m_fNextPresetTime += fDeltaT;
}*/
// update fps
/*
if (GetFrame() < 4)
{
m_fps = 0.0f;
}
else if (GetFrame() <= 64)
{
m_fps = GetFrame() / (float)(GetTime() - m_fTimeHistory[0]);
}
else
{
m_fps = 64.0f / (float)(GetTime() - m_fTimeHistory[m_nTimeHistoryPos]);
}
m_fTimeHistory[m_nTimeHistoryPos] = GetTime();
m_nTimeHistoryPos = (m_nTimeHistoryPos + 1) % 64;
*/
// limit fps, if necessary
/*
if (m_nFpsLimit > 0 && (GetFrame() % 64) == 0 && GetFrame() > 64)
{
float spf_now = 1.0f / m_fps;
float spf_desired = 1.0f / (float)m_nFpsLimit;
float new_sleep = m_fFPSLimitSleep + (spf_desired - spf_now)*1000.0f;
if (GetFrame() <= 128)
m_fFPSLimitSleep = new_sleep;
else
m_fFPSLimitSleep = m_fFPSLimitSleep*0.8f + 0.2f*new_sleep;
if (m_fFPSLimitSleep < 0) m_fFPSLimitSleep = 0;
if (m_fFPSLimitSleep > 100) m_fFPSLimitSleep = 100;
//sprintf(m_szUserMessage, "sleep=%f", m_fFPSLimitSleep);
//m_fShowUserMessageUntilThisTime = GetTime() + 3.0f;
}
static float deficit;
if (GetFrame()==0) deficit = 0;
float ideal_sleep = (m_fFPSLimitSleep + deficit);
int actual_sleep = (int)ideal_sleep;
if (actual_sleep > 0)
Sleep(actual_sleep);
deficit = ideal_sleep - actual_sleep;
if (deficit < 0) deficit = 0; // just in case
if (deficit > 1) deficit = 1; // just in case
*/
if (!bRedraw)
{
m_rand_frame = D3DXVECTOR4(FRAND, FRAND, FRAND, FRAND);
// randomly change the preset, if it's time
if (m_fNextPresetTime < GetTime())
{
if (m_nLoadingPreset==0) // don't start a load if one is already underway!
LoadRandomPreset(m_fBlendTimeAuto);
}
// randomly spawn Song Title, if time
if (m_fTimeBetweenRandomSongTitles > 0 &&
!m_supertext.bRedrawSuperText &&
GetTime() >= m_supertext.fStartTime + m_supertext.fDuration + 1.0f/GetFps())
{
int n = GetNumToSpawn(GetTime(), fDeltaT, 1.0f/m_fTimeBetweenRandomSongTitles, 0.5f, m_nSongTitlesSpawned);
if (n > 0)
{
LaunchSongTitleAnim();
m_nSongTitlesSpawned += n;
}
}
// randomly spawn Custom Message, if time
if (m_fTimeBetweenRandomCustomMsgs > 0 &&
!m_supertext.bRedrawSuperText &&
GetTime() >= m_supertext.fStartTime + m_supertext.fDuration + 1.0f/GetFps())
{
int n = GetNumToSpawn(GetTime(), fDeltaT, 1.0f/m_fTimeBetweenRandomCustomMsgs, 0.5f, m_nCustMsgsSpawned);
if (n > 0)
{
LaunchCustomMessage(-1);
m_nCustMsgsSpawned += n;
}
}
// update m_fBlendProgress;
if (m_pState->m_bBlending)
{
m_pState->m_fBlendProgress = (GetTime() - m_pState->m_fBlendStartTime) / m_pState->m_fBlendDuration;
if (m_pState->m_fBlendProgress > 1.0f)
{
m_pState->m_bBlending = false;
}
}
// handle hard cuts here (just after new sound analysis)
static float m_fHardCutThresh;
if (GetFrame() == 0)
m_fHardCutThresh = m_fHardCutLoudnessThresh*2.0f;
if (GetFps() > 1.0f && !m_bHardCutsDisabled && !m_bPresetLockedByUser && !m_bPresetLockedByCode)
{
if (mysound.imm_rel[0] + mysound.imm_rel[1] + mysound.imm_rel[2] > m_fHardCutThresh*3.0f)
{
if (m_nLoadingPreset==0) // don't start a load if one is already underway!
LoadRandomPreset(0.0f);
m_fHardCutThresh *= 2.0f;
}
else
{
/*
float halflife_modified = m_fHardCutHalflife*0.5f;
//thresh = (thresh - 1.5f)*0.99f + 1.5f;
float k = -0.69315f / halflife_modified;*/
float k = -1.3863f / (m_fHardCutHalflife*GetFps());
//float single_frame_multiplier = powf(2.7183f, k / GetFps());
float single_frame_multiplier = expf(k);
m_fHardCutThresh = (m_fHardCutThresh - m_fHardCutLoudnessThresh)*single_frame_multiplier + m_fHardCutLoudnessThresh;
}
}
// smooth & scale the audio data, according to m_state, for display purposes
float scale = m_pState->m_fWaveScale.eval(GetTime()) / 128.0f;
mysound.fWave[0][0] *= scale;
mysound.fWave[1][0] *= scale;
float mix2 = m_pState->m_fWaveSmoothing.eval(GetTime());
float mix1 = scale*(1.0f - mix2);
for (i=1; i<576; i++)
{
mysound.fWave[0][i] = mysound.fWave[0][i]*mix1 + mysound.fWave[0][i-1]*mix2;
mysound.fWave[1][i] = mysound.fWave[1][i]*mix1 + mysound.fWave[1][i-1]*mix2;
}
}
bool bOldPresetUsesWarpShader = (m_pOldState->m_nWarpPSVersion > 0);
bool bNewPresetUsesWarpShader = (m_pState->m_nWarpPSVersion > 0);
bool bOldPresetUsesCompShader = (m_pOldState->m_nCompPSVersion > 0);
bool bNewPresetUsesCompShader = (m_pState->m_nCompPSVersion > 0);
// note: 'code' is only meaningful if we are BLENDING.
int code = (bOldPresetUsesWarpShader ? 8 : 0) |
(bOldPresetUsesCompShader ? 4 : 0) |
(bNewPresetUsesWarpShader ? 2 : 0) |
(bNewPresetUsesCompShader ? 1 : 0);
RunPerFrameEquations(code);
// restore any lost surfaces
//m_lpDD->RestoreAllSurfaces();
LPDIRECT3DDEVICE9 lpDevice = GetDevice();
if (!lpDevice)
return;
// Remember the original backbuffer and zbuffer
LPDIRECT3DSURFACE9 pBackBuffer=NULL;//, pZBuffer=NULL;
lpDevice->GetRenderTarget( 0, &pBackBuffer );
//lpDevice->GetDepthStencilSurface( &pZBuffer );
// set up render state
{
DWORD texaddr = (*m_pState->var_pf_wrap > m_fSnapPoint) ? D3DTADDRESS_WRAP : D3DTADDRESS_CLAMP;
lpDevice->SetRenderState(D3DRS_WRAP0, 0);//D3DWRAPCOORD_0|D3DWRAPCOORD_1|D3DWRAPCOORD_2|D3DWRAPCOORD_3);
//lpDevice->SetRenderState(D3DRS_WRAP0, (*m_pState->var_pf_wrap) ? D3DWRAP_U|D3DWRAP_V|D3DWRAP_W : 0);
//lpDevice->SetRenderState(D3DRS_WRAP1, (*m_pState->var_pf_wrap) ? D3DWRAP_U|D3DWRAP_V|D3DWRAP_W : 0);
lpDevice->SetSamplerState(0, D3DSAMP_ADDRESSU, D3DTADDRESS_WRAP);//texaddr);
lpDevice->SetSamplerState(0, D3DSAMP_ADDRESSV, D3DTADDRESS_WRAP);//texaddr);
lpDevice->SetSamplerState(0, D3DSAMP_ADDRESSW, D3DTADDRESS_WRAP);//texaddr);
lpDevice->SetSamplerState(1, D3DSAMP_ADDRESSU, D3DTADDRESS_WRAP);
lpDevice->SetSamplerState(1, D3DSAMP_ADDRESSV, D3DTADDRESS_WRAP);
lpDevice->SetSamplerState(1, D3DSAMP_ADDRESSW, D3DTADDRESS_WRAP);
lpDevice->SetRenderState( D3DRS_SHADEMODE, D3DSHADE_GOURAUD );
lpDevice->SetRenderState( D3DRS_SPECULARENABLE, FALSE );
lpDevice->SetRenderState( D3DRS_CULLMODE, D3DCULL_NONE );
lpDevice->SetRenderState( D3DRS_ZENABLE, FALSE );
lpDevice->SetRenderState( D3DRS_ZWRITEENABLE, FALSE );
lpDevice->SetRenderState( D3DRS_LIGHTING, FALSE );
lpDevice->SetRenderState( D3DRS_COLORVERTEX, TRUE );
lpDevice->SetRenderState( D3DRS_FILLMODE, D3DFILL_SOLID );
lpDevice->SetRenderState( D3DRS_ALPHABLENDENABLE, FALSE );
lpDevice->SetRenderState( D3DRS_AMBIENT, 0xFFFFFFFF ); //?
lpDevice->SetRenderState( D3DRS_CLIPPING, TRUE );
// stages 0 and 1 always just use bilinear filtering.
lpDevice->SetSamplerState(0, D3DSAMP_MAGFILTER, D3DTEXF_LINEAR);
lpDevice->SetSamplerState(0, D3DSAMP_MINFILTER, D3DTEXF_LINEAR);
lpDevice->SetSamplerState(0, D3DSAMP_MIPFILTER, D3DTEXF_LINEAR);
lpDevice->SetSamplerState(1, D3DSAMP_MAGFILTER, D3DTEXF_LINEAR);
lpDevice->SetSamplerState(1, D3DSAMP_MINFILTER, D3DTEXF_LINEAR);
lpDevice->SetSamplerState(1, D3DSAMP_MIPFILTER, D3DTEXF_LINEAR);
// note: this texture stage state setup works for 0 or 1 texture.
// if you set a texture, it will be modulated with the current diffuse color.
// if you don't set a texture, it will just use the current diffuse color.
lpDevice->SetTextureStageState(0, D3DTSS_COLOROP, D3DTOP_MODULATE);
lpDevice->SetTextureStageState(0, D3DTSS_COLORARG1, D3DTA_DIFFUSE);
lpDevice->SetTextureStageState(0, D3DTSS_COLORARG2, D3DTA_TEXTURE);
lpDevice->SetTextureStageState(1, D3DTSS_COLOROP, D3DTOP_DISABLE);
lpDevice->SetTextureStageState(0, D3DTSS_ALPHAOP, D3DTOP_SELECTARG1 );
lpDevice->SetTextureStageState(0, D3DTSS_ALPHAARG1, D3DTA_DIFFUSE );
lpDevice->SetTextureStageState(1, D3DTSS_ALPHAOP, D3DTOP_DISABLE);
// NOTE: don't forget to call SetTexture and SetVertexShader before drawing!
// Examples:
// SPRITEVERTEX verts[4]; // has texcoords
// lpDevice->SetTexture(0, m_sprite_tex);
// lpDevice->SetVertexShader( SPRITEVERTEX_FORMAT );
//
// WFVERTEX verts[4]; // no texcoords
// lpDevice->SetTexture(0, NULL);
// lpDevice->SetVertexShader( WFVERTEX_FORMAT );
}
// render string to m_lpDDSTitle, if necessary
if (m_supertext.bRedrawSuperText)
{
if (!RenderStringToTitleTexture())
m_supertext.fStartTime = -1.0f;
m_supertext.bRedrawSuperText = false;
}
// set up to render [from NULL] to VS0 (for motion vectors).
{
lpDevice->SetTexture(0, NULL);
IDirect3DSurface9* pNewTarget = NULL;
if (m_lpVS[0]->GetSurfaceLevel(0, &pNewTarget) != D3D_OK)
return;
lpDevice->SetRenderTarget(0, pNewTarget );
//lpDevice->SetDepthStencilSurface( NULL );
pNewTarget->Release();
lpDevice->SetTexture(0, NULL);
}
// draw motion vectors to VS0
DrawMotionVectors();
lpDevice->SetTexture(0, NULL);
lpDevice->SetTexture(1, NULL);
// on first frame, clear OLD VS.
if (m_nFramesSinceResize == 0)
{
IDirect3DSurface9* pNewTarget = NULL;
if (m_lpVS[0]->GetSurfaceLevel(0, &pNewTarget) != D3D_OK)
return;
lpDevice->SetRenderTarget(0, pNewTarget );
//lpDevice->SetDepthStencilSurface( NULL );
pNewTarget->Release();
lpDevice->Clear(0, NULL, D3DCLEAR_TARGET, 0x00000000, 1.0f, 0);
}
// set up to render [from VS0] to VS1.
{
IDirect3DSurface9* pNewTarget = NULL;
if (m_lpVS[1]->GetSurfaceLevel(0, &pNewTarget) != D3D_OK)
return;
lpDevice->SetRenderTarget(0, pNewTarget );
//lpDevice->SetDepthStencilSurface( NULL );
pNewTarget->Release();
}
if (m_bAutoGamma && GetFrame()==0)
{
if (strstr(GetDriverDescription(), "nvidia") ||
strstr(GetDriverDescription(), "nVidia") ||
strstr(GetDriverDescription(), "NVidia") ||
strstr(GetDriverDescription(), "NVIDIA"))
m_n16BitGamma = 2;
else if (strstr(GetDriverDescription(), "ATI RAGE MOBILITY M"))
m_n16BitGamma = 2;
else
m_n16BitGamma = 0;
}
ComputeGridAlphaValues();
// do the warping for this frame [warp shader]
if (!m_pState->m_bBlending)
{
// no blend
if (bNewPresetUsesWarpShader)
WarpedBlit_Shaders(1, false, false, false, false);
else
WarpedBlit_NoShaders(1, false, false, false, false);
}
else
{
// blending
// WarpedBlit( nPass, bAlphaBlend, bFlipAlpha, bCullTiles, bFlipCulling )
// note: alpha values go from 0..1 during a blend.
// note: bFlipCulling==false means tiles with alpha>0 will draw.
// bFlipCulling==true means tiles with alpha<255 will draw.
if (bOldPresetUsesWarpShader && bNewPresetUsesWarpShader)
{
WarpedBlit_Shaders (0, false, false, true, true);
WarpedBlit_Shaders (1, true, false, true, false);
}
else if (!bOldPresetUsesWarpShader && bNewPresetUsesWarpShader)
{
WarpedBlit_NoShaders(0, false, false, true, true);
WarpedBlit_Shaders (1, true, false, true, false);
}
else if (bOldPresetUsesWarpShader && !bNewPresetUsesWarpShader)
{
WarpedBlit_Shaders (0, false, false, true, true);
WarpedBlit_NoShaders(1, true, false, true, false);
}
else if (!bOldPresetUsesWarpShader && !bNewPresetUsesWarpShader)
{
//WarpedBlit_NoShaders(0, false, false, true, true);
//WarpedBlit_NoShaders(1, true, false, true, false);
// special case - all the blending just happens in the vertex UV's, so just pretend there's no blend.
WarpedBlit_NoShaders(1, false, false, false, false);
}
}
if (m_nMaxPSVersion > 0)
BlurPasses();
// draw audio data
DrawCustomShapes(); // draw these first; better for feedback if the waves draw *over* them.
DrawCustomWaves();
DrawWave(mysound.fWave[0], mysound.fWave[1]);
DrawSprites();
float fProgress = (GetTime() - m_supertext.fStartTime) / m_supertext.fDuration;
// if song title animation just ended, burn it into the VS:
if (m_supertext.fStartTime >= 0 &&
fProgress >= 1.0f &&
!m_supertext.bRedrawSuperText)
{
ShowSongTitleAnim(m_nTexSizeX, m_nTexSizeY, 1.0f);
}
// Change the rendertarget back to the original setup
lpDevice->SetTexture(0, NULL);
lpDevice->SetRenderTarget(0, pBackBuffer );
//lpDevice->SetDepthStencilSurface( pZBuffer );
SafeRelease(pBackBuffer);
//SafeRelease(pZBuffer);
// show it to the user [composite shader]
if (!m_pState->m_bBlending)
{
// no blend
if (bNewPresetUsesCompShader)
ShowToUser_Shaders(1, false, false, false, false);
else
ShowToUser_NoShaders();//1, false, false, false, false);
}
else
{
// blending
// ShowToUser( nPass, bAlphaBlend, bFlipAlpha, bCullTiles, bFlipCulling )
// note: alpha values go from 0..1 during a blend.
// note: bFlipCulling==false means tiles with alpha>0 will draw.
// bFlipCulling==true means tiles with alpha<255 will draw.
// NOTE: ShowToUser_NoShaders() must always come before ShowToUser_Shaders(),
// because it always draws the full quad (it can't do tile culling or alpha blending).
// [third case here]
if (bOldPresetUsesCompShader && bNewPresetUsesCompShader)
{
ShowToUser_Shaders (0, false, false, true, true);
ShowToUser_Shaders (1, true, false, true, false);
}
else if (!bOldPresetUsesCompShader && bNewPresetUsesCompShader)
{
ShowToUser_NoShaders();
ShowToUser_Shaders (1, true, false, true, false);
}
else if (bOldPresetUsesCompShader && !bNewPresetUsesCompShader)
{
// THA FUNKY REVERSAL
//ShowToUser_Shaders (0);
//ShowToUser_NoShaders(1);
ShowToUser_NoShaders();
ShowToUser_Shaders (0, true, true, true, true);
}
else if (!bOldPresetUsesCompShader && !bNewPresetUsesCompShader)
{
// special case - all the blending just happens in the blended state vars, so just pretend there's no blend.
ShowToUser_NoShaders();//1, false, false, false, false);
}
}
// finally, render song title animation to back buffer
if (m_supertext.fStartTime >= 0 &&
!m_supertext.bRedrawSuperText)
{
ShowSongTitleAnim(GetWidth(), GetHeight(), min(fProgress, 0.9999f));
if (fProgress >= 1.0f)
m_supertext.fStartTime = -1.0f; // 'off' state
}
DrawUserSprites();
// flip buffers
IDirect3DTexture9* pTemp = m_lpVS[0];
m_lpVS[0] = m_lpVS[1];
m_lpVS[1] = pTemp;
/*
// FIXME - remove EnforceMaxFPS() if never used
//EnforceMaxFPS(!(m_nLoadingPreset==1 || m_nLoadingPreset==2 || m_nLoadingPreset==4 || m_nLoadingPreset==5)); // this call just turns it on or off; doesn't do it now...
//EnforceMaxFPS(!(m_nLoadingPreset==2 || m_nLoadingPreset==5)); // this call just turns it on or off; doesn't do it now...
// FIXME - remove this stuff, and change 'm_last_raw_time' in pluginshell (and others) back to private.
static float fOldTime = 0;
float fNewTime = (float)((double)m_last_raw_time/(double)m_high_perf_timer_freq.QuadPart);
float dt = fNewTime-fOldTime;
if (m_nLoadingPreset != 0) {
char buf[256];
sprintf(buf, "m_nLoadingPreset==%d: dt=%d ms\n", m_nLoadingPreset, (int)(dt*1000) );
OutputDebugString(buf);
}
fOldTime = fNewTime;
*/
}
void CPlugin::DrawMotionVectors()
{
// FLEXIBLE MOTION VECTOR FIELD
if ((float)*m_pState->var_pf_mv_a >= 0.001f)
{
//-------------------------------------------------------
LPDIRECT3DDEVICE9 lpDevice = GetDevice();
if (!lpDevice)
return;
lpDevice->SetTexture(0, NULL);
lpDevice->SetVertexShader(NULL);
lpDevice->SetFVF(WFVERTEX_FORMAT);
//-------------------------------------------------------
int x,y;
int nX = (int)(*m_pState->var_pf_mv_x);// + 0.999f);
int nY = (int)(*m_pState->var_pf_mv_y);// + 0.999f);
float dx = (float)*m_pState->var_pf_mv_x - nX;
float dy = (float)*m_pState->var_pf_mv_y - nY;
if (nX > 64) { nX = 64; dx = 0; }
if (nY > 48) { nY = 48; dy = 0; }
if (nX > 0 && nY > 0)
{
/*
float dx2 = m_fMotionVectorsTempDx;//(*m_pState->var_pf_mv_dx) * 0.05f*GetTime(); // 0..1 range
float dy2 = m_fMotionVectorsTempDy;//(*m_pState->var_pf_mv_dy) * 0.05f*GetTime(); // 0..1 range
if (GetFps() > 2.0f && GetFps() < 300.0f)
{
dx2 += (float)(*m_pState->var_pf_mv_dx) * 0.05f / GetFps();
dy2 += (float)(*m_pState->var_pf_mv_dy) * 0.05f / GetFps();
}
if (dx2 > 1.0f) dx2 -= (int)dx2;
if (dy2 > 1.0f) dy2 -= (int)dy2;
if (dx2 < 0.0f) dx2 = 1.0f - (-dx2 - (int)(-dx2));
if (dy2 < 0.0f) dy2 = 1.0f - (-dy2 - (int)(-dy2));
// hack: when there is only 1 motion vector on the screem, to keep it in
// the center, we gradually migrate it toward 0.5.
dx2 = dx2*0.995f + 0.5f*0.005f;
dy2 = dy2*0.995f + 0.5f*0.005f;
// safety catch
if (dx2 < 0 || dx2 > 1 || dy2 < 0 || dy2 > 1)
{
dx2 = 0.5f;
dy2 = 0.5f;
}
m_fMotionVectorsTempDx = dx2;
m_fMotionVectorsTempDy = dy2;*/
float dx2 = (float)(*m_pState->var_pf_mv_dx);
float dy2 = (float)(*m_pState->var_pf_mv_dy);
float len_mult = (float)*m_pState->var_pf_mv_l;
if (dx < 0) dx = 0;
if (dy < 0) dy = 0;
if (dx > 1) dx = 1;
if (dy > 1) dy = 1;
//dx = dx * 1.0f/(float)nX;
//dy = dy * 1.0f/(float)nY;
float inv_texsize = 1.0f/(float)m_nTexSizeX;
float min_len = 1.0f*inv_texsize;
WFVERTEX v[(64+1)*2];
ZeroMemory(v, sizeof(WFVERTEX)*(64+1)*2);
v[0].Diffuse = D3DCOLOR_RGBA_01((float)*m_pState->var_pf_mv_r,(float)*m_pState->var_pf_mv_g,(float)*m_pState->var_pf_mv_b,(float)*m_pState->var_pf_mv_a);
for (x=1; x<(nX+1)*2; x++)
v[x].Diffuse = v[0].Diffuse;
lpDevice->SetRenderState(D3DRS_ALPHABLENDENABLE, TRUE);
lpDevice->SetRenderState(D3DRS_SRCBLEND, D3DBLEND_SRCALPHA);
lpDevice->SetRenderState(D3DRS_DESTBLEND, D3DBLEND_INVSRCALPHA);
for (y=0; y<nY; y++)
{
float fy = (y + 0.25f)/(float)(nY + dy + 0.25f - 1.0f);
// now move by offset
fy -= dy2;
if (fy > 0.0001f && fy < 0.9999f)
{
int n = 0;
for (x=0; x<nX; x++)
{
//float fx = (x + 0.25f)/(float)(nX + dx + 0.25f - 1.0f);
float fx = (x + 0.25f)/(float)(nX + dx + 0.25f - 1.0f);
// now move by offset
fx += dx2;
if (fx > 0.0001f && fx < 0.9999f)
{
float fx2, fy2;
ReversePropagatePoint(fx, fy, &fx2, &fy2); // NOTE: THIS IS REALLY A REVERSE-PROPAGATION
//fx2 = fx*2 - fx2;
//fy2 = fy*2 - fy2;
//fx2 = fx + 1.0f/(float)m_nTexSize;
//fy2 = 1-(fy + 1.0f/(float)m_nTexSize);
// enforce minimum trail lengths:
{
float dx = (fx2 - fx);
float dy = (fy2 - fy);
dx *= len_mult;
dy *= len_mult;
float len = sqrtf(dx*dx + dy*dy);
if (len > min_len)
{
}
else if (len > 0.00000001f)
{
len = min_len/len;
dx *= len;
dy *= len;
}
else
{
dx = min_len;
dy = min_len;
}
fx2 = fx + dx;
fy2 = fy + dy;
}
/**/
v[n].x = fx * 2.0f - 1.0f;
v[n].y = fy * 2.0f - 1.0f;
v[n+1].x = fx2 * 2.0f - 1.0f;
v[n+1].y = fy2 * 2.0f - 1.0f;
// actually, project it in the reverse direction
//v[n+1].x = v[n].x*2.0f - v[n+1].x;// + dx*2;
//v[n+1].y = v[n].y*2.0f - v[n+1].y;// + dy*2;
//v[n].x += dx*2;
//v[n].y += dy*2;
n += 2;
}
}
// draw it
lpDevice->DrawPrimitiveUP(D3DPT_LINELIST, n/2, v, sizeof(WFVERTEX));
}
}
lpDevice->SetRenderState(D3DRS_ALPHABLENDENABLE, FALSE);
}
}
}
/*
void CPlugin::UpdateSongInfo()
{
if (m_bShowSongTitle || m_bSongTitleAnims)
{
char szOldSongMessage[512];
lstrcpy(szOldSongMessage, m_szSongMessage);
if (::GetWindowText(m_hWndParent, m_szSongMessage, sizeof(m_szSongMessage)))
{
// remove ' - Winamp' at end
if (strlen(m_szSongMessage) > 9)
{
int check_pos = strlen(m_szSongMessage) - 9;
if (lstrcmp(" - Winamp", (char *)(m_szSongMessage + check_pos)) == 0)
m_szSongMessage[check_pos] = 0;
}
// remove ' - Winamp [Paused]' at end
if (strlen(m_szSongMessage) > 18)
{
int check_pos = strlen(m_szSongMessage) - 18;
if (lstrcmp(" - Winamp [Paused]", (char *)(m_szSongMessage + check_pos)) == 0)
m_szSongMessage[check_pos] = 0;
}
// remove song # and period from beginning
char *p = m_szSongMessage;
while (*p >= '0' && *p <= '9') p++;
if (*p == '.' && *(p+1) == ' ')
{
p += 2;
int pos = 0;
while (*p != 0)
{
m_szSongMessage[pos++] = *p;
p++;
}
m_szSongMessage[pos++] = 0;
}
// fix &'s for display
/*
{
int pos = 0;
int len = strlen(m_szSongMessage);
while (m_szSongMessage[pos])
{
if (m_szSongMessage[pos] == '&')
{
for (int x=len; x>=pos; x--)
m_szSongMessage[x+1] = m_szSongMessage[x];
len++;
pos++;
}
pos++;
}
}*/
/*
if (m_bSongTitleAnims &&
((lstrcmp(szOldSongMessage, m_szSongMessage) != 0) || (GetFrame()==0)))
{
// launch song title animation
LaunchSongTitleAnim();
/*
m_supertext.bRedrawSuperText = true;
m_supertext.bIsSongTitle = true;
lstrcpy(m_supertext.szText, m_szSongMessage);
lstrcpy(m_supertext.nFontFace, m_szTitleFontFace);
m_supertext.fFontSize = (float)m_nTitleFontSize;
m_supertext.bBold = m_bTitleFontBold;
m_supertext.bItal = m_bTitleFontItalic;
m_supertext.fX = 0.5f;
m_supertext.fY = 0.5f;
m_supertext.fGrowth = 1.0f;
m_supertext.fDuration = m_fSongTitleAnimDuration;
m_supertext.nColorR = 255;
m_supertext.nColorG = 255;
m_supertext.nColorB = 255;
m_supertext.fStartTime = GetTime();
*/
/* }
}
else
{
sprintf(m_szSongMessage, "<couldn't get song title>");
}
}
m_nTrackPlaying = SendMessage(m_hWndParent,WM_USER, 0, 125);
// append song time
if (m_bShowSongTime && m_nSongPosMS >= 0)
{
float time_s = m_nSongPosMS*0.001f;
int minutes = (int)(time_s/60);
time_s -= minutes*60;
int seconds = (int)time_s;
time_s -= seconds;
int dsec = (int)(time_s*100);
sprintf(m_szSongTime, "%d:%02d.%02d", minutes, seconds, dsec);
}
// append song length
if (m_bShowSongLen && m_nSongLenMS > 0)
{
int len_s = m_nSongLenMS/1000;
int minutes = len_s/60;
int seconds = len_s - minutes*60;
char buf[512];
sprintf(buf, " / %d:%02d", minutes, seconds);
lstrcat(m_szSongTime, buf);
}
}
*/
bool CPlugin::ReversePropagatePoint(float fx, float fy, float *fx2, float *fy2)
{
//float fy = y/(float)nMotionVectorsY;
int y0 = (int)(fy*m_nGridY);
float dy = fy*m_nGridY - y0;
//float fx = x/(float)nMotionVectorsX;
int x0 = (int)(fx*m_nGridX);
float dx = fx*m_nGridX - x0;
int x1 = x0 + 1;
int y1 = y0 + 1;
if (x0 < 0) return false;
if (y0 < 0) return false;
//if (x1 < 0) return false;
//if (y1 < 0) return false;
//if (x0 > m_nGridX) return false;
//if (y0 > m_nGridY) return false;
if (x1 > m_nGridX) return false;
if (y1 > m_nGridY) return false;
float tu, tv;
tu = m_verts[y0*(m_nGridX+1)+x0].tu * (1-dx)*(1-dy);
tv = m_verts[y0*(m_nGridX+1)+x0].tv * (1-dx)*(1-dy);
tu += m_verts[y0*(m_nGridX+1)+x1].tu * (dx)*(1-dy);
tv += m_verts[y0*(m_nGridX+1)+x1].tv * (dx)*(1-dy);
tu += m_verts[y1*(m_nGridX+1)+x0].tu * (1-dx)*(dy);
tv += m_verts[y1*(m_nGridX+1)+x0].tv * (1-dx)*(dy);
tu += m_verts[y1*(m_nGridX+1)+x1].tu * (dx)*(dy);
tv += m_verts[y1*(m_nGridX+1)+x1].tv * (dx)*(dy);
*fx2 = tu;
*fy2 = 1.0f - tv;
return true;
}
void CPlugin::GetSafeBlurMinMax(CState* pState, float* blur_min, float* blur_max)
{
blur_min[0] = (float)*pState->var_pf_blur1min;
blur_min[1] = (float)*pState->var_pf_blur2min;
blur_min[2] = (float)*pState->var_pf_blur3min;
blur_max[0] = (float)*pState->var_pf_blur1max;
blur_max[1] = (float)*pState->var_pf_blur2max;
blur_max[2] = (float)*pState->var_pf_blur3max;
// check that precision isn't wasted in later blur passes [...min-max gap can't grow!]
// also, if min-max are close to each other, push them apart:
const float fMinDist = 0.1f;
if (blur_max[0] - blur_min[0] < fMinDist) {
float avg = (blur_min[0] + blur_max[0])*0.5f;
blur_min[0] = avg - fMinDist*0.5f;
blur_max[0] = avg - fMinDist*0.5f;
}
blur_max[1] = min(blur_max[0], blur_max[1]);
blur_min[1] = max(blur_min[0], blur_min[1]);
if (blur_max[1] - blur_min[1] < fMinDist) {
float avg = (blur_min[1] + blur_max[1])*0.5f;
blur_min[1] = avg - fMinDist*0.5f;
blur_max[1] = avg - fMinDist*0.5f;
}
blur_max[2] = min(blur_max[1], blur_max[2]);
blur_min[2] = max(blur_min[1], blur_min[2]);
if (blur_max[2] - blur_min[2] < fMinDist) {
float avg = (blur_min[2] + blur_max[2])*0.5f;
blur_min[2] = avg - fMinDist*0.5f;
blur_max[2] = avg - fMinDist*0.5f;
}
}
void CPlugin::BlurPasses()
{
#if (NUM_BLUR_TEX>0)
// Note: Blur is currently a little funky. It blurs the *current* frame after warp;
// this way, it lines up well with the composite pass. However, if you switch
// presets instantly, to one whose *warp* shader uses the blur texture,
// it will be outdated (just for one frame). Oh well.
// This also means that when sampling the blurred textures in the warp shader,
// they are one frame old. This isn't too big a deal. Getting them to match
// up for the composite pass is probably more important.
LPDIRECT3DDEVICE9 lpDevice = GetDevice();
if (!lpDevice)
return;
int passes = min(NUM_BLUR_TEX, m_nHighestBlurTexUsedThisFrame*2);
if (passes==0)
return;
LPDIRECT3DSURFACE9 pBackBuffer=NULL;//, pZBuffer=NULL;
lpDevice->GetRenderTarget( 0, &pBackBuffer );
//lpDevice->SetFVF( MYVERTEX_FORMAT );
lpDevice->SetVertexShader( m_BlurShaders[0].vs.ptr );
lpDevice->SetVertexDeclaration(m_pMyVertDecl);
lpDevice->SetRenderState(D3DRS_ALPHABLENDENABLE, FALSE);
DWORD wrap = D3DTADDRESS_CLAMP;//D3DTADDRESS_WRAP;// : D3DTADDRESS_CLAMP;
lpDevice->SetSamplerState(0, D3DSAMP_ADDRESSU, wrap);
lpDevice->SetSamplerState(0, D3DSAMP_ADDRESSV, wrap);
lpDevice->SetSamplerState(0, D3DSAMP_ADDRESSW, wrap);
lpDevice->SetSamplerState(0, D3DSAMP_MAGFILTER, D3DTEXF_LINEAR);
lpDevice->SetSamplerState(0, D3DSAMP_MINFILTER, D3DTEXF_LINEAR);
lpDevice->SetSamplerState(0, D3DSAMP_MIPFILTER, D3DTEXF_LINEAR);
lpDevice->SetSamplerState(0, D3DSAMP_MAXANISOTROPY, 1);
IDirect3DSurface9* pNewTarget = NULL;
// clear texture bindings
for (int i=0; i<16; i++)
lpDevice->SetTexture(i, NULL);
// set up fullscreen quad
MYVERTEX v[4];
v[0].x = -1;
v[0].y = -1;
v[1].x = 1;
v[1].y = -1;
v[2].x = -1;
v[2].y = 1;
v[3].x = 1;
v[3].y = 1;
v[0].tu = 0; //kiv: upside-down?
v[0].tv = 0;
v[1].tu = 1;
v[1].tv = 0;
v[2].tu = 0;
v[2].tv = 1;
v[3].tu = 1;
v[3].tv = 1;
const float w[8] = { 4.0f, 3.8f, 3.5f, 2.9f, 1.9f, 1.2f, 0.7f, 0.3f }; //<- user can specify these
float edge_darken = (float)*m_pState->var_pf_blur1_edge_darken;
float blur_min[3], blur_max[3];
GetSafeBlurMinMax(m_pState, blur_min, blur_max);
float fscale[3];
float fbias[3];
// figure out the progressive scale & bias needed, at each step,
// to go from one [min..max] range to the next.
float temp_min, temp_max;
fscale[0] = 1.0f / (blur_max[0] - blur_min[0]);
fbias [0] = -blur_min[0] * fscale[0];
temp_min = (blur_min[1] - blur_min[0]) / (blur_max[0] - blur_min[0]);
temp_max = (blur_max[1] - blur_min[0]) / (blur_max[0] - blur_min[0]);
fscale[1] = 1.0f / (temp_max - temp_min);
fbias [1] = -temp_min * fscale[1];
temp_min = (blur_min[2] - blur_min[1]) / (blur_max[1] - blur_min[1]);
temp_max = (blur_max[2] - blur_min[1]) / (blur_max[1] - blur_min[1]);
fscale[2] = 1.0f / (temp_max - temp_min);
fbias [2] = -temp_min * fscale[2];
// note: warped blit just rendered from VS0 to VS1.
for (int i=0; i<passes; i++)
{
// hook up correct render target
if (m_lpBlur[i]->GetSurfaceLevel(0, &pNewTarget) != D3D_OK)
return;
lpDevice->SetRenderTarget(0, pNewTarget);
pNewTarget->Release();
// hook up correct source texture - assume there is only one, at stage 0
lpDevice->SetTexture(0, (i==0) ? m_lpVS[0] : m_lpBlur[i-1]);
// set pixel shader
lpDevice->SetPixelShader (m_BlurShaders[i%2].ps.ptr);
// set constants
LPD3DXCONSTANTTABLE pCT = m_BlurShaders[i%2].ps.CT;
D3DXHANDLE* h = m_BlurShaders[i%2].ps.params.const_handles;
int srcw = (i==0) ? GetWidth() : m_nBlurTexW[i-1];
int srch = (i==0) ? GetHeight() : m_nBlurTexH[i-1];
D3DXVECTOR4 srctexsize = D3DXVECTOR4( (float)srcw, (float)srch, 1.0f/(float)srcw, 1.0f/(float)srch );
float fscale_now = fscale[i/2];
float fbias_now = fbias[i/2];
if (i%2==0)
{
// pass 1 (long horizontal pass)
//-------------------------------------
const float w1 = w[0] + w[1];
const float w2 = w[2] + w[3];
const float w3 = w[4] + w[5];
const float w4 = w[6] + w[7];
const float d1 = 0 + 2*w[1]/w1;
const float d2 = 2 + 2*w[3]/w2;
const float d3 = 4 + 2*w[5]/w3;
const float d4 = 6 + 2*w[7]/w4;
const float w_div = 0.5f/(w1+w2+w3+w4);
//-------------------------------------
//float4 _c0; // source texsize (.xy), and inverse (.zw)
//float4 _c1; // w1..w4
//float4 _c2; // d1..d4
//float4 _c3; // scale, bias, w_div, 0
//-------------------------------------
if (h[0]) pCT->SetVector( lpDevice, h[0], &srctexsize );
if (h[1]) pCT->SetVector( lpDevice, h[1], &D3DXVECTOR4( w1,w2,w3,w4 ));
if (h[2]) pCT->SetVector( lpDevice, h[2], &D3DXVECTOR4( d1,d2,d3,d4 ));
if (h[3]) pCT->SetVector( lpDevice, h[3], &D3DXVECTOR4( fscale_now,fbias_now,w_div,0));
}
else
{
// pass 2 (short vertical pass)
//-------------------------------------
const float w1 = w[0]+w[1] + w[2]+w[3];
const float w2 = w[4]+w[5] + w[6]+w[7];
const float d1 = 0 + 2*((w[2]+w[3])/w1);
const float d2 = 2 + 2*((w[6]+w[7])/w2);
const float w_div = 1.0f/((w1+w2)*2);
//-------------------------------------
//float4 _c0; // source texsize (.xy), and inverse (.zw)
//float4 _c5; // w1,w2,d1,d2
//float4 _c6; // w_div, edge_darken_c1, edge_darken_c2, edge_darken_c3
//-------------------------------------
if (h[0]) pCT->SetVector( lpDevice, h[0], &srctexsize );
if (h[5]) pCT->SetVector( lpDevice, h[5], &D3DXVECTOR4( w1,w2,d1,d2 ));
if (h[6])
{
// note: only do this first time; if you do it many times,
// then the super-blurred levels will have big black lines along the top & left sides.
if (i==1)
pCT->SetVector( lpDevice, h[6], &D3DXVECTOR4( w_div,(1-edge_darken),edge_darken,5.0f )); //darken edges
else
pCT->SetVector( lpDevice, h[6], &D3DXVECTOR4( w_div,1.0f,0.0f,5.0f )); // don't darken
}
}
// draw fullscreen quad
lpDevice->DrawPrimitiveUP(D3DPT_TRIANGLESTRIP, 2, v, sizeof(MYVERTEX));
// clear texture bindings
lpDevice->SetTexture(0, NULL);
}
lpDevice->SetRenderTarget(0, pBackBuffer);
pBackBuffer->Release();
lpDevice->SetPixelShader( NULL );
lpDevice->SetVertexShader( NULL );
lpDevice->SetTexture(0, NULL);
lpDevice->SetFVF( MYVERTEX_FORMAT );
#endif
m_nHighestBlurTexUsedThisFrame = 0;
}
void CPlugin::ComputeGridAlphaValues()
{
float fBlend = m_pState->m_fBlendProgress;//max(0,min(1,(m_pState->m_fBlendProgress*1.6f - 0.3f)));
/*switch(code) //if (nPassOverride==0)
{
//case 8:
//case 9:
//case 12:
//case 13:
// note - these are the 4 cases where the old preset uses a warp shader, but new preset doesn't.
fBlend = 1-fBlend; // <-- THIS IS THE KEY - FLIPS THE ALPHAS AND EVERYTHING ELSE JUST WORKS.
break;
}*/
//fBlend = 1-fBlend; // <-- THIS IS THE KEY - FLIPS THE ALPHAS AND EVERYTHING ELSE JUST WORKS.
bool bBlending = m_pState->m_bBlending;//(fBlend >= 0.0001f && fBlend <= 0.9999f);
// warp stuff
float fWarpTime = GetTime() * m_pState->m_fWarpAnimSpeed;
float fWarpScaleInv = 1.0f / m_pState->m_fWarpScale.eval(GetTime());
float f[4];
f[0] = 11.68f + 4.0f*cosf(fWarpTime*1.413f + 10);
f[1] = 8.77f + 3.0f*cosf(fWarpTime*1.113f + 7);
f[2] = 10.54f + 3.0f*cosf(fWarpTime*1.233f + 3);
f[3] = 11.49f + 4.0f*cosf(fWarpTime*0.933f + 5);
// texel alignment
float texel_offset_x = 0.5f / (float)m_nTexSizeX;
float texel_offset_y = 0.5f / (float)m_nTexSizeY;
int num_reps = (m_pState->m_bBlending) ? 2 : 1;
int start_rep = 0;
// FIRST WE HAVE 1-2 PASSES FOR CRUNCHING THE PER-VERTEX EQUATIONS
for (int rep=start_rep; rep<num_reps; rep++)
{
// to blend the two PV equations together, we simulate both to get the final UV coords,
// then we blend those final UV coords. We also write out an alpha value so that
// the second DRAW pass below (which might use a different shader) can do blending.
CState *pState;
if (rep==0)
pState = m_pState;
else
pState = m_pOldState;
// cache the doubles as floats so that computations are a bit faster
float fZoom = (float)(*pState->var_pf_zoom);
float fZoomExp = (float)(*pState->var_pf_zoomexp);
float fRot = (float)(*pState->var_pf_rot);
float fWarp = (float)(*pState->var_pf_warp);
float fCX = (float)(*pState->var_pf_cx);
float fCY = (float)(*pState->var_pf_cy);
float fDX = (float)(*pState->var_pf_dx);
float fDY = (float)(*pState->var_pf_dy);
float fSX = (float)(*pState->var_pf_sx);
float fSY = (float)(*pState->var_pf_sy);
int n = 0;
for (int y=0; y<=m_nGridY; y++)
{
for (int x=0; x<=m_nGridX; x++)
{
// Note: x, y, z are now set at init. time - no need to mess with them!
//m_verts[n].x = i/(float)m_nGridX*2.0f - 1.0f;
//m_verts[n].y = j/(float)m_nGridY*2.0f - 1.0f;
//m_verts[n].z = 0.0f;
if (pState->m_pp_codehandle)
{
// restore all the variables to their original states,
// run the user-defined equations,
// then move the results into local vars for computation as floats
*pState->var_pv_x = (double)(m_verts[n].x* 0.5f*m_fAspectX + 0.5f);
*pState->var_pv_y = (double)(m_verts[n].y*-0.5f*m_fAspectY + 0.5f);
*pState->var_pv_rad = (double)m_vertinfo[n].rad;
*pState->var_pv_ang = (double)m_vertinfo[n].ang;
*pState->var_pv_zoom = *pState->var_pf_zoom;
*pState->var_pv_zoomexp = *pState->var_pf_zoomexp;
*pState->var_pv_rot = *pState->var_pf_rot;
*pState->var_pv_warp = *pState->var_pf_warp;
*pState->var_pv_cx = *pState->var_pf_cx;
*pState->var_pv_cy = *pState->var_pf_cy;
*pState->var_pv_dx = *pState->var_pf_dx;
*pState->var_pv_dy = *pState->var_pf_dy;
*pState->var_pv_sx = *pState->var_pf_sx;
*pState->var_pv_sy = *pState->var_pf_sy;
//*pState->var_pv_time = *pState->var_pv_time; // (these are all now initialized
//*pState->var_pv_bass = *pState->var_pv_bass; // just once per frame)
//*pState->var_pv_mid = *pState->var_pv_mid;
//*pState->var_pv_treb = *pState->var_pv_treb;
//*pState->var_pv_bass_att = *pState->var_pv_bass_att;
//*pState->var_pv_mid_att = *pState->var_pv_mid_att;
//*pState->var_pv_treb_att = *pState->var_pv_treb_att;
#ifndef _NO_EXPR_
NSEEL_code_execute(pState->m_pp_codehandle);
#endif
fZoom = (float)(*pState->var_pv_zoom);
fZoomExp = (float)(*pState->var_pv_zoomexp);
fRot = (float)(*pState->var_pv_rot);
fWarp = (float)(*pState->var_pv_warp);
fCX = (float)(*pState->var_pv_cx);
fCY = (float)(*pState->var_pv_cy);
fDX = (float)(*pState->var_pv_dx);
fDY = (float)(*pState->var_pv_dy);
fSX = (float)(*pState->var_pv_sx);
fSY = (float)(*pState->var_pv_sy);
}
float fZoom2 = powf(fZoom, powf(fZoomExp, m_vertinfo[n].rad*2.0f - 1.0f));
// initial texcoords, w/built-in zoom factor
float fZoom2Inv = 1.0f/fZoom2;
float u = m_verts[n].x*m_fAspectX*0.5f*fZoom2Inv + 0.5f;
float v = -m_verts[n].y*m_fAspectY*0.5f*fZoom2Inv + 0.5f;
//float u_orig = u;
//float v_orig = v;
//m_verts[n].tr = u_orig + texel_offset_x;
//m_verts[n].ts = v_orig + texel_offset_y;
// stretch on X, Y:
u = (u - fCX)/fSX + fCX;
v = (v - fCY)/fSY + fCY;
// warping:
//if (fWarp > 0.001f || fWarp < -0.001f)
//{
u += fWarp*0.0035f*sinf(fWarpTime*0.333f + fWarpScaleInv*(m_verts[n].x*f[0] - m_verts[n].y*f[3]));
v += fWarp*0.0035f*cosf(fWarpTime*0.375f - fWarpScaleInv*(m_verts[n].x*f[2] + m_verts[n].y*f[1]));
u += fWarp*0.0035f*cosf(fWarpTime*0.753f - fWarpScaleInv*(m_verts[n].x*f[1] - m_verts[n].y*f[2]));
v += fWarp*0.0035f*sinf(fWarpTime*0.825f + fWarpScaleInv*(m_verts[n].x*f[0] + m_verts[n].y*f[3]));
//}
// rotation:
float u2 = u - fCX;
float v2 = v - fCY;
float cos_rot = cosf(fRot);
float sin_rot = sinf(fRot);
u = u2*cos_rot - v2*sin_rot + fCX;
v = u2*sin_rot + v2*cos_rot + fCY;
// translation:
u -= fDX;
v -= fDY;
// undo aspect ratio fix:
u = (u-0.5f)*m_fInvAspectX + 0.5f;
v = (v-0.5f)*m_fInvAspectY + 0.5f;
// final half-texel-offset translation:
u += texel_offset_x;
v += texel_offset_y;
if (rep==0)
{
// UV's for m_pState
m_verts[n].tu = u;
m_verts[n].tv = v;
m_verts[n].Diffuse = 0xFFFFFFFF;
}
else
{
// blend to UV's for m_pOldState
float mix2 = m_vertinfo[n].a*fBlend + m_vertinfo[n].c;//fCosineBlend2;
mix2 = max(0,min(1,mix2));
// if fBlend un-flipped, then mix2 is 0 at the beginning of a blend, 1 at the end...
// and alphas are 0 at the beginning, 1 at the end.
m_verts[n].tu = m_verts[n].tu*(mix2) + u*(1-mix2);
m_verts[n].tv = m_verts[n].tv*(mix2) + v*(1-mix2);
// this sets the alpha values for blending between two presets:
m_verts[n].Diffuse = 0x00FFFFFF | (((DWORD)(mix2*255))<<24);
}
n++;
}
}
}
}
void CPlugin::WarpedBlit_NoShaders(int nPass, bool bAlphaBlend, bool bFlipAlpha, bool bCullTiles, bool bFlipCulling)
{
MungeFPCW(NULL); // puts us in single-precision mode & disables exceptions
LPDIRECT3DDEVICE9 lpDevice = GetDevice();
if (!lpDevice)
return;
if (!wcscmp(m_pState->m_szDesc, INVALID_PRESET_DESC))
{
// if no valid preset loaded, clear the target to black, and return
lpDevice->Clear(0, NULL, D3DCLEAR_TARGET, 0x00000000, 1.0f, 0);
return;
}
lpDevice->SetTexture(0, m_lpVS[0]);
lpDevice->SetVertexShader( NULL );
lpDevice->SetPixelShader( NULL );
lpDevice->SetFVF( MYVERTEX_FORMAT );
lpDevice->SetRenderState(D3DRS_ALPHABLENDENABLE, FALSE);
// stages 0 and 1 always just use bilinear filtering.
lpDevice->SetSamplerState(0, D3DSAMP_MAGFILTER, D3DTEXF_LINEAR);
lpDevice->SetSamplerState(0, D3DSAMP_MINFILTER, D3DTEXF_LINEAR);
lpDevice->SetSamplerState(0, D3DSAMP_MIPFILTER, D3DTEXF_LINEAR);
lpDevice->SetSamplerState(1, D3DSAMP_MAGFILTER, D3DTEXF_LINEAR);
lpDevice->SetSamplerState(1, D3DSAMP_MINFILTER, D3DTEXF_LINEAR);
lpDevice->SetSamplerState(1, D3DSAMP_MIPFILTER, D3DTEXF_LINEAR);
// note: this texture stage state setup works for 0 or 1 texture.
// if you set a texture, it will be modulated with the current diffuse color.
// if you don't set a texture, it will just use the current diffuse color.
lpDevice->SetTextureStageState(0, D3DTSS_COLOROP, D3DTOP_MODULATE);
lpDevice->SetTextureStageState(0, D3DTSS_COLORARG1, D3DTA_DIFFUSE);
lpDevice->SetTextureStageState(0, D3DTSS_COLORARG2, D3DTA_TEXTURE);
lpDevice->SetTextureStageState(1, D3DTSS_COLOROP, D3DTOP_DISABLE);
lpDevice->SetTextureStageState(0, D3DTSS_ALPHAOP, D3DTOP_SELECTARG1 );
lpDevice->SetTextureStageState(0, D3DTSS_ALPHAARG1, D3DTA_DIFFUSE );
lpDevice->SetTextureStageState(1, D3DTSS_ALPHAOP, D3DTOP_DISABLE);
DWORD texaddr = (*m_pState->var_pf_wrap > m_fSnapPoint) ? D3DTADDRESS_WRAP : D3DTADDRESS_CLAMP;
lpDevice->SetSamplerState(0, D3DSAMP_ADDRESSU, texaddr);
lpDevice->SetSamplerState(0, D3DSAMP_ADDRESSV, texaddr);
lpDevice->SetSamplerState(0, D3DSAMP_ADDRESSW, texaddr);
// decay
float fDecay = (float)(*m_pState->var_pf_decay);
//if (m_pState->m_bBlending)
// fDecay = fDecay*(fCosineBlend) + (1.0f-fCosineBlend)*((float)(*m_pOldState->var_pf_decay));
if (m_n16BitGamma > 0 &&
(GetBackBufFormat()==D3DFMT_R5G6B5 || GetBackBufFormat()==D3DFMT_X1R5G5B5 || GetBackBufFormat()==D3DFMT_A1R5G5B5 || GetBackBufFormat()==D3DFMT_A4R4G4B4) &&
fDecay < 0.9999f)
{
fDecay = min(fDecay, (32.0f - m_n16BitGamma)/32.0f);
}
D3DCOLOR cDecay = D3DCOLOR_RGBA_01(fDecay,fDecay,fDecay,1);
// hurl the triangle strips at the video card
int poly;
for (poly=0; poly<(m_nGridX+1)*2; poly++)
m_verts_temp[poly].Diffuse = cDecay;
if (bAlphaBlend)
{
lpDevice->SetRenderState(D3DRS_ALPHABLENDENABLE, TRUE);
if (bFlipAlpha)
{
lpDevice->SetRenderState(D3DRS_SRCBLEND, D3DBLEND_INVSRCALPHA);
lpDevice->SetRenderState(D3DRS_DESTBLEND, D3DBLEND_SRCALPHA);
}
else
{
lpDevice->SetRenderState(D3DRS_SRCBLEND, D3DBLEND_SRCALPHA);
lpDevice->SetRenderState(D3DRS_DESTBLEND, D3DBLEND_INVSRCALPHA);
}
}
else
lpDevice->SetRenderState(D3DRS_ALPHABLENDENABLE, FALSE);
int nAlphaTestValue = 0;
if (bFlipCulling)
nAlphaTestValue = 1-nAlphaTestValue;
// Hurl the triangles at the video card.
// We're going to un-index it, so that we don't stress any crappy (AHEM intel g33)
// drivers out there.
// If we're blending, we'll skip any polygon that is all alpha-blended out.
// This also respects the MaxPrimCount limit of the video card.
MYVERTEX tempv[1024 * 3];
int max_prims_per_batch = min( GetCaps()->MaxPrimitiveCount, (sizeof(tempv)/sizeof(tempv[0]))/3) - 4;
int primCount = m_nGridX*m_nGridY*2;
int src_idx = 0;
int prims_sent = 0;
while (src_idx < primCount*3)
{
int prims_queued = 0;
int i=0;
while (prims_queued < max_prims_per_batch && src_idx < primCount*3)
{
// copy 3 verts
for (int j=0; j<3; j++)
{
tempv[i++] = m_verts[ m_indices_list[src_idx++] ];
// don't forget to flip sign on Y and factor in the decay color!:
tempv[i-1].y *= -1;
tempv[i-1].Diffuse = (cDecay & 0x00FFFFFF) | (tempv[i-1].Diffuse & 0xFF000000);
}
if (bCullTiles)
{
DWORD d1 = (tempv[i-3].Diffuse >> 24);
DWORD d2 = (tempv[i-2].Diffuse >> 24);
DWORD d3 = (tempv[i-1].Diffuse >> 24);
bool bIsNeeded;
if (nAlphaTestValue)
bIsNeeded = ((d1 & d2 & d3) < 255);//(d1 < 255) || (d2 < 255) || (d3 < 255);
else
bIsNeeded = ((d1|d2|d3) > 0);//(d1 > 0) || (d2 > 0) || (d3 > 0);
if (!bIsNeeded)
i -= 3;
else
prims_queued++;
}
else
prims_queued++;
}
if (prims_queued > 0)
lpDevice->DrawPrimitiveUP( D3DPT_TRIANGLELIST, prims_queued, tempv, sizeof(MYVERTEX) );
}
/*
if (!bCullTiles)
{
assert(!bAlphaBlend); //not handled yet
// draw normally - just a full triangle strip for each half-row of cells
// (even if we are blending, it is between two pre-pixel-shader presets,
// so the blend all happens exclusively in the per-vertex equations.)
for (int strip=0; strip<m_nGridY*2; strip++)
{
int index = strip * (m_nGridX+2);
for (poly=0; poly<m_nGridX+2; poly++)
{
int ref_vert = m_indices_strip[index];
m_verts_temp[poly].x = m_verts[ref_vert].x;
m_verts_temp[poly].y = -m_verts[ref_vert].y;
m_verts_temp[poly].z = m_verts[ref_vert].z;
m_verts_temp[poly].tu = m_verts[ref_vert].tu;
m_verts_temp[poly].tv = m_verts[ref_vert].tv;
//m_verts_temp[poly].Diffuse = cDecay; this is done just once - see jsut above
index++;
}
lpDevice->DrawPrimitiveUP(D3DPT_TRIANGLESTRIP, m_nGridX, (void*)m_verts_temp, sizeof(MYVERTEX));
}
}
else
{
// we're blending to/from a new pixel-shader enabled preset;
// only draw the cells needed! (an optimization)
int nAlphaTestValue = 0;
if (bFlipCulling)
nAlphaTestValue = 1-nAlphaTestValue;
int idx[2048];
for (int y=0; y<m_nGridY; y++)
{
// copy verts & flip sign on Y
int ref_vert = y*(m_nGridX+1);
for (int i=0; i<(m_nGridX+1)*2; i++)
{
m_verts_temp[i].x = m_verts[ref_vert].x;
m_verts_temp[i].y = -m_verts[ref_vert].y;
m_verts_temp[i].z = m_verts[ref_vert].z;
m_verts_temp[i].tu = m_verts[ref_vert].tu;
m_verts_temp[i].tv = m_verts[ref_vert].tv;
m_verts_temp[i].Diffuse = (cDecay & 0x00FFFFFF) | (m_verts[ref_vert].Diffuse & 0xFF000000);
ref_vert++;
}
// create (smart) indices
int count = 0;
int nVert = 0;
bool bWasNeeded;
ref_vert = (y)*(m_nGridX+1);
DWORD d1 = (m_verts[ref_vert ].Diffuse >> 24);
DWORD d2 = (m_verts[ref_vert+m_nGridX+1].Diffuse >> 24);
if (nAlphaTestValue)
bWasNeeded = (d1 < 255) || (d2 < 255);
else
bWasNeeded = (d1 > 0) || (d2 > 0);
for (i=0; i<m_nGridX; i++)
{
bool bIsNeeded;
DWORD d1 = (m_verts[ref_vert+1 ].Diffuse >> 24);
DWORD d2 = (m_verts[ref_vert+1+m_nGridX+1].Diffuse >> 24);
if (nAlphaTestValue)
bIsNeeded = (d1 < 255) || (d2 < 255);
else
bIsNeeded = (d1 > 0) || (d2 > 0);
if (bIsNeeded || bWasNeeded)
{
idx[count++] = nVert;
idx[count++] = nVert+1;
idx[count++] = nVert+m_nGridX+1;
idx[count++] = nVert+m_nGridX+1;
idx[count++] = nVert+1;
idx[count++] = nVert+m_nGridX+2;
}
bWasNeeded = bIsNeeded;
nVert++;
ref_vert++;
}
lpDevice->DrawIndexedPrimitiveUP(D3DPT_TRIANGLELIST, 0, (m_nGridX+1)*2, count/3, (void*)idx, D3DFMT_INDEX32, (void*)m_verts_temp, sizeof(MYVERTEX));
}
}/**/
lpDevice->SetRenderState(D3DRS_ALPHABLENDENABLE, FALSE);
}
void CPlugin::WarpedBlit_Shaders(int nPass, bool bAlphaBlend, bool bFlipAlpha, bool bCullTiles, bool bFlipCulling)
{
// if nPass==0, it draws old preset (blending 1 of 2).
// if nPass==1, it draws new preset (blending 2 of 2, OR done blending)
MungeFPCW(NULL); // puts us in single-precision mode & disables exceptions
LPDIRECT3DDEVICE9 lpDevice = GetDevice();
if (!lpDevice)
return;
if (!wcscmp(m_pState->m_szDesc, INVALID_PRESET_DESC))
{
// if no valid preset loaded, clear the target to black, and return
lpDevice->Clear(0, NULL, D3DCLEAR_TARGET, 0x00000000, 1.0f, 0);
return;
}
//float fBlend = m_pState->m_fBlendProgress;//max(0,min(1,(m_pState->m_fBlendProgress*1.6f - 0.3f)));
//if (nPassOverride==0)
// fBlend = 1-fBlend; // <-- THIS IS THE KEY - FLIPS THE ALPHAS AND EVERYTHING ELSE JUST WORKS.
//bool bBlending = m_pState->m_bBlending;//(fBlend >= 0.0001f && fBlend <= 0.9999f);
//lpDevice->SetTexture(0, m_lpVS[0]);
lpDevice->SetVertexShader( NULL );
lpDevice->SetFVF( MYVERTEX_FORMAT );
// texel alignment
float texel_offset_x = 0.5f / (float)m_nTexSizeX;
float texel_offset_y = 0.5f / (float)m_nTexSizeY;
int nAlphaTestValue = 0;
if (bFlipCulling)
nAlphaTestValue = 1-nAlphaTestValue;
if (bAlphaBlend)
{
lpDevice->SetRenderState(D3DRS_ALPHABLENDENABLE, TRUE);
if (bFlipAlpha)
{
lpDevice->SetRenderState(D3DRS_SRCBLEND, D3DBLEND_INVSRCALPHA);
lpDevice->SetRenderState(D3DRS_DESTBLEND, D3DBLEND_SRCALPHA);
}
else
{
lpDevice->SetRenderState(D3DRS_SRCBLEND, D3DBLEND_SRCALPHA);
lpDevice->SetRenderState(D3DRS_DESTBLEND, D3DBLEND_INVSRCALPHA);
}
}
else
lpDevice->SetRenderState(D3DRS_ALPHABLENDENABLE, FALSE);
int pass = nPass;
{
// PASS 0: draw using *blended per-vertex motion vectors*, but with the OLD warp shader.
// PASS 1: draw using *blended per-vertex motion vectors*, but with the NEW warp shader.
PShaderInfo* si = (pass==0) ? &m_OldShaders.warp : &m_shaders.warp;
CState* state = (pass==0) ? m_pOldState : m_pState;
lpDevice->SetVertexDeclaration(m_pMyVertDecl);
lpDevice->SetVertexShader(m_fallbackShaders_vs.warp.ptr);
lpDevice->SetPixelShader (si->ptr);
ApplyShaderParams( &(si->params), si->CT, state );
// Hurl the triangles at the video card.
// We're going to un-index it, so that we don't stress any crappy (AHEM intel g33)
// drivers out there.
// We divide it into the two halves of the screen (top/bottom) so we can hack
// the 'ang' values along the angle-wrap seam, halfway through the draw.
// If we're blending, we'll skip any polygon that is all alpha-blended out.
// This also respects the MaxPrimCount limit of the video card.
MYVERTEX tempv[1024 * 3];
int max_prims_per_batch = min( GetCaps()->MaxPrimitiveCount, (sizeof(tempv)/sizeof(tempv[0]))/3) - 4;
for (int half=0; half<2; half++)
{
// hack / restore the ang values along the angle-wrap [0 <-> 2pi] seam...
float new_ang = half ? 3.1415926535897932384626433832795f : -3.1415926535897932384626433832795f;
int y_offset = (m_nGridY/2) * (m_nGridX+1);
for (int x=0; x<m_nGridX/2; x++)
m_verts[y_offset + x].ang = new_ang;
// send half of the polys
int primCount = m_nGridX*m_nGridY*2 / 2; // in this case, to draw HALF the polys
int src_idx = 0;
int src_idx_offset = half * primCount*3;
int prims_sent = 0;
while (src_idx < primCount*3)
{
int prims_queued = 0;
int i=0;
while (prims_queued < max_prims_per_batch && src_idx < primCount*3)
{
// copy 3 verts
for (int j=0; j<3; j++)
tempv[i++] = m_verts[ m_indices_list[src_idx_offset + src_idx++] ];
if (bCullTiles)
{
DWORD d1 = (tempv[i-3].Diffuse >> 24);
DWORD d2 = (tempv[i-2].Diffuse >> 24);
DWORD d3 = (tempv[i-1].Diffuse >> 24);
bool bIsNeeded;
if (nAlphaTestValue)
bIsNeeded = ((d1 & d2 & d3) < 255);//(d1 < 255) || (d2 < 255) || (d3 < 255);
else
bIsNeeded = ((d1|d2|d3) > 0);//(d1 > 0) || (d2 > 0) || (d3 > 0);
if (!bIsNeeded)
i -= 3;
else
prims_queued++;
}
else
prims_queued++;
}
if (prims_queued > 0)
lpDevice->DrawPrimitiveUP( D3DPT_TRIANGLELIST, prims_queued, tempv, sizeof(MYVERTEX) );
}
}
}
lpDevice->SetRenderState(D3DRS_ALPHABLENDENABLE, FALSE);
RestoreShaderParams();
}
void CPlugin::DrawCustomShapes()
{
LPDIRECT3DDEVICE9 lpDevice = GetDevice();
if (!lpDevice)
return;
//lpDevice->SetTexture(0, m_lpVS[0]);//NULL);
//lpDevice->SetVertexShader( SPRITEVERTEX_FORMAT );
int num_reps = (m_pState->m_bBlending) ? 2 : 1;
for (int rep=0; rep<num_reps; rep++)
{
CState *pState = (rep==0) ? m_pState : m_pOldState;
float alpha_mult = 1;
if (num_reps==2)
alpha_mult = (rep==0) ? m_pState->m_fBlendProgress : (1-m_pState->m_fBlendProgress);
for (int i=0; i<MAX_CUSTOM_SHAPES; i++)
{
if (pState->m_shape[i].enabled)
{
/*
int bAdditive = 0;
int nSides = 3;//3 + ((int)GetTime() % 8);
int bThickOutline = 0;
float x = 0.5f + 0.1f*cosf(GetTime()*0.8f+1);
float y = 0.5f + 0.1f*sinf(GetTime()*0.8f+1);
float rad = 0.15f + 0.07f*sinf(GetTime()*1.1f+3);
float ang = GetTime()*1.5f;
// inside colors
float r = 1;
float g = 0;
float b = 0;
float a = 0.4f;//0.1f + 0.1f*sinf(GetTime()*0.31f);
// outside colors
float r2 = 0;
float g2 = 1;
float b2 = 0;
float a2 = 0;
// border colors
float border_r = 1;
float border_g = 1;
float border_b = 1;
float border_a = 0.5f;
*/
for (int instance=0; instance<pState->m_shape[i].instances; instance++)
{
// 1. execute per-frame code
LoadCustomShapePerFrameEvallibVars(pState, i, instance);
#ifndef _NO_EXPR_
if (pState->m_shape[i].m_pf_codehandle)
{
NSEEL_code_execute(pState->m_shape[i].m_pf_codehandle);
}
#endif
// save changes to t1-t8 this frame
/*
pState->m_shape[i].t_values_after_init_code[0] = *pState->m_shape[i].var_pf_t1;
pState->m_shape[i].t_values_after_init_code[1] = *pState->m_shape[i].var_pf_t2;
pState->m_shape[i].t_values_after_init_code[2] = *pState->m_shape[i].var_pf_t3;
pState->m_shape[i].t_values_after_init_code[3] = *pState->m_shape[i].var_pf_t4;
pState->m_shape[i].t_values_after_init_code[4] = *pState->m_shape[i].var_pf_t5;
pState->m_shape[i].t_values_after_init_code[5] = *pState->m_shape[i].var_pf_t6;
pState->m_shape[i].t_values_after_init_code[6] = *pState->m_shape[i].var_pf_t7;
pState->m_shape[i].t_values_after_init_code[7] = *pState->m_shape[i].var_pf_t8;
*/
int sides = (int)(*pState->m_shape[i].var_pf_sides);
if (sides<3) sides=3;
if (sides>100) sides=100;
lpDevice->SetRenderState(D3DRS_ALPHABLENDENABLE, TRUE);
lpDevice->SetRenderState(D3DRS_SRCBLEND, D3DBLEND_SRCALPHA);
lpDevice->SetRenderState(D3DRS_DESTBLEND, ((int)(*pState->m_shape[i].var_pf_additive) != 0) ? D3DBLEND_ONE : D3DBLEND_INVSRCALPHA);
SPRITEVERTEX v[512]; // for textured shapes (has texcoords)
WFVERTEX v2[512]; // for untextured shapes + borders
v[0].x = (float)(*pState->m_shape[i].var_pf_x* 2-1);// * ASPECT;
v[0].y = (float)(*pState->m_shape[i].var_pf_y*-2+1);
v[0].z = 0;
v[0].tu = 0.5f;
v[0].tv = 0.5f;
v[0].Diffuse =
((((int)(*pState->m_shape[i].var_pf_a * 255 * alpha_mult)) & 0xFF) << 24) |
((((int)(*pState->m_shape[i].var_pf_r * 255)) & 0xFF) << 16) |
((((int)(*pState->m_shape[i].var_pf_g * 255)) & 0xFF) << 8) |
((((int)(*pState->m_shape[i].var_pf_b * 255)) & 0xFF) );
v[1].Diffuse =
((((int)(*pState->m_shape[i].var_pf_a2 * 255 * alpha_mult)) & 0xFF) << 24) |
((((int)(*pState->m_shape[i].var_pf_r2 * 255)) & 0xFF) << 16) |
((((int)(*pState->m_shape[i].var_pf_g2 * 255)) & 0xFF) << 8) |
((((int)(*pState->m_shape[i].var_pf_b2 * 255)) & 0xFF) );
int j = 1;
for (j=1; j<sides+1; j++)
{
float t = (j-1)/(float)sides;
v[j].x = v[0].x + (float)*pState->m_shape[i].var_pf_rad*cosf(t*3.1415927f*2 + (float)*pState->m_shape[i].var_pf_ang + 3.1415927f*0.25f)*m_fAspectY; // DON'T TOUCH!
v[j].y = v[0].y + (float)*pState->m_shape[i].var_pf_rad*sinf(t*3.1415927f*2 + (float)*pState->m_shape[i].var_pf_ang + 3.1415927f*0.25f); // DON'T TOUCH!
v[j].z = 0;
v[j].tu = 0.5f + 0.5f*cosf(t*3.1415927f*2 + (float)*pState->m_shape[i].var_pf_tex_ang + 3.1415927f*0.25f)/((float)*pState->m_shape[i].var_pf_tex_zoom) * m_fAspectY; // DON'T TOUCH!
v[j].tv = 0.5f + 0.5f*sinf(t*3.1415927f*2 + (float)*pState->m_shape[i].var_pf_tex_ang + 3.1415927f*0.25f)/((float)*pState->m_shape[i].var_pf_tex_zoom); // DON'T TOUCH!
v[j].Diffuse = v[1].Diffuse;
}
v[sides+1] = v[1];
if ((int)(*pState->m_shape[i].var_pf_textured) != 0)
{
// draw textured version
lpDevice->SetTexture(0, m_lpVS[0]);
lpDevice->SetVertexShader( NULL );
lpDevice->SetFVF( SPRITEVERTEX_FORMAT );
lpDevice->DrawPrimitiveUP(D3DPT_TRIANGLEFAN, sides, (void*)v, sizeof(SPRITEVERTEX));
}
else
{
// no texture
for (j=0; j < sides+2; j++)
{
v2[j].x = v[j].x;
v2[j].y = v[j].y;
v2[j].z = v[j].z;
v2[j].Diffuse = v[j].Diffuse;
}
lpDevice->SetTexture(0, NULL);
lpDevice->SetVertexShader( NULL );
lpDevice->SetFVF( WFVERTEX_FORMAT );
lpDevice->DrawPrimitiveUP(D3DPT_TRIANGLEFAN, sides, (void*)v2, sizeof(WFVERTEX));
}
// DRAW BORDER
if (*pState->m_shape[i].var_pf_border_a > 0)
{
lpDevice->SetTexture(0, NULL);
lpDevice->SetVertexShader( NULL );
lpDevice->SetFVF( WFVERTEX_FORMAT );
v2[0].Diffuse =
((((int)(*pState->m_shape[i].var_pf_border_a * 255 * alpha_mult)) & 0xFF) << 24) |
((((int)(*pState->m_shape[i].var_pf_border_r * 255)) & 0xFF) << 16) |
((((int)(*pState->m_shape[i].var_pf_border_g * 255)) & 0xFF) << 8) |
((((int)(*pState->m_shape[i].var_pf_border_b * 255)) & 0xFF) );
for (j=0; j<sides+2; j++)
{
v2[j].x = v[j].x;
v2[j].y = v[j].y;
v2[j].z = v[j].z;
v2[j].Diffuse = v2[0].Diffuse;
}
int its = ((int)(*pState->m_shape[i].var_pf_thick) != 0) ? 4 : 1;
float x_inc = 2.0f / (float)m_nTexSizeX;
float y_inc = 2.0f / (float)m_nTexSizeY;
for (int it=0; it<its; it++)
{
switch(it)
{
case 0: break;
case 1: for (j=0; j<sides+2; j++) v2[j].x += x_inc; break; // draw fat dots
case 2: for (j=0; j<sides+2; j++) v2[j].y += y_inc; break; // draw fat dots
case 3: for (j=0; j<sides+2; j++) v2[j].x -= x_inc; break; // draw fat dots
}
lpDevice->DrawPrimitiveUP(D3DPT_LINESTRIP, sides, (void*)&v2[1], sizeof(WFVERTEX));
}
}
lpDevice->SetTexture(0, m_lpVS[0]);
lpDevice->SetVertexShader( NULL );
lpDevice->SetFVF( SPRITEVERTEX_FORMAT );
}
}
}
}
lpDevice->SetRenderState(D3DRS_ALPHABLENDENABLE, FALSE);
lpDevice->SetRenderState(D3DRS_SRCBLEND, D3DBLEND_SRCALPHA);
lpDevice->SetRenderState(D3DRS_DESTBLEND, D3DBLEND_INVSRCALPHA);
}
void CPlugin::LoadCustomShapePerFrameEvallibVars(CState* pState, int i, int instance)
{
*pState->m_shape[i].var_pf_time = (double)(GetTime() - m_fStartTime);
*pState->m_shape[i].var_pf_frame = (double)GetFrame();
*pState->m_shape[i].var_pf_fps = (double)GetFps();
*pState->m_shape[i].var_pf_progress = (GetTime() - m_fPresetStartTime) / (m_fNextPresetTime - m_fPresetStartTime);
*pState->m_shape[i].var_pf_bass = (double)mysound.imm_rel[0];
*pState->m_shape[i].var_pf_mid = (double)mysound.imm_rel[1];
*pState->m_shape[i].var_pf_treb = (double)mysound.imm_rel[2];
*pState->m_shape[i].var_pf_bass_att = (double)mysound.avg_rel[0];
*pState->m_shape[i].var_pf_mid_att = (double)mysound.avg_rel[1];
*pState->m_shape[i].var_pf_treb_att = (double)mysound.avg_rel[2];
int vi = 0;
for (vi=0; vi<NUM_Q_VAR; vi++)
*pState->m_shape[i].var_pf_q[vi] = *pState->var_pf_q[vi];
for (vi=0; vi<NUM_T_VAR; vi++)
*pState->m_shape[i].var_pf_t[vi] = pState->m_shape[i].t_values_after_init_code[vi];
*pState->m_shape[i].var_pf_x = pState->m_shape[i].x;
*pState->m_shape[i].var_pf_y = pState->m_shape[i].y;
*pState->m_shape[i].var_pf_rad = pState->m_shape[i].rad;
*pState->m_shape[i].var_pf_ang = pState->m_shape[i].ang;
*pState->m_shape[i].var_pf_tex_zoom = pState->m_shape[i].tex_zoom;
*pState->m_shape[i].var_pf_tex_ang = pState->m_shape[i].tex_ang;
*pState->m_shape[i].var_pf_sides = pState->m_shape[i].sides;
*pState->m_shape[i].var_pf_additive = pState->m_shape[i].additive;
*pState->m_shape[i].var_pf_textured = pState->m_shape[i].textured;
*pState->m_shape[i].var_pf_instances = pState->m_shape[i].instances;
*pState->m_shape[i].var_pf_instance = instance;
*pState->m_shape[i].var_pf_thick = pState->m_shape[i].thickOutline;
*pState->m_shape[i].var_pf_r = pState->m_shape[i].r;
*pState->m_shape[i].var_pf_g = pState->m_shape[i].g;
*pState->m_shape[i].var_pf_b = pState->m_shape[i].b;
*pState->m_shape[i].var_pf_a = pState->m_shape[i].a;
*pState->m_shape[i].var_pf_r2 = pState->m_shape[i].r2;
*pState->m_shape[i].var_pf_g2 = pState->m_shape[i].g2;
*pState->m_shape[i].var_pf_b2 = pState->m_shape[i].b2;
*pState->m_shape[i].var_pf_a2 = pState->m_shape[i].a2;
*pState->m_shape[i].var_pf_border_r = pState->m_shape[i].border_r;
*pState->m_shape[i].var_pf_border_g = pState->m_shape[i].border_g;
*pState->m_shape[i].var_pf_border_b = pState->m_shape[i].border_b;
*pState->m_shape[i].var_pf_border_a = pState->m_shape[i].border_a;
}
void CPlugin::LoadCustomWavePerFrameEvallibVars(CState* pState, int i)
{
*pState->m_wave[i].var_pf_time = (double)(GetTime() - m_fStartTime);
*pState->m_wave[i].var_pf_frame = (double)GetFrame();
*pState->m_wave[i].var_pf_fps = (double)GetFps();
*pState->m_wave[i].var_pf_progress = (GetTime() - m_fPresetStartTime) / (m_fNextPresetTime - m_fPresetStartTime);
*pState->m_wave[i].var_pf_bass = (double)mysound.imm_rel[0];
*pState->m_wave[i].var_pf_mid = (double)mysound.imm_rel[1];
*pState->m_wave[i].var_pf_treb = (double)mysound.imm_rel[2];
*pState->m_wave[i].var_pf_bass_att = (double)mysound.avg_rel[0];
*pState->m_wave[i].var_pf_mid_att = (double)mysound.avg_rel[1];
*pState->m_wave[i].var_pf_treb_att = (double)mysound.avg_rel[2];
int vi = 0;
for (vi=0; vi<NUM_Q_VAR; vi++)
*pState->m_wave[i].var_pf_q[vi] = *pState->var_pf_q[vi];
for (vi=0; vi<NUM_T_VAR; vi++)
*pState->m_wave[i].var_pf_t[vi] = pState->m_wave[i].t_values_after_init_code[vi];
*pState->m_wave[i].var_pf_r = pState->m_wave[i].r;
*pState->m_wave[i].var_pf_g = pState->m_wave[i].g;
*pState->m_wave[i].var_pf_b = pState->m_wave[i].b;
*pState->m_wave[i].var_pf_a = pState->m_wave[i].a;
*pState->m_wave[i].var_pf_samples = pState->m_wave[i].samples;
}
// does a better-than-linear smooth on a wave. Roughly doubles the # of points.
int SmoothWave(WFVERTEX* vi, int nVertsIn, WFVERTEX* vo)
{
const float c1 = -0.15f;
const float c2 = 1.15f;
const float c3 = 1.15f;
const float c4 = -0.15f;
const float inv_sum = 1.0f/(c1+c2+c3+c4);
int j = 0;
int i_below = 0;
int i_above;
int i_above2 = 1;
for (int i=0; i<nVertsIn-1; i++)
{
i_above = i_above2;
i_above2 = min(nVertsIn-1,i+2);
vo[j] = vi[i];
vo[j+1].x = (c1*vi[i_below].x + c2*vi[i].x + c3*vi[i_above].x + c4*vi[i_above2].x)*inv_sum;
vo[j+1].y = (c1*vi[i_below].y + c2*vi[i].y + c3*vi[i_above].y + c4*vi[i_above2].y)*inv_sum;
vo[j+1].z = 0;
vo[j+1].Diffuse = vi[i].Diffuse;//0xFFFF0080;
i_below = i;
j += 2;
}
vo[j++] = vi[nVertsIn-1];
return j;
}
void CPlugin::DrawCustomWaves()
{
LPDIRECT3DDEVICE9 lpDevice = GetDevice();
if (!lpDevice)
return;
lpDevice->SetTexture(0, NULL);
lpDevice->SetVertexShader( NULL );
lpDevice->SetFVF( WFVERTEX_FORMAT );
// note: read in all sound data from CPluginShell's m_sound
int num_reps = (m_pState->m_bBlending) ? 2 : 1;
for (int rep=0; rep<num_reps; rep++)
{
CState *pState = (rep==0) ? m_pState : m_pOldState;
float alpha_mult = 1;
if (num_reps==2)
alpha_mult = (rep==0) ? m_pState->m_fBlendProgress : (1-m_pState->m_fBlendProgress);
for (int i=0; i<MAX_CUSTOM_WAVES; i++)
{
if (pState->m_wave[i].enabled)
{
int nSamples = pState->m_wave[i].samples;
int max_samples = pState->m_wave[i].bSpectrum ? 512 : NUM_WAVEFORM_SAMPLES;
if (nSamples > max_samples)
nSamples = max_samples;
nSamples -= pState->m_wave[i].sep;
// 1. execute per-frame code
LoadCustomWavePerFrameEvallibVars(pState, i);
// 2.a. do just a once-per-frame init for the *per-point* *READ-ONLY* variables
// (the non-read-only ones will be reset/restored at the start of each vertex)
*pState->m_wave[i].var_pp_time = *pState->m_wave[i].var_pf_time;
*pState->m_wave[i].var_pp_fps = *pState->m_wave[i].var_pf_fps;
*pState->m_wave[i].var_pp_frame = *pState->m_wave[i].var_pf_frame;
*pState->m_wave[i].var_pp_progress = *pState->m_wave[i].var_pf_progress;
*pState->m_wave[i].var_pp_bass = *pState->m_wave[i].var_pf_bass;
*pState->m_wave[i].var_pp_mid = *pState->m_wave[i].var_pf_mid;
*pState->m_wave[i].var_pp_treb = *pState->m_wave[i].var_pf_treb;
*pState->m_wave[i].var_pp_bass_att = *pState->m_wave[i].var_pf_bass_att;
*pState->m_wave[i].var_pp_mid_att = *pState->m_wave[i].var_pf_mid_att;
*pState->m_wave[i].var_pp_treb_att = *pState->m_wave[i].var_pf_treb_att;
NSEEL_code_execute(pState->m_wave[i].m_pf_codehandle);
int vi = 0;
for (vi=0; vi<NUM_Q_VAR; vi++)
*pState->m_wave[i].var_pp_q[vi] = *pState->m_wave[i].var_pf_q[vi];
for (vi=0; vi<NUM_T_VAR; vi++)
*pState->m_wave[i].var_pp_t[vi] = *pState->m_wave[i].var_pf_t[vi];
nSamples = (int)*pState->m_wave[i].var_pf_samples;
nSamples = min(512, nSamples);
if ((nSamples >= 2) || (pState->m_wave[i].bUseDots && nSamples >= 1))
{
int j;
float tempdata[2][512];
float mult = ((pState->m_wave[i].bSpectrum) ? 0.15f : 0.004f) * pState->m_wave[i].scaling * pState->m_fWaveScale.eval(-1);
float *pdata1 = (pState->m_wave[i].bSpectrum) ? m_sound.fSpectrum[0] : m_sound.fWaveform[0];
float *pdata2 = (pState->m_wave[i].bSpectrum) ? m_sound.fSpectrum[1] : m_sound.fWaveform[1];
// initialize tempdata[2][512]
int j0 = (pState->m_wave[i].bSpectrum) ? 0 : (max_samples - nSamples)/2/**(1-pState->m_wave[i].bSpectrum)*/ - pState->m_wave[i].sep/2;
int j1 = (pState->m_wave[i].bSpectrum) ? 0 : (max_samples - nSamples)/2/**(1-pState->m_wave[i].bSpectrum)*/ + pState->m_wave[i].sep/2;
float t = (pState->m_wave[i].bSpectrum) ? (max_samples - pState->m_wave[i].sep)/(float)nSamples : 1;
float mix1 = powf(pState->m_wave[i].smoothing*0.98f, 0.5f); // lower exponent -> more default smoothing
float mix2 = 1-mix1;
// SMOOTHING:
tempdata[0][0] = pdata1[j0];
tempdata[1][0] = pdata2[j1];
for (j=1; j<nSamples; j++)
{
tempdata[0][j] = pdata1[(int)(j*t)+j0]*mix2 + tempdata[0][j-1]*mix1;
tempdata[1][j] = pdata2[(int)(j*t)+j1]*mix2 + tempdata[1][j-1]*mix1;
}
// smooth again, backwards: [this fixes the asymmetry of the beginning & end..]
for (j=nSamples-2; j>=0; j--)
{
tempdata[0][j] = tempdata[0][j]*mix2 + tempdata[0][j+1]*mix1;
tempdata[1][j] = tempdata[1][j]*mix2 + tempdata[1][j+1]*mix1;
}
// finally, scale to final size:
for (j=0; j<nSamples; j++)
{
tempdata[0][j] *= mult;
tempdata[1][j] *= mult;
}
// 2. for each point, execute per-point code
// to do:
// -add any of the m_wave[i].xxx menu-accessible vars to the code?
WFVERTEX v[1024];
float j_mult = 1.0f/(float)(nSamples-1);
for (j=0; j<nSamples; j++)
{
float t = j*j_mult;
float value1 = tempdata[0][j];
float value2 = tempdata[1][j];
*pState->m_wave[i].var_pp_sample = t;
*pState->m_wave[i].var_pp_value1 = value1;
*pState->m_wave[i].var_pp_value2 = value2;
*pState->m_wave[i].var_pp_x = 0.5f + value1;
*pState->m_wave[i].var_pp_y = 0.5f + value2;
*pState->m_wave[i].var_pp_r = *pState->m_wave[i].var_pf_r;
*pState->m_wave[i].var_pp_g = *pState->m_wave[i].var_pf_g;
*pState->m_wave[i].var_pp_b = *pState->m_wave[i].var_pf_b;
*pState->m_wave[i].var_pp_a = *pState->m_wave[i].var_pf_a;
#ifndef _NO_EXPR_
NSEEL_code_execute(pState->m_wave[i].m_pp_codehandle);
#endif
v[j].x = (float)(*pState->m_wave[i].var_pp_x* 2-1)*m_fInvAspectX;
v[j].y = (float)(*pState->m_wave[i].var_pp_y*-2+1)*m_fInvAspectY;
v[j].z = 0;
v[j].Diffuse =
((((int)(*pState->m_wave[i].var_pp_a * 255 * alpha_mult)) & 0xFF) << 24) |
((((int)(*pState->m_wave[i].var_pp_r * 255)) & 0xFF) << 16) |
((((int)(*pState->m_wave[i].var_pp_g * 255)) & 0xFF) << 8) |
((((int)(*pState->m_wave[i].var_pp_b * 255)) & 0xFF) );
}
// save changes to t1-t8 this frame
/*
pState->m_wave[i].t_values_after_init_code[0] = *pState->m_wave[i].var_pp_t1;
pState->m_wave[i].t_values_after_init_code[1] = *pState->m_wave[i].var_pp_t2;
pState->m_wave[i].t_values_after_init_code[2] = *pState->m_wave[i].var_pp_t3;
pState->m_wave[i].t_values_after_init_code[3] = *pState->m_wave[i].var_pp_t4;
pState->m_wave[i].t_values_after_init_code[4] = *pState->m_wave[i].var_pp_t5;
pState->m_wave[i].t_values_after_init_code[5] = *pState->m_wave[i].var_pp_t6;
pState->m_wave[i].t_values_after_init_code[6] = *pState->m_wave[i].var_pp_t7;
pState->m_wave[i].t_values_after_init_code[7] = *pState->m_wave[i].var_pp_t8;
*/
// 3. smooth it
WFVERTEX v2[2048];
WFVERTEX *pVerts = v;
if (!pState->m_wave[i].bUseDots)
{
nSamples = SmoothWave(v, nSamples, v2);
pVerts = v2;
}
// 4. draw it
lpDevice->SetRenderState(D3DRS_ALPHABLENDENABLE, TRUE);
lpDevice->SetRenderState(D3DRS_SRCBLEND, D3DBLEND_SRCALPHA);
lpDevice->SetRenderState(D3DRS_DESTBLEND, pState->m_wave[i].bAdditive ? D3DBLEND_ONE : D3DBLEND_INVSRCALPHA);
float ptsize = (float)((m_nTexSizeX >= 1024) ? 2 : 1) + (pState->m_wave[i].bDrawThick ? 1 : 0);
if (pState->m_wave[i].bUseDots)
lpDevice->SetRenderState(D3DRS_POINTSIZE, *((DWORD*)&ptsize) );
int its = (pState->m_wave[i].bDrawThick && !pState->m_wave[i].bUseDots) ? 4 : 1;
float x_inc = 2.0f / (float)m_nTexSizeX;
float y_inc = 2.0f / (float)m_nTexSizeY;
for (int it=0; it<its; it++)
{
switch(it)
{
case 0: break;
case 1: for (j=0; j<nSamples; j++) pVerts[j].x += x_inc; break; // draw fat dots
case 2: for (j=0; j<nSamples; j++) pVerts[j].y += y_inc; break; // draw fat dots
case 3: for (j=0; j<nSamples; j++) pVerts[j].x -= x_inc; break; // draw fat dots
}
lpDevice->DrawPrimitiveUP(pState->m_wave[i].bUseDots ? D3DPT_POINTLIST : D3DPT_LINESTRIP, nSamples - (pState->m_wave[i].bUseDots ? 0 : 1), (void*)pVerts, sizeof(WFVERTEX));
}
ptsize = 1.0f;
if (pState->m_wave[i].bUseDots)
lpDevice->SetRenderState(D3DRS_POINTSIZE, *((DWORD*)&ptsize) );
}
}
}
}
lpDevice->SetRenderState(D3DRS_ALPHABLENDENABLE, FALSE);
lpDevice->SetRenderState(D3DRS_SRCBLEND, D3DBLEND_SRCALPHA);
lpDevice->SetRenderState(D3DRS_DESTBLEND, D3DBLEND_INVSRCALPHA);
}
void CPlugin::DrawWave(float *fL, float *fR)
{
LPDIRECT3DDEVICE9 lpDevice = GetDevice();
if (!lpDevice)
return;
lpDevice->SetTexture(0, NULL);
lpDevice->SetVertexShader( NULL );
lpDevice->SetFVF( WFVERTEX_FORMAT );
int i;
WFVERTEX v1[576+1], v2[576+1];
/*
m_lpD3DDev->SetRenderState(D3DRENDERSTATE_SHADEMODE, D3DSHADE_GOURAUD); //D3DSHADE_FLAT
m_lpD3DDev->SetRenderState(D3DRENDERSTATE_SPECULARENABLE, FALSE);
m_lpD3DDev->SetRenderState(D3DRENDERSTATE_CULLMODE, D3DCULL_NONE);
if (m_D3DDevDesc.dpcTriCaps.dwRasterCaps & D3DPRASTERCAPS_DITHER)
m_lpD3DDev->SetRenderState(D3DRENDERSTATE_DITHERENABLE, TRUE);
m_lpD3DDev->SetRenderState(D3DRENDERSTATE_ZENABLE, D3DZB_FALSE);
m_lpD3DDev->SetRenderState(D3DRENDERSTATE_LIGHTING, FALSE);
m_lpD3DDev->SetRenderState(D3DRENDERSTATE_COLORVERTEX, TRUE);
m_lpD3DDev->SetRenderState(D3DRENDERSTATE_FILLMODE, D3DFILL_WIREFRAME); // vs. SOLID
m_lpD3DDev->SetRenderState(D3DRENDERSTATE_AMBIENT, D3DCOLOR_RGBA_01(1,1,1,1));
hr = m_lpD3DDev->SetTexture(0, NULL);
if (hr != D3D_OK)
{
//dumpmsg("Draw(): ERROR: SetTexture");
//IdentifyD3DError(hr);
}
*/
lpDevice->SetRenderState(D3DRS_ALPHABLENDENABLE, TRUE);
lpDevice->SetRenderState(D3DRS_SRCBLEND, D3DBLEND_SRCALPHA);
lpDevice->SetRenderState(D3DRS_DESTBLEND, (*m_pState->var_pf_wave_additive) ? D3DBLEND_ONE : D3DBLEND_INVSRCALPHA);
//float cr = m_pState->m_waveR.eval(GetTime());
//float cg = m_pState->m_waveG.eval(GetTime());
//float cb = m_pState->m_waveB.eval(GetTime());
float cr = (float)(*m_pState->var_pf_wave_r);
float cg = (float)(*m_pState->var_pf_wave_g);
float cb = (float)(*m_pState->var_pf_wave_b);
float cx = (float)(*m_pState->var_pf_wave_x);
float cy = (float)(*m_pState->var_pf_wave_y); // note: it was backwards (top==1) in the original milkdrop, so we keep it that way!
float fWaveParam = (float)(*m_pState->var_pf_wave_mystery);
/*if (m_pState->m_bBlending)
{
cr = cr*(m_pState->m_fBlendProgress) + (1.0f-m_pState->m_fBlendProgress)*((float)(*m_pOldState->var_pf_wave_r));
cg = cg*(m_pState->m_fBlendProgress) + (1.0f-m_pState->m_fBlendProgress)*((float)(*m_pOldState->var_pf_wave_g));
cb = cb*(m_pState->m_fBlendProgress) + (1.0f-m_pState->m_fBlendProgress)*((float)(*m_pOldState->var_pf_wave_b));
cx = cx*(m_pState->m_fBlendProgress) + (1.0f-m_pState->m_fBlendProgress)*((float)(*m_pOldState->var_pf_wave_x));
cy = cy*(m_pState->m_fBlendProgress) + (1.0f-m_pState->m_fBlendProgress)*((float)(*m_pOldState->var_pf_wave_y));
fWaveParam = fWaveParam*(m_pState->m_fBlendProgress) + (1.0f-m_pState->m_fBlendProgress)*((float)(*m_pOldState->var_pf_wave_mystery));
}*/
if (cr < 0) cr = 0;
if (cg < 0) cg = 0;
if (cb < 0) cb = 0;
if (cr > 1) cr = 1;
if (cg > 1) cg = 1;
if (cb > 1) cb = 1;
// maximize color:
if (*m_pState->var_pf_wave_brighten)
{
float fMaximizeWaveColorAmount = 1.0f;
float max = cr;
if (max < cg) max = cg;
if (max < cb) max = cb;
if (max > 0.01f)
{
cr = cr/max*fMaximizeWaveColorAmount + cr*(1.0f - fMaximizeWaveColorAmount);
cg = cg/max*fMaximizeWaveColorAmount + cg*(1.0f - fMaximizeWaveColorAmount);
cb = cb/max*fMaximizeWaveColorAmount + cb*(1.0f - fMaximizeWaveColorAmount);
}
}
float fWavePosX = cx*2.0f - 1.0f; // go from 0..1 user-range to -1..1 D3D range
float fWavePosY = cy*2.0f - 1.0f;
float bass_rel = mysound.imm[0];
float mid_rel = mysound.imm[1];
float treble_rel = mysound.imm[2];
int sample_offset = 0;
int new_wavemode = (int)(*m_pState->var_pf_wave_mode) % NUM_WAVES; // since it can be changed from per-frame code!
int its = (m_pState->m_bBlending && (new_wavemode != m_pState->m_nOldWaveMode)) ? 2 : 1;
int nVerts1 = 0;
int nVerts2 = 0;
int nBreak1 = -1;
int nBreak2 = -1;
float alpha1, alpha2;
for (int it=0; it<its; it++)
{
int wave = (it==0) ? new_wavemode : m_pState->m_nOldWaveMode;
int nVerts = NUM_WAVEFORM_SAMPLES; // allowed to peek ahead 64 (i.e. left is [i], right is [i+64])
int nBreak = -1;
float fWaveParam2 = fWaveParam;
//std::string fWaveParam; // kill its scope
if ((wave==0 || wave==1 || wave==4) && (fWaveParam2 < -1 || fWaveParam2 > 1))
{
//fWaveParam2 = max(fWaveParam2, -1.0f);
//fWaveParam2 = min(fWaveParam2, 1.0f);
fWaveParam2 = fWaveParam2*0.5f + 0.5f;
fWaveParam2 -= floorf(fWaveParam2);
fWaveParam2 = fabsf(fWaveParam2);
fWaveParam2 = fWaveParam2*2-1;
}
WFVERTEX *v = (it==0) ? v1 : v2;
ZeroMemory(v, sizeof(WFVERTEX)*nVerts);
float alpha = (float)(*m_pState->var_pf_wave_a);//m_pState->m_fWaveAlpha.eval(GetTime());
switch(wave)
{
case 0:
// circular wave
nVerts /= 2;
sample_offset = (NUM_WAVEFORM_SAMPLES-nVerts)/2;//mysound.GoGoAlignatron(nVerts * 12/10); // only call this once nVerts is final!
if (m_pState->m_bModWaveAlphaByVolume)
alpha *= ((mysound.imm_rel[0] + mysound.imm_rel[1] + mysound.imm_rel[2])*0.333f - m_pState->m_fModWaveAlphaStart.eval(GetTime()))/(m_pState->m_fModWaveAlphaEnd.eval(GetTime()) - m_pState->m_fModWaveAlphaStart.eval(GetTime()));
if (alpha < 0) alpha = 0;
if (alpha > 1) alpha = 1;
//color = D3DCOLOR_RGBA_01(cr, cg, cb, alpha);
{
float inv_nverts_minus_one = 1.0f/(float)(nVerts-1);
for (i=0; i<nVerts; i++)
{
float rad = 0.5f + 0.4f*fR[i+sample_offset] + fWaveParam2;
float ang = (i)*inv_nverts_minus_one*6.28f + GetTime()*0.2f;
if (i < nVerts/10)
{
float mix = i/(nVerts*0.1f);
mix = 0.5f - 0.5f*cosf(mix * 3.1416f);
float rad_2 = 0.5f + 0.4f*fR[i + nVerts + sample_offset] + fWaveParam2;
rad = rad_2*(1.0f-mix) + rad*(mix);
}
v[i].x = rad*cosf(ang) *m_fAspectY + fWavePosX; // 0.75 = adj. for aspect ratio
v[i].y = rad*sinf(ang) *m_fAspectX + fWavePosY;
//v[i].Diffuse = color;
}
}
// dupe last vertex to connect the lines; skip if blending
if (!m_pState->m_bBlending)
{
nVerts++;
memcpy(&v[nVerts-1], &v[0], sizeof(WFVERTEX));
}
break;
case 1:
// x-y osc. that goes around in a spiral, in time
alpha *= 1.25f;
if (m_pState->m_bModWaveAlphaByVolume)
alpha *= ((mysound.imm_rel[0] + mysound.imm_rel[1] + mysound.imm_rel[2])*0.333f - m_pState->m_fModWaveAlphaStart.eval(GetTime()))/(m_pState->m_fModWaveAlphaEnd.eval(GetTime()) - m_pState->m_fModWaveAlphaStart.eval(GetTime()));
if (alpha < 0) alpha = 0;
if (alpha > 1) alpha = 1;
//color = D3DCOLOR_RGBA_01(cr, cg, cb, alpha);
nVerts /= 2;
for (i=0; i<nVerts; i++)
{
float rad = 0.53f + 0.43f*fR[i] + fWaveParam2;
float ang = fL[i+32] * 1.57f + GetTime()*2.3f;
v[i].x = rad*cosf(ang) *m_fAspectY + fWavePosX; // 0.75 = adj. for aspect ratio
v[i].y = rad*sinf(ang) *m_fAspectX + fWavePosY;
//v[i].Diffuse = color;//(D3DCOLOR_RGBA_01(cr, cg, cb, alpha*min(1, max(0, fL[i])));
}
break;
case 2:
// centered spiro (alpha constant)
// aimed at not being so sound-responsive, but being very "nebula-like"
// difference is that alpha is constant (and faint), and waves a scaled way up
switch(m_nTexSizeX)
{
case 256: alpha *= 0.07f; break;
case 512: alpha *= 0.09f; break;
case 1024: alpha *= 0.11f; break;
case 2048: alpha *= 0.13f; break;
}
if (m_pState->m_bModWaveAlphaByVolume)
alpha *= ((mysound.imm_rel[0] + mysound.imm_rel[1] + mysound.imm_rel[2])*0.333f - m_pState->m_fModWaveAlphaStart.eval(GetTime()))/(m_pState->m_fModWaveAlphaEnd.eval(GetTime()) - m_pState->m_fModWaveAlphaStart.eval(GetTime()));
if (alpha < 0) alpha = 0;
if (alpha > 1) alpha = 1;
//color = D3DCOLOR_RGBA_01(cr, cg, cb, alpha);
for (i=0; i<nVerts; i++)
{
v[i].x = fR[i ] *m_fAspectY + fWavePosX;//((pR[i] ^ 128) - 128)/90.0f * ASPECT; // 0.75 = adj. for aspect ratio
v[i].y = fL[i+32] *m_fAspectX + fWavePosY;//((pL[i+32] ^ 128) - 128)/90.0f;
//v[i].Diffuse = color;
}
break;
case 3:
// centered spiro (alpha tied to volume)
// aimed at having a strong audio-visual tie-in
// colors are always bright (no darks)
switch(m_nTexSizeX)
{
case 256: alpha = 0.075f; break;
case 512: alpha = 0.150f; break;
case 1024: alpha = 0.220f; break;
case 2048: alpha = 0.330f; break;
}
alpha *= 1.3f;
alpha *= powf(treble_rel, 2.0f);
if (m_pState->m_bModWaveAlphaByVolume)
alpha *= ((mysound.imm_rel[0] + mysound.imm_rel[1] + mysound.imm_rel[2])*0.333f - m_pState->m_fModWaveAlphaStart.eval(GetTime()))/(m_pState->m_fModWaveAlphaEnd.eval(GetTime()) - m_pState->m_fModWaveAlphaStart.eval(GetTime()));
if (alpha < 0) alpha = 0;
if (alpha > 1) alpha = 1;
//color = D3DCOLOR_RGBA_01(cr, cg, cb, alpha);
for (i=0; i<nVerts; i++)
{
v[i].x = fR[i ] *m_fAspectY + fWavePosX;//((pR[i] ^ 128) - 128)/90.0f * ASPECT; // 0.75 = adj. for aspect ratio
v[i].y = fL[i+32] *m_fAspectX + fWavePosY;//((pL[i+32] ^ 128) - 128)/90.0f;
//v[i].Diffuse = color;
}
break;
case 4:
// horizontal "script", left channel
if (nVerts > m_nTexSizeX/3)
nVerts = m_nTexSizeX/3;
sample_offset = (NUM_WAVEFORM_SAMPLES-nVerts)/2;//mysound.GoGoAlignatron(nVerts + 25); // only call this once nVerts is final!
/*
if (treble_rel > treb_thresh_for_wave6)
{
//alpha = 1.0f;
treb_thresh_for_wave6 = treble_rel * 1.025f;
}
else
{
alpha *= 0.2f;
treb_thresh_for_wave6 *= 0.996f; // fixme: make this fps-independent
}
*/
if (m_pState->m_bModWaveAlphaByVolume)
alpha *= ((mysound.imm_rel[0] + mysound.imm_rel[1] + mysound.imm_rel[2])*0.333f - m_pState->m_fModWaveAlphaStart.eval(GetTime()))/(m_pState->m_fModWaveAlphaEnd.eval(GetTime()) - m_pState->m_fModWaveAlphaStart.eval(GetTime()));
if (alpha < 0) alpha = 0;
if (alpha > 1) alpha = 1;
//color = D3DCOLOR_RGBA_01(cr, cg, cb, alpha);
{
float w1 = 0.45f + 0.5f*(fWaveParam2*0.5f + 0.5f); // 0.1 - 0.9
float w2 = 1.0f - w1;
float inv_nverts = 1.0f/(float)(nVerts);
for (i=0; i<nVerts; i++)
{
v[i].x = -1.0f + 2.0f*(i*inv_nverts) + fWavePosX;
v[i].y = fL[i+sample_offset]*0.47f + fWavePosY;//((pL[i] ^ 128) - 128)/270.0f;
v[i].x += fR[i+25+sample_offset]*0.44f;//((pR[i+25] ^ 128) - 128)/290.0f;
//v[i].Diffuse = color;
// momentum
if (i>1)
{
v[i].x = v[i].x*w2 + w1*(v[i-1].x*2.0f - v[i-2].x);
v[i].y = v[i].y*w2 + w1*(v[i-1].y*2.0f - v[i-2].y);
}
}
/*
// center on Y
float avg_y = 0;
for (i=0; i<nVerts; i++)
avg_y += v[i].y;
avg_y /= (float)nVerts;
avg_y *= 0.5f; // damp the movement
for (i=0; i<nVerts; i++)
v[i].y -= avg_y;
*/
}
break;
case 5:
// weird explosive complex # thingy
switch(m_nTexSizeX)
{
case 256: alpha *= 0.07f; break;
case 512: alpha *= 0.09f; break;
case 1024: alpha *= 0.11f; break;
case 2048: alpha *= 0.13f; break;
}
if (m_pState->m_bModWaveAlphaByVolume)
alpha *= ((mysound.imm_rel[0] + mysound.imm_rel[1] + mysound.imm_rel[2])*0.333f - m_pState->m_fModWaveAlphaStart.eval(GetTime()))/(m_pState->m_fModWaveAlphaEnd.eval(GetTime()) - m_pState->m_fModWaveAlphaStart.eval(GetTime()));
if (alpha < 0) alpha = 0;
if (alpha > 1) alpha = 1;
//color = D3DCOLOR_RGBA_01(cr, cg, cb, alpha);
{
float cos_rot = cosf(GetTime()*0.3f);
float sin_rot = sinf(GetTime()*0.3f);
for (i=0; i<nVerts; i++)
{
float x0 = (fR[i]*fL[i+32] + fL[i]*fR[i+32]);
float y0 = (fR[i]*fR[i] - fL[i+32]*fL[i+32]);
v[i].x = (x0*cos_rot - y0*sin_rot)*m_fAspectY + fWavePosX;
v[i].y = (x0*sin_rot + y0*cos_rot)*m_fAspectX + fWavePosY;
//v[i].Diffuse = color;
}
}
break;
case 6:
case 7:
case 8:
// 6: angle-adjustable left channel, with temporal wave alignment;
// fWaveParam2 controls the angle at which it's drawn
// fWavePosX slides the wave away from the center, transversely.
// fWavePosY does nothing
//
// 7: same, except there are two channels shown, and
// fWavePosY determines the separation distance.
//
// 8: same as 6, except using the spectrum analyzer (UNFINISHED)
//
nVerts /= 2;
if (nVerts > m_nTexSizeX/3)
nVerts = m_nTexSizeX/3;
if (wave==8)
nVerts = 256;
else
sample_offset = (NUM_WAVEFORM_SAMPLES-nVerts)/2;//mysound.GoGoAlignatron(nVerts); // only call this once nVerts is final!
if (m_pState->m_bModWaveAlphaByVolume)
alpha *= ((mysound.imm_rel[0] + mysound.imm_rel[1] + mysound.imm_rel[2])*0.333f - m_pState->m_fModWaveAlphaStart.eval(GetTime()))/(m_pState->m_fModWaveAlphaEnd.eval(GetTime()) - m_pState->m_fModWaveAlphaStart.eval(GetTime()));
if (alpha < 0) alpha = 0;
if (alpha > 1) alpha = 1;
//color = D3DCOLOR_RGBA_01(cr, cg, cb, alpha);
{
float ang = 1.57f*fWaveParam2; // from -PI/2 to PI/2
float dx = cosf(ang);
float dy = sinf(ang);
float edge_x[2], edge_y[2];
//edge_x[0] = fWavePosX - dx*3.0f;
//edge_y[0] = fWavePosY - dy*3.0f;
//edge_x[1] = fWavePosX + dx*3.0f;
//edge_y[1] = fWavePosY + dy*3.0f;
edge_x[0] = fWavePosX*cosf(ang + 1.57f) - dx*3.0f;
edge_y[0] = fWavePosX*sinf(ang + 1.57f) - dy*3.0f;
edge_x[1] = fWavePosX*cosf(ang + 1.57f) + dx*3.0f;
edge_y[1] = fWavePosX*sinf(ang + 1.57f) + dy*3.0f;
for (i=0; i<2; i++) // for each point defining the line
{
// clip the point against 4 edges of screen
// be a bit lenient (use +/-1.1 instead of +/-1.0)
// so the dual-wave doesn't end too soon, after the channels are moved apart
for (int j=0; j<4; j++)
{
float t;
bool bClip = false;
switch(j)
{
case 0:
if (edge_x[i] > 1.1f)
{
t = (1.1f - edge_x[1-i]) / (edge_x[i] - edge_x[1-i]);
bClip = true;
}
break;
case 1:
if (edge_x[i] < -1.1f)
{
t = (-1.1f - edge_x[1-i]) / (edge_x[i] - edge_x[1-i]);
bClip = true;
}
break;
case 2:
if (edge_y[i] > 1.1f)
{
t = (1.1f - edge_y[1-i]) / (edge_y[i] - edge_y[1-i]);
bClip = true;
}
break;
case 3:
if (edge_y[i] < -1.1f)
{
t = (-1.1f - edge_y[1-i]) / (edge_y[i] - edge_y[1-i]);
bClip = true;
}
break;
}
if (bClip)
{
float dx = edge_x[i] - edge_x[1-i];
float dy = edge_y[i] - edge_y[1-i];
edge_x[i] = edge_x[1-i] + dx*t;
edge_y[i] = edge_y[1-i] + dy*t;
}
}
}
dx = (edge_x[1] - edge_x[0]) / (float)nVerts;
dy = (edge_y[1] - edge_y[0]) / (float)nVerts;
float ang2 = atan2f(dy,dx);
float perp_dx = cosf(ang2 + 1.57f);
float perp_dy = sinf(ang2 + 1.57f);
if (wave == 6)
for (i=0; i<nVerts; i++)
{
v[i].x = edge_x[0] + dx*i + perp_dx*0.25f*fL[i + sample_offset];
v[i].y = edge_y[0] + dy*i + perp_dy*0.25f*fL[i + sample_offset];
//v[i].Diffuse = color;
}
else if (wave == 8)
//256 verts
for (i=0; i<nVerts; i++)
{
float f = 0.1f*logf(mysound.fSpecLeft[i*2] + mysound.fSpecLeft[i*2+1]);
v[i].x = edge_x[0] + dx*i + perp_dx*f;
v[i].y = edge_y[0] + dy*i + perp_dy*f;
//v[i].Diffuse = color;
}
else
{
float sep = powf(fWavePosY*0.5f + 0.5f, 2.0f);
for (i=0; i<nVerts; i++)
{
v[i].x = edge_x[0] + dx*i + perp_dx*(0.25f*fL[i + sample_offset] + sep);
v[i].y = edge_y[0] + dy*i + perp_dy*(0.25f*fL[i + sample_offset] + sep);
//v[i].Diffuse = color;
}
//D3DPRIMITIVETYPE primtype = (*m_pState->var_pf_wave_usedots) ? D3DPT_POINTLIST : D3DPT_LINESTRIP;
//m_lpD3DDev->DrawPrimitive(primtype, D3DFVF_LVERTEX, (LPVOID)v, nVerts, NULL);
for (i=0; i<nVerts; i++)
{
v[i+nVerts].x = edge_x[0] + dx*i + perp_dx*(0.25f*fR[i + sample_offset] - sep);
v[i+nVerts].y = edge_y[0] + dy*i + perp_dy*(0.25f*fR[i + sample_offset] - sep);
//v[i+nVerts].Diffuse = color;
}
nBreak = nVerts;
nVerts *= 2;
}
}
break;
}
if (it==0)
{
nVerts1 = nVerts;
nBreak1 = nBreak;
alpha1 = alpha;
}
else
{
nVerts2 = nVerts;
nBreak2 = nBreak;
alpha2 = alpha;
}
}
// v1[] is for the current waveform
// v2[] is for the old waveform (from prev. preset - only used if blending)
// nVerts1 is the # of vertices in v1
// nVerts2 is the # of vertices in v2
// nBreak1 is the index of the point at which to break the solid line in v1[] (-1 if no break)
// nBreak2 is the index of the point at which to break the solid line in v2[] (-1 if no break)
float mix = CosineInterp(m_pState->m_fBlendProgress);
float mix2 = 1.0f - mix;
// blend 2 waveforms
if (nVerts2 > 0)
{
// note: this won't yet handle the case where (nBreak1 > 0 && nBreak2 > 0)
// in this case, code must break wave into THREE segments
float m = (nVerts2-1)/(float)nVerts1;
float x,y;
for (int i=0; i<nVerts1; i++)
{
float fIdx = i*m;
int nIdx = (int)fIdx;
float t = fIdx - nIdx;
if (nIdx == nBreak2-1)
{
x = v2[nIdx].x;
y = v2[nIdx].y;
nBreak1 = i+1;
}
else
{
x = v2[nIdx].x*(1-t) + v2[nIdx+1].x*(t);
y = v2[nIdx].y*(1-t) + v2[nIdx+1].y*(t);
}
v1[i].x = v1[i].x*(mix) + x*(mix2);
v1[i].y = v1[i].y*(mix) + y*(mix2);
}
}
// determine alpha
if (nVerts2 > 0)
{
alpha1 = alpha1*(mix) + alpha2*(1.0f-mix);
}
// apply color & alpha
// ALSO reverse all y values, to stay consistent with the pre-VMS milkdrop,
// which DIDN'T:
v1[0].Diffuse = D3DCOLOR_RGBA_01(cr, cg, cb, alpha1);
for (i=0; i<nVerts1; i++)
{
v1[i].Diffuse = v1[0].Diffuse;
v1[i].y = -v1[i].y;
}
// don't draw wave if (possibly blended) alpha is less than zero.
if (alpha1 < 0.004f)
goto SKIP_DRAW_WAVE;
// TESSELLATE - smooth the wave, one time.
WFVERTEX* pVerts = v1;
WFVERTEX vTess[(576+3)*2];
if (1)
{
if (nBreak1==-1)
{
nVerts1 = SmoothWave(v1, nVerts1, vTess);
}
else
{
int oldBreak = nBreak1;
nBreak1 = SmoothWave(v1, nBreak1, vTess);
nVerts1 = SmoothWave(&v1[oldBreak], nVerts1-oldBreak, &vTess[nBreak1]) + nBreak1;
}
pVerts = vTess;
}
// draw primitives
{
//D3DPRIMITIVETYPE primtype = (*m_pState->var_pf_wave_usedots) ? D3DPT_POINTLIST : D3DPT_LINESTRIP;
float x_inc = 2.0f / (float)m_nTexSizeX;
float y_inc = 2.0f / (float)m_nTexSizeY;
int drawing_its = ((*m_pState->var_pf_wave_thick || *m_pState->var_pf_wave_usedots) && (m_nTexSizeX >= 512)) ? 4 : 1;
for (int it=0; it<drawing_its; it++)
{
int j;
switch(it)
{
case 0: break;
case 1: for (j=0; j<nVerts1; j++) pVerts[j].x += x_inc; break; // draw fat dots
case 2: for (j=0; j<nVerts1; j++) pVerts[j].y += y_inc; break; // draw fat dots
case 3: for (j=0; j<nVerts1; j++) pVerts[j].x -= x_inc; break; // draw fat dots
}
if (nBreak1 == -1)
{
if (*m_pState->var_pf_wave_usedots)
lpDevice->DrawPrimitiveUP(D3DPT_POINTLIST, nVerts1, (void*)pVerts, sizeof(WFVERTEX));
else
lpDevice->DrawPrimitiveUP(D3DPT_LINESTRIP, nVerts1-1, (void*)pVerts, sizeof(WFVERTEX));
}
else
{
if (*m_pState->var_pf_wave_usedots)
{
lpDevice->DrawPrimitiveUP(D3DPT_POINTLIST, nBreak1, (void*)pVerts, sizeof(WFVERTEX));
lpDevice->DrawPrimitiveUP(D3DPT_POINTLIST, nVerts1-nBreak1, (void*)&pVerts[nBreak1], sizeof(WFVERTEX));
}
else
{
lpDevice->DrawPrimitiveUP(D3DPT_LINESTRIP, nBreak1-1, (void*)pVerts, sizeof(WFVERTEX));
lpDevice->DrawPrimitiveUP(D3DPT_LINESTRIP, nVerts1-nBreak1-1, (void*)&pVerts[nBreak1], sizeof(WFVERTEX));
}
}
}
}
SKIP_DRAW_WAVE:
lpDevice->SetRenderState(D3DRS_ALPHABLENDENABLE, FALSE);
}
void CPlugin::DrawSprites()
{
LPDIRECT3DDEVICE9 lpDevice = GetDevice();
if (!lpDevice)
return;
lpDevice->SetTexture(0, NULL);
lpDevice->SetVertexShader( NULL );
lpDevice->SetFVF( WFVERTEX_FORMAT );
if (*m_pState->var_pf_darken_center)
{
lpDevice->SetRenderState(D3DRS_ALPHABLENDENABLE, TRUE);
lpDevice->SetRenderState(D3DRS_SRCBLEND, D3DBLEND_SRCALPHA);//SRCALPHA);
lpDevice->SetRenderState(D3DRS_DESTBLEND, D3DBLEND_INVSRCALPHA);
WFVERTEX v3[6];
ZeroMemory(v3, sizeof(WFVERTEX)*6);
// colors:
v3[0].Diffuse = D3DCOLOR_RGBA_01(0, 0, 0, 3.0f/32.0f);
v3[1].Diffuse = D3DCOLOR_RGBA_01(0, 0, 0, 0.0f/32.0f);
v3[2].Diffuse = v3[1].Diffuse;
v3[3].Diffuse = v3[1].Diffuse;
v3[4].Diffuse = v3[1].Diffuse;
v3[5].Diffuse = v3[1].Diffuse;
// positioning:
float fHalfSize = 0.05f;
v3[0].x = 0.0f;
v3[1].x = 0.0f - fHalfSize*m_fAspectY;
v3[2].x = 0.0f;
v3[3].x = 0.0f + fHalfSize*m_fAspectY;
v3[4].x = 0.0f;
v3[5].x = v3[1].x;
v3[0].y = 0.0f;
v3[1].y = 0.0f;
v3[2].y = 0.0f - fHalfSize;
v3[3].y = 0.0f;
v3[4].y = 0.0f + fHalfSize;
v3[5].y = v3[1].y;
//v3[0].tu = 0; v3[1].tu = 1; v3[2].tu = 0; v3[3].tu = 1;
//v3[0].tv = 1; v3[1].tv = 1; v3[2].tv = 0; v3[3].tv = 0;
lpDevice->DrawPrimitiveUP(D3DPT_TRIANGLEFAN, 4, (LPVOID)v3, sizeof(WFVERTEX));
lpDevice->SetRenderState(D3DRS_ALPHABLENDENABLE, FALSE);
}
// do borders
{
float fOuterBorderSize = (float)*m_pState->var_pf_ob_size;
float fInnerBorderSize = (float)*m_pState->var_pf_ib_size;
lpDevice->SetRenderState(D3DRS_ALPHABLENDENABLE, TRUE);
lpDevice->SetRenderState(D3DRS_SRCBLEND, D3DBLEND_SRCALPHA);
lpDevice->SetRenderState(D3DRS_DESTBLEND, D3DBLEND_INVSRCALPHA);
for (int it=0; it<2; it++)
{
WFVERTEX v3[4];
ZeroMemory(v3, sizeof(WFVERTEX)*4);
// colors:
float r = (it==0) ? (float)*m_pState->var_pf_ob_r : (float)*m_pState->var_pf_ib_r;
float g = (it==0) ? (float)*m_pState->var_pf_ob_g : (float)*m_pState->var_pf_ib_g;
float b = (it==0) ? (float)*m_pState->var_pf_ob_b : (float)*m_pState->var_pf_ib_b;
float a = (it==0) ? (float)*m_pState->var_pf_ob_a : (float)*m_pState->var_pf_ib_a;
if (a > 0.001f)
{
v3[0].Diffuse = D3DCOLOR_RGBA_01(r,g,b,a);
v3[1].Diffuse = v3[0].Diffuse;
v3[2].Diffuse = v3[0].Diffuse;
v3[3].Diffuse = v3[0].Diffuse;
// positioning:
float fInnerRad = (it==0) ? 1.0f - fOuterBorderSize : 1.0f - fOuterBorderSize - fInnerBorderSize;
float fOuterRad = (it==0) ? 1.0f : 1.0f - fOuterBorderSize;
v3[0].x = fInnerRad;
v3[1].x = fOuterRad;
v3[2].x = fOuterRad;
v3[3].x = fInnerRad;
v3[0].y = fInnerRad;
v3[1].y = fOuterRad;
v3[2].y = -fOuterRad;
v3[3].y = -fInnerRad;
for (int rot=0; rot<4; rot++)
{
lpDevice->DrawPrimitiveUP(D3DPT_TRIANGLEFAN, 2, (LPVOID)v3, sizeof(WFVERTEX));
// rotate by 90 degrees
for (int v=0; v<4; v++)
{
float t = 1.570796327f;
float x = v3[v].x;
float y = v3[v].y;
v3[v].x = x*cosf(t) - y*sinf(t);
v3[v].y = x*sinf(t) + y*cosf(t);
}
}
}
}
lpDevice->SetRenderState(D3DRS_ALPHABLENDENABLE, FALSE);
}
}
/*
bool CPlugin::SetMilkdropRenderTarget(LPDIRECTDRAWSURFACE7 lpSurf, int w, int h, char *szErrorMsg)
{
HRESULT hr = m_lpD3DDev->SetRenderTarget(0, lpSurf, 0);
if (hr != D3D_OK)
{
//if (szErrorMsg && szErrorMsg[0]) dumpmsg(szErrorMsg);
//IdentifyD3DError(hr);
return false;
}
//DDSURFACEDESC2 ddsd;
//ddsd.dwSize = sizeof(ddsd);
//lpSurf->GetSurfaceDesc(&ddsd);
D3DVIEWPORT7 viewData;
ZeroMemory(&viewData, sizeof(D3DVIEWPORT7));
viewData.dwWidth = w; // not: in windowed mode, when lpSurf is the back buffer, chances are good that w,h are smaller than the full surface size (since real size is fullscreen, but we're only using a portion of it as big as the window).
viewData.dwHeight = h;
hr = m_lpD3DDev->SetViewport(&viewData);
return true;
}
*/
void CPlugin::DrawUserSprites() // from system memory, to back buffer.
{
LPDIRECT3DDEVICE9 lpDevice = GetDevice();
if (!lpDevice)
return;
lpDevice->SetTexture(0, NULL);
lpDevice->SetVertexShader( NULL );
lpDevice->SetFVF( SPRITEVERTEX_FORMAT );
//lpDevice->SetRenderState(D3DRS_WRAP0, 0);
//lpDevice->SetSamplerState(0, D3DSAMP_ADDRESSU, D3DTADDRESS_WRAP);
//lpDevice->SetSamplerState(0, D3DSAMP_ADDRESSV, D3DTADDRESS_WRAP);
//lpDevice->SetSamplerState(0, D3DSAMP_ADDRESSW, D3DTADDRESS_WRAP);
// reset these to the standard safe mode:
lpDevice->SetTextureStageState(0, D3DTSS_COLOROP, D3DTOP_MODULATE);
lpDevice->SetTextureStageState(0, D3DTSS_COLORARG1, D3DTA_DIFFUSE);
lpDevice->SetTextureStageState(0, D3DTSS_COLORARG2, D3DTA_TEXTURE);
lpDevice->SetTextureStageState(1, D3DTSS_COLOROP, D3DTOP_DISABLE);
lpDevice->SetTextureStageState(0, D3DTSS_ALPHAOP, D3DTOP_SELECTARG1 );
lpDevice->SetTextureStageState(0, D3DTSS_ALPHAARG1, D3DTA_DIFFUSE );
lpDevice->SetTextureStageState(1, D3DTSS_ALPHAOP, D3DTOP_DISABLE);
/*
lpDevice->SetRenderState(D3DRS_SHADEMODE, D3DSHADE_GOURAUD); //D3DSHADE_GOURAUD
lpDevice->SetRenderState(D3DRS_SPECULARENABLE, FALSE);
lpDevice->SetRenderState(D3DRS_CULLMODE, D3DCULL_NONE);
if (m_D3DDevDesc.dpcTriCaps.dwRasterCaps & D3DPRASTERCAPS_DITHER)
lpDevice->SetRenderState(D3DRS_DITHERENABLE, TRUE);
lpDevice->SetRenderState(D3DRS_ZENABLE, D3DZB_FALSE);
lpDevice->SetRenderState(D3DRS_LIGHTING, FALSE);
lpDevice->SetRenderState(D3DRS_COLORVERTEX, TRUE);
lpDevice->SetRenderState(D3DRS_FILLMODE, D3DFILL_SOLID); // vs. wireframe
lpDevice->SetRenderState(D3DRS_AMBIENT, D3DCOLOR_RGBA_01(1,1,1,1));
lpDevice->SetSamplerState(0, D3DSAMP_MAGFILTER, D3DTFG_LINEAR );
lpDevice->SetSamplerState(0, D3DSAMP_MINFILTER, D3DTFN_LINEAR );
lpDevice->SetSamplerState(0, D3DSAMP_MIPFILTER, D3DTFP_LINEAR );
*/
for (int iSlot=0; iSlot < NUM_TEX; iSlot++)
{
if (m_texmgr.m_tex[iSlot].pSurface)
{
int k;
// set values of input variables:
*(m_texmgr.m_tex[iSlot].var_time) = (double)(GetTime() - m_texmgr.m_tex[iSlot].fStartTime);
*(m_texmgr.m_tex[iSlot].var_frame) = (double)(GetFrame() - m_texmgr.m_tex[iSlot].nStartFrame);
*(m_texmgr.m_tex[iSlot].var_fps) = (double)GetFps();
*(m_texmgr.m_tex[iSlot].var_progress) = (double)m_pState->m_fBlendProgress;
*(m_texmgr.m_tex[iSlot].var_bass) = (double)mysound.imm_rel[0];
*(m_texmgr.m_tex[iSlot].var_mid) = (double)mysound.imm_rel[1];
*(m_texmgr.m_tex[iSlot].var_treb) = (double)mysound.imm_rel[2];
*(m_texmgr.m_tex[iSlot].var_bass_att) = (double)mysound.avg_rel[0];
*(m_texmgr.m_tex[iSlot].var_mid_att) = (double)mysound.avg_rel[1];
*(m_texmgr.m_tex[iSlot].var_treb_att) = (double)mysound.avg_rel[2];
// evaluate expressions
#ifndef _NO_EXPR_
if (m_texmgr.m_tex[iSlot].m_codehandle)
{
NSEEL_code_execute(m_texmgr.m_tex[iSlot].m_codehandle);
}
#endif
bool bKillSprite = (*m_texmgr.m_tex[iSlot].var_done != 0.0);
bool bBurnIn = (*m_texmgr.m_tex[iSlot].var_burn != 0.0);
// Remember the original backbuffer and zbuffer
LPDIRECT3DSURFACE9 pBackBuffer=NULL;//, pZBuffer=NULL;
lpDevice->GetRenderTarget( 0, &pBackBuffer );
//lpDevice->GetDepthStencilSurface( &pZBuffer );
if (/*bKillSprite &&*/ bBurnIn)
{
// set up to render [from NULL] to VS1 (for burn-in).
lpDevice->SetTexture(0, NULL);
IDirect3DSurface9* pNewTarget = NULL;
if (m_lpVS[1]->GetSurfaceLevel(0, &pNewTarget) != D3D_OK)
return;
lpDevice->SetRenderTarget(0, pNewTarget );
//lpDevice->SetDepthStencilSurface( NULL );
pNewTarget->Release();
lpDevice->SetTexture(0, NULL);
}
// finally, use the results to draw the sprite.
if (lpDevice->SetTexture(0, m_texmgr.m_tex[iSlot].pSurface) != D3D_OK)
return;
SPRITEVERTEX v3[4];
ZeroMemory(v3, sizeof(SPRITEVERTEX)*4);
/*
int dest_w, dest_h;
{
LPDIRECT3DSURFACE9 pRT;
lpDevice->GetRenderTarget( 0, &pRT );
D3DSURFACE_DESC desc;
pRT->GetDesc(&desc);
dest_w = desc.Width;
dest_h = desc.Height;
pRT->Release();
}*/
float x = min(1000.0f, max(-1000.0f, (float)(*m_texmgr.m_tex[iSlot].var_x) * 2.0f - 1.0f ));
float y = min(1000.0f, max(-1000.0f, (float)(*m_texmgr.m_tex[iSlot].var_y) * 2.0f - 1.0f ));
float sx = min(1000.0f, max(-1000.0f, (float)(*m_texmgr.m_tex[iSlot].var_sx) ));
float sy = min(1000.0f, max(-1000.0f, (float)(*m_texmgr.m_tex[iSlot].var_sy) ));
float rot = (float)(*m_texmgr.m_tex[iSlot].var_rot);
int flipx = (*m_texmgr.m_tex[iSlot].var_flipx == 0.0) ? 0 : 1;
int flipy = (*m_texmgr.m_tex[iSlot].var_flipy == 0.0) ? 0 : 1;
float repeatx = min(100.0f, max(0.01f, (float)(*m_texmgr.m_tex[iSlot].var_repeatx) ));
float repeaty = min(100.0f, max(0.01f, (float)(*m_texmgr.m_tex[iSlot].var_repeaty) ));
int blendmode = min(4, max(0, ((int)(*m_texmgr.m_tex[iSlot].var_blendmode))));
float r = min(1.0f, max(0.0f, ((float)(*m_texmgr.m_tex[iSlot].var_r))));
float g = min(1.0f, max(0.0f, ((float)(*m_texmgr.m_tex[iSlot].var_g))));
float b = min(1.0f, max(0.0f, ((float)(*m_texmgr.m_tex[iSlot].var_b))));
float a = min(1.0f, max(0.0f, ((float)(*m_texmgr.m_tex[iSlot].var_a))));
// set x,y coords
v3[0+flipx].x = -sx;
v3[1-flipx].x = sx;
v3[2+flipx].x = -sx;
v3[3-flipx].x = sx;
v3[0+flipy*2].y = -sy;
v3[1+flipy*2].y = -sy;
v3[2-flipy*2].y = sy;
v3[3-flipy*2].y = sy;
// first aspect ratio: adjust for non-1:1 images
{
float aspect = m_texmgr.m_tex[iSlot].img_h / (float)m_texmgr.m_tex[iSlot].img_w;
if (aspect < 1)
for (k=0; k<4; k++) v3[k].y *= aspect; // wide image
else
for (k=0; k<4; k++) v3[k].x /= aspect; // tall image
}
// 2D rotation
{
float cos_rot = cosf(rot);
float sin_rot = sinf(rot);
for (k=0; k<4; k++)
{
float x2 = v3[k].x*cos_rot - v3[k].y*sin_rot;
float y2 = v3[k].x*sin_rot + v3[k].y*cos_rot;
v3[k].x = x2;
v3[k].y = y2;
}
}
// translation
for (k=0; k<4; k++)
{
v3[k].x += x;
v3[k].y += y;
}
// second aspect ratio: normalize to width of screen
{
float aspect = GetWidth() / (float)(GetHeight());
if (aspect > 1)
for (k=0; k<4; k++) v3[k].y *= aspect;
else
for (k=0; k<4; k++) v3[k].x /= aspect;
}
// third aspect ratio: adjust for burn-in
if (bKillSprite && bBurnIn) // final render-to-VS1
{
float aspect = GetWidth()/(float)(GetHeight()*4.0f/3.0f);
if (aspect < 1.0f)
for (k=0; k<4; k++) v3[k].x *= aspect;
else
for (k=0; k<4; k++) v3[k].y /= aspect;
}
// finally, flip 'y' for annoying DirectX
//for (k=0; k<4; k++) v3[k].y *= -1.0f;
// set u,v coords
{
float dtu = 0.5f;// / (float)m_texmgr.m_tex[iSlot].tex_w;
float dtv = 0.5f;// / (float)m_texmgr.m_tex[iSlot].tex_h;
v3[0].tu = -dtu;
v3[1].tu = dtu;///*m_texmgr.m_tex[iSlot].img_w / (float)m_texmgr.m_tex[iSlot].tex_w*/ - dtu;
v3[2].tu = -dtu;
v3[3].tu = dtu;///*m_texmgr.m_tex[iSlot].img_w / (float)m_texmgr.m_tex[iSlot].tex_w*/ - dtu;
v3[0].tv = -dtv;
v3[1].tv = -dtv;
v3[2].tv = dtv;///*m_texmgr.m_tex[iSlot].img_h / (float)m_texmgr.m_tex[iSlot].tex_h*/ - dtv;
v3[3].tv = dtv;///*m_texmgr.m_tex[iSlot].img_h / (float)m_texmgr.m_tex[iSlot].tex_h*/ - dtv;
// repeat on x,y
for (k=0; k<4; k++)
{
v3[k].tu = (v3[k].tu - 0.0f)*repeatx + 0.5f;
v3[k].tv = (v3[k].tv - 0.0f)*repeaty + 0.5f;
}
}
// blendmodes src alpha: dest alpha:
// 0 blend r,g,b=modulate a=opacity SRCALPHA INVSRCALPHA
// 1 decal r,g,b=modulate a=modulate D3DBLEND_ONE D3DBLEND_ZERO
// 2 additive r,g,b=modulate a=modulate D3DBLEND_ONE D3DBLEND_ONE
// 3 srccolor r,g,b=no effect a=no effect SRCCOLOR INVSRCCOLOR
// 4 colorkey r,g,b=modulate a=no effect
switch(blendmode)
{
case 0:
default:
// alpha blend
/*
Q. I am rendering with alpha blending and setting the alpha
of the diffuse vertex component to determine the opacity.
It works when there is no texture set, but as soon as I set
a texture the alpha that I set is no longer applied. Why?
The problem originates in the texture blending stages, rather
than in the subsequent alpha blending. Alpha can come from
several possible sources. If this has not been specified,
then the alpha will be taken from the texture, if one is selected.
If no texture is selected, then the default will use the alpha
channel of the diffuse vertex component.
Explicitly specifying the diffuse vertex component as the source
for alpha will insure that the alpha is drawn from the alpha value
you set, whether a texture is selected or not:
pDevice->SetSamplerState(D3DSAMP_ALPHAOP,D3DTOP_SELECTARG1);
pDevice->SetSamplerState(D3DSAMP_ALPHAARG1,D3DTA_DIFFUSE);
If you later need to use the texture alpha as the source, set
D3DSAMP_ALPHAARG1 to D3DTA_TEXTURE.
*/
lpDevice->SetTextureStageState(0, D3DTSS_ALPHAOP, D3DTOP_SELECTARG1);
lpDevice->SetTextureStageState(0, D3DTSS_ALPHAARG1, D3DTA_DIFFUSE);
lpDevice->SetRenderState(D3DRS_ALPHABLENDENABLE, TRUE);
lpDevice->SetRenderState(D3DRS_SRCBLEND, D3DBLEND_SRCALPHA);
lpDevice->SetRenderState(D3DRS_DESTBLEND, D3DBLEND_INVSRCALPHA);
for (k=0; k<4; k++) v3[k].Diffuse = D3DCOLOR_RGBA_01(r,g,b,a);
break;
case 1:
// decal
lpDevice->SetRenderState(D3DRS_ALPHABLENDENABLE, FALSE);
//lpDevice->SetRenderState(D3DRS_SRCBLEND, D3DBLEND_ONE);
//lpDevice->SetRenderState(D3DRS_DESTBLEND, D3DBLEND_ZERO);
for (k=0; k<4; k++) v3[k].Diffuse = D3DCOLOR_RGBA_01(r*a,g*a,b*a,1);
break;
case 2:
// additive
lpDevice->SetRenderState(D3DRS_ALPHABLENDENABLE, TRUE);
lpDevice->SetRenderState(D3DRS_SRCBLEND, D3DBLEND_ONE);
lpDevice->SetRenderState(D3DRS_DESTBLEND, D3DBLEND_ONE);
for (k=0; k<4; k++) v3[k].Diffuse = D3DCOLOR_RGBA_01(r*a,g*a,b*a,1);
break;
case 3:
// srccolor
lpDevice->SetRenderState(D3DRS_ALPHABLENDENABLE, TRUE);
lpDevice->SetRenderState(D3DRS_SRCBLEND, D3DBLEND_SRCCOLOR);
lpDevice->SetRenderState(D3DRS_DESTBLEND, D3DBLEND_INVSRCCOLOR);
for (k=0; k<4; k++) v3[k].Diffuse = D3DCOLOR_RGBA_01(1,1,1,1);
break;
case 4:
// color keyed texture: use the alpha value in the texture to
// determine which texels get drawn.
/*lpDevice->SetRenderState(D3DRS_ALPHAREF, 0);
lpDevice->SetRenderState(D3DRS_ALPHAFUNC, D3DCMP_NOTEQUAL);
lpDevice->SetRenderState(D3DRS_ALPHATESTENABLE, TRUE);
*/
lpDevice->SetTextureStageState(0, D3DTSS_COLOROP, D3DTOP_MODULATE);
lpDevice->SetTextureStageState(0, D3DTSS_COLORARG1, D3DTA_DIFFUSE);
lpDevice->SetTextureStageState(0, D3DTSS_COLORARG2, D3DTA_TEXTURE);
lpDevice->SetTextureStageState(1, D3DTSS_COLOROP, D3DTOP_DISABLE);
lpDevice->SetTextureStageState(0, D3DTSS_ALPHAOP, D3DTOP_MODULATE);
lpDevice->SetTextureStageState(0, D3DTSS_ALPHAARG1, D3DTA_DIFFUSE);
lpDevice->SetTextureStageState(0, D3DTSS_ALPHAARG2, D3DTA_TEXTURE);
lpDevice->SetTextureStageState(1, D3DTSS_ALPHAOP, D3DTOP_DISABLE);
// also, smoothly blend this in-between texels:
lpDevice->SetRenderState(D3DRS_ALPHABLENDENABLE, TRUE);
lpDevice->SetRenderState(D3DRS_SRCBLEND, D3DBLEND_SRCALPHA);
lpDevice->SetRenderState(D3DRS_DESTBLEND, D3DBLEND_INVSRCALPHA);
for (k=0; k<4; k++) v3[k].Diffuse = D3DCOLOR_RGBA_01(r,g,b,a);
break;
}
lpDevice->DrawPrimitiveUP(D3DPT_TRIANGLESTRIP, 2, (LPVOID)v3, sizeof(SPRITEVERTEX));
if (/*bKillSprite &&*/ bBurnIn) // final render-to-VS1
{
// Change the rendertarget back to the original setup
lpDevice->SetTexture(0, NULL);
lpDevice->SetRenderTarget( 0, pBackBuffer );
//lpDevice->SetDepthStencilSurface( pZBuffer );
lpDevice->SetTexture(0, m_texmgr.m_tex[iSlot].pSurface);
// undo aspect ratio changes (that were used to fit it to VS1):
{
float aspect = GetWidth()/(float)(GetHeight()*4.0f/3.0f);
if (aspect < 1.0f)
for (k=0; k<4; k++) v3[k].x /= aspect;
else
for (k=0; k<4; k++) v3[k].y *= aspect;
}
lpDevice->DrawPrimitiveUP(D3DPT_TRIANGLESTRIP, 2, (LPVOID)v3, sizeof(SPRITEVERTEX));
}
SafeRelease(pBackBuffer);
//SafeRelease(pZBuffer);
if (bKillSprite)
{
KillSprite(iSlot);
}
lpDevice->SetTextureStageState(0, D3DTSS_ALPHAOP, D3DTOP_SELECTARG1 );
lpDevice->SetTextureStageState(0, D3DTSS_ALPHAARG1, D3DTA_DIFFUSE );
lpDevice->SetTextureStageState(1, D3DTSS_ALPHAOP, D3DTOP_DISABLE);
}
}
lpDevice->SetRenderState(D3DRS_ALPHABLENDENABLE, FALSE);
// reset these to the standard safe mode:
lpDevice->SetTextureStageState(0, D3DTSS_COLOROP, D3DTOP_MODULATE);
lpDevice->SetTextureStageState(0, D3DTSS_COLORARG1, D3DTA_DIFFUSE);
lpDevice->SetTextureStageState(0, D3DTSS_COLORARG2, D3DTA_TEXTURE);
lpDevice->SetTextureStageState(1, D3DTSS_COLOROP, D3DTOP_DISABLE);
lpDevice->SetTextureStageState(0, D3DTSS_ALPHAOP, D3DTOP_SELECTARG1 );
lpDevice->SetTextureStageState(0, D3DTSS_ALPHAARG1, D3DTA_DIFFUSE );
lpDevice->SetTextureStageState(1, D3DTSS_ALPHAOP, D3DTOP_DISABLE);
}
void CPlugin::UvToMathSpace(float u, float v, float* rad, float* ang)
{
// (screen space = -1..1 on both axes; corresponds to UV space)
// uv space = [0..1] on both axes
// "math" space = what the preset authors are used to:
// upper left = [0,0]
// bottom right = [1,1]
// rad == 1 at corners of screen
// ang == 0 at three o'clock, and increases counter-clockwise (to 6.28).
float px = (u*2-1) * m_fAspectX; // probably 1.0
float py = (v*2-1) * m_fAspectY; // probably <1
*rad = sqrtf(px*px + py*py) / sqrtf(m_fAspectX*m_fAspectX + m_fAspectY*m_fAspectY);
*ang = atan2f(py, px);
if (*ang < 0)
*ang += 6.2831853071796f;
}
void CPlugin::RestoreShaderParams()
{
LPDIRECT3DDEVICE9 lpDevice = GetDevice();
int i = 0;
for (i=0; i<2; i++)
{
lpDevice->SetSamplerState(i, D3DSAMP_ADDRESSU, D3DTADDRESS_WRAP);//texaddr);
lpDevice->SetSamplerState(i, D3DSAMP_ADDRESSV, D3DTADDRESS_WRAP);//texaddr);
lpDevice->SetSamplerState(i, D3DSAMP_ADDRESSW, D3DTADDRESS_WRAP);//texaddr);
lpDevice->SetSamplerState(i, D3DSAMP_MAGFILTER, D3DTEXF_LINEAR);
lpDevice->SetSamplerState(i, D3DSAMP_MINFILTER, D3DTEXF_LINEAR);
lpDevice->SetSamplerState(i, D3DSAMP_MIPFILTER, D3DTEXF_LINEAR);
}
for (i=0; i<4; i++)
lpDevice->SetTexture( i, NULL );
lpDevice->SetVertexShader(NULL);
//lpDevice->SetVertexDeclaration(NULL); -directx debug runtime complains heavily about this
lpDevice->SetPixelShader(NULL);
}
void CPlugin::ApplyShaderParams(CShaderParams* p, LPD3DXCONSTANTTABLE pCT, CState* pState)
{
LPDIRECT3DDEVICE9 lpDevice = GetDevice();
//if (p->texbind_vs >= 0) lpDevice->SetTexture( p->texbind_vs , m_lpVS[0] );
//if (p->texbind_noise >= 0) lpDevice->SetTexture( p->texbind_noise, m_pTexNoise );
// bind textures
int i = 0;
for (i=0; i<sizeof(p->m_texture_bindings)/sizeof(p->m_texture_bindings[0]); i++)
{
if (p->m_texcode[i] == TEX_VS)
lpDevice->SetTexture(i, m_lpVS[0]);
else
lpDevice->SetTexture(i, p->m_texture_bindings[i].texptr);
// also set up sampler stage, if anything is bound here...
if (p->m_texcode[i]==TEX_VS || p->m_texture_bindings[i].texptr)
{
bool bAniso = false;
DWORD HQFilter = bAniso ? D3DTEXF_ANISOTROPIC : D3DTEXF_LINEAR;
DWORD wrap = p->m_texture_bindings[i].bWrap ? D3DTADDRESS_WRAP : D3DTADDRESS_CLAMP;
DWORD filter = p->m_texture_bindings[i].bBilinear ? HQFilter : D3DTEXF_POINT;
lpDevice->SetSamplerState(i, D3DSAMP_ADDRESSU, wrap);
lpDevice->SetSamplerState(i, D3DSAMP_ADDRESSV, wrap);
lpDevice->SetSamplerState(i, D3DSAMP_ADDRESSW, wrap);
lpDevice->SetSamplerState(i, D3DSAMP_MAGFILTER, filter);
lpDevice->SetSamplerState(i, D3DSAMP_MINFILTER, filter);
lpDevice->SetSamplerState(i, D3DSAMP_MIPFILTER, filter);
//lpDevice->SetSamplerState(i, D3DSAMP_MAXANISOTROPY, bAniso ? 4 : 1); //FIXME:ANISO
}
// finally, if it was a blur texture, note that
if (p->m_texcode[i] >= TEX_BLUR1 && p->m_texcode[i] <= TEX_BLUR_LAST)
m_nHighestBlurTexUsedThisFrame = max(m_nHighestBlurTexUsedThisFrame, ((int)p->m_texcode[i] - (int)TEX_BLUR1) + 1);
}
// bind "texsize_XYZ" params
int N = p->texsize_params.size();
for (i=0; i<N; i++)
{
TexSizeParamInfo* q = &(p->texsize_params[i]);
pCT->SetVector( lpDevice, q->texsize_param, &D3DXVECTOR4((float)q->w,(float)q->h,1.0f/q->w,1.0f/q->h));
}
float time_since_preset_start = GetTime() - pState->GetPresetStartTime();
float time_since_preset_start_wrapped = time_since_preset_start - (int)(time_since_preset_start/10000)*10000;
float time = GetTime() - m_fStartTime;
float progress = (GetTime() - m_fPresetStartTime) / (m_fNextPresetTime - m_fPresetStartTime);
float mip_x = logf((float)GetWidth())/logf(2.0f);
float mip_y = logf((float)GetWidth())/logf(2.0f);
float mip_avg = 0.5f*(mip_x + mip_y);
float aspect_x = 1;
float aspect_y = 1;
if (GetWidth() > GetHeight())
aspect_y = GetHeight()/(float)GetWidth();
else
aspect_x = GetWidth()/(float)GetHeight();
float blur_min[3], blur_max[3];
GetSafeBlurMinMax(pState, blur_min, blur_max);
// bind float4's
if (p->rand_frame ) pCT->SetVector( lpDevice, p->rand_frame , &m_rand_frame );
if (p->rand_preset) pCT->SetVector( lpDevice, p->rand_preset, &pState->m_rand_preset );
D3DXHANDLE* h = p->const_handles;
if (h[0]) pCT->SetVector( lpDevice, h[0], &D3DXVECTOR4( aspect_x, aspect_y, 1.0f/aspect_x, 1.0f/aspect_y ));
if (h[1]) pCT->SetVector( lpDevice, h[1], &D3DXVECTOR4(0, 0, 0, 0 ));
if (h[2]) pCT->SetVector( lpDevice, h[2], &D3DXVECTOR4(time_since_preset_start_wrapped, GetFps(), (float)GetFrame(), progress));
if (h[3]) pCT->SetVector( lpDevice, h[3], &D3DXVECTOR4(mysound.imm_rel[0], mysound.imm_rel[1], mysound.imm_rel[2], 0.3333f*(mysound.imm_rel[0], mysound.imm_rel[1], mysound.imm_rel[2]) ));
if (h[4]) pCT->SetVector( lpDevice, h[4], &D3DXVECTOR4(mysound.avg_rel[0], mysound.avg_rel[1], mysound.avg_rel[2], 0.3333f*(mysound.avg_rel[0], mysound.avg_rel[1], mysound.avg_rel[2]) ));
if (h[5]) pCT->SetVector( lpDevice, h[5], &D3DXVECTOR4( blur_max[0]-blur_min[0], blur_min[0], blur_max[1]-blur_min[1], blur_min[1] ));
if (h[6]) pCT->SetVector( lpDevice, h[6], &D3DXVECTOR4( blur_max[2]-blur_min[2], blur_min[2], blur_min[0], blur_max[0] ));
if (h[7]) pCT->SetVector( lpDevice, h[7], &D3DXVECTOR4((float)m_nTexSizeX, (float)m_nTexSizeY, 1.0f/(float)m_nTexSizeX, 1.0f/(float)m_nTexSizeY ));
if (h[8]) pCT->SetVector( lpDevice, h[8], &D3DXVECTOR4( 0.5f+0.5f*cosf(time* 0.329f+1.2f),
0.5f+0.5f*cosf(time* 1.293f+3.9f),
0.5f+0.5f*cosf(time* 5.070f+2.5f),
0.5f+0.5f*cosf(time*20.051f+5.4f)
));
if (h[9]) pCT->SetVector( lpDevice, h[9], &D3DXVECTOR4( 0.5f+0.5f*sinf(time* 0.329f+1.2f),
0.5f+0.5f*sinf(time* 1.293f+3.9f),
0.5f+0.5f*sinf(time* 5.070f+2.5f),
0.5f+0.5f*sinf(time*20.051f+5.4f)
));
if (h[10]) pCT->SetVector( lpDevice, h[10], &D3DXVECTOR4( 0.5f+0.5f*cosf(time*0.0050f+2.7f),
0.5f+0.5f*cosf(time*0.0085f+5.3f),
0.5f+0.5f*cosf(time*0.0133f+4.5f),
0.5f+0.5f*cosf(time*0.0217f+3.8f)
));
if (h[11]) pCT->SetVector( lpDevice, h[11], &D3DXVECTOR4( 0.5f+0.5f*sinf(time*0.0050f+2.7f),
0.5f+0.5f*sinf(time*0.0085f+5.3f),
0.5f+0.5f*sinf(time*0.0133f+4.5f),
0.5f+0.5f*sinf(time*0.0217f+3.8f)
));
if (h[12]) pCT->SetVector( lpDevice, h[12], &D3DXVECTOR4( mip_x, mip_y, mip_avg, 0 ));
if (h[13]) pCT->SetVector( lpDevice, h[13], &D3DXVECTOR4( blur_min[1], blur_max[1], blur_min[2], blur_max[2] ));
// write q vars
int num_q_float4s = sizeof(p->q_const_handles)/sizeof(p->q_const_handles[0]);
for (i=0; i<num_q_float4s; i++)
{
if (p->q_const_handles[i])
pCT->SetVector( lpDevice, p->q_const_handles[i], &D3DXVECTOR4(
(float)*pState->var_pf_q[i*4+0],
(float)*pState->var_pf_q[i*4+1],
(float)*pState->var_pf_q[i*4+2],
(float)*pState->var_pf_q[i*4+3] ));
}
// write matrices
for (i=0; i<20; i++)
{
if (p->rot_mat[i])
{
D3DXMATRIX mx,my,mz,mxlate,temp;
pMatrixRotationX(&mx, pState->m_rot_base[i].x + pState->m_rot_speed[i].x*time);
pMatrixRotationY(&my, pState->m_rot_base[i].y + pState->m_rot_speed[i].y*time);
pMatrixRotationZ(&mz, pState->m_rot_base[i].z + pState->m_rot_speed[i].z*time);
pMatrixTranslation(&mxlate, pState->m_xlate[i].x, pState->m_xlate[i].y, pState->m_xlate[i].z);
pMatrixMultiply(&temp, &mx, &mxlate);
pMatrixMultiply(&temp, &temp, &mz);
pMatrixMultiply(&temp, &temp, &my);
pCT->SetMatrix(lpDevice, p->rot_mat[i], &temp);
}
}
// the last 4 are totally random, each frame
for (i=20; i<24; i++)
{
if (p->rot_mat[i])
{
D3DXMATRIX mx,my,mz,mxlate,temp;
pMatrixRotationX(&mx, FRAND * 6.28f);
pMatrixRotationY(&my, FRAND * 6.28f);
pMatrixRotationZ(&mz, FRAND * 6.28f);
pMatrixTranslation(&mxlate, FRAND, FRAND, FRAND);
pMatrixMultiply(&temp, &mx, &mxlate);
pMatrixMultiply(&temp, &temp, &mz);
pMatrixMultiply(&temp, &temp, &my);
pCT->SetMatrix(lpDevice, p->rot_mat[i], &temp);
}
}
}
void CPlugin::ShowToUser_NoShaders()//int bRedraw, int nPassOverride)
{
// note: this one has to draw the whole screen! (one big quad)
LPDIRECT3DDEVICE9 lpDevice = GetDevice();
if (!lpDevice)
return;
lpDevice->SetTexture(0, m_lpVS[1]);
lpDevice->SetVertexShader( NULL );
lpDevice->SetPixelShader( NULL );
lpDevice->SetFVF( SPRITEVERTEX_FORMAT );
// stages 0 and 1 always just use bilinear filtering.
lpDevice->SetSamplerState(0, D3DSAMP_MAGFILTER, D3DTEXF_LINEAR);
lpDevice->SetSamplerState(0, D3DSAMP_MINFILTER, D3DTEXF_LINEAR);
lpDevice->SetSamplerState(0, D3DSAMP_MIPFILTER, D3DTEXF_LINEAR);
lpDevice->SetSamplerState(1, D3DSAMP_MAGFILTER, D3DTEXF_LINEAR);
lpDevice->SetSamplerState(1, D3DSAMP_MINFILTER, D3DTEXF_LINEAR);
lpDevice->SetSamplerState(1, D3DSAMP_MIPFILTER, D3DTEXF_LINEAR);
// note: this texture stage state setup works for 0 or 1 texture.
// if you set a texture, it will be modulated with the current diffuse color.
// if you don't set a texture, it will just use the current diffuse color.
lpDevice->SetTextureStageState(0, D3DTSS_COLOROP, D3DTOP_MODULATE);
lpDevice->SetTextureStageState(0, D3DTSS_COLORARG1, D3DTA_DIFFUSE);
lpDevice->SetTextureStageState(0, D3DTSS_COLORARG2, D3DTA_TEXTURE);
lpDevice->SetTextureStageState(1, D3DTSS_COLOROP, D3DTOP_DISABLE);
lpDevice->SetTextureStageState(0, D3DTSS_ALPHAOP, D3DTOP_SELECTARG1 );
lpDevice->SetTextureStageState(0, D3DTSS_ALPHAARG1, D3DTA_DIFFUSE );
lpDevice->SetTextureStageState(1, D3DTSS_ALPHAOP, D3DTOP_DISABLE);
float fZoom = 1.0f;
SPRITEVERTEX v3[4];
ZeroMemory(v3, sizeof(SPRITEVERTEX)*4);
// extend the poly we draw by 1 pixel around the viewable image area,
// in case the video card wraps u/v coords with a +0.5-texel offset
// (otherwise, a 1-pixel-wide line of the image would wrap at the top and left edges).
float fOnePlusInvWidth = 1.0f + 1.0f/(float)GetWidth();
float fOnePlusInvHeight = 1.0f + 1.0f/(float)GetHeight();
v3[0].x = -fOnePlusInvWidth;
v3[1].x = fOnePlusInvWidth;
v3[2].x = -fOnePlusInvWidth;
v3[3].x = fOnePlusInvWidth;
v3[0].y = fOnePlusInvHeight;
v3[1].y = fOnePlusInvHeight;
v3[2].y = -fOnePlusInvHeight;
v3[3].y = -fOnePlusInvHeight;
//float aspect = GetWidth() / (float)(GetHeight()/(ASPECT)/**4.0f/3.0f*/);
float aspect = GetWidth() / (float)(GetHeight()*m_fInvAspectY/**4.0f/3.0f*/);
float x_aspect_mult = 1.0f;
float y_aspect_mult = 1.0f;
if (aspect>1)
y_aspect_mult = aspect;
else
x_aspect_mult = 1.0f/aspect;
for (int n=0; n<4; n++)
{
v3[n].x *= x_aspect_mult;
v3[n].y *= y_aspect_mult;
}
{
float shade[4][3] = {
{ 1.0f, 1.0f, 1.0f },
{ 1.0f, 1.0f, 1.0f },
{ 1.0f, 1.0f, 1.0f },
{ 1.0f, 1.0f, 1.0f } }; // for each vertex, then each comp.
float fShaderAmount = m_pState->m_fShader.eval(GetTime());
if (fShaderAmount > 0.001f)
{
for (int i=0; i<4; i++)
{
shade[i][0] = 0.6f + 0.3f*sinf(GetTime()*30.0f*0.0143f + 3 + i*21 + m_fRandStart[3]);
shade[i][1] = 0.6f + 0.3f*sinf(GetTime()*30.0f*0.0107f + 1 + i*13 + m_fRandStart[1]);
shade[i][2] = 0.6f + 0.3f*sinf(GetTime()*30.0f*0.0129f + 6 + i*9 + m_fRandStart[2]);
float max = ((shade[i][0] > shade[i][1]) ? shade[i][0] : shade[i][1]);
if (shade[i][2] > max) max = shade[i][2];
for (int k=0; k<3; k++)
{
shade[i][k] /= max;
shade[i][k] = 0.5f + 0.5f*shade[i][k];
}
for (int k=0; k<3; k++)
{
shade[i][k] = shade[i][k]*(fShaderAmount) + 1.0f*(1.0f - fShaderAmount);
}
v3[i].Diffuse = D3DCOLOR_RGBA_01(shade[i][0],shade[i][1],shade[i][2],1);
}
}
float fVideoEchoZoom = (float)(*m_pState->var_pf_echo_zoom);//m_pState->m_fVideoEchoZoom.eval(GetTime());
float fVideoEchoAlpha = (float)(*m_pState->var_pf_echo_alpha);//m_pState->m_fVideoEchoAlpha.eval(GetTime());
int nVideoEchoOrientation = (int) (*m_pState->var_pf_echo_orient) % 4;//m_pState->m_nVideoEchoOrientation;
float fGammaAdj = (float)(*m_pState->var_pf_gamma);//m_pState->m_fGammaAdj.eval(GetTime());
if (m_pState->m_bBlending &&
m_pState->m_fVideoEchoAlpha.eval(GetTime()) > 0.01f &&
m_pState->m_fVideoEchoAlphaOld > 0.01f &&
m_pState->m_nVideoEchoOrientation != m_pState->m_nVideoEchoOrientationOld)
{
if (m_pState->m_fBlendProgress < m_fSnapPoint)
{
nVideoEchoOrientation = m_pState->m_nVideoEchoOrientationOld;
fVideoEchoAlpha *= 1.0f - 2.0f*CosineInterp(m_pState->m_fBlendProgress);
}
else
{
fVideoEchoAlpha *= 2.0f*CosineInterp(m_pState->m_fBlendProgress) - 1.0f;
}
}
if (fVideoEchoAlpha > 0.001f)
{
// video echo
lpDevice->SetRenderState(D3DRS_ALPHABLENDENABLE, TRUE);
lpDevice->SetRenderState(D3DRS_SRCBLEND, D3DBLEND_ONE);
lpDevice->SetRenderState(D3DRS_DESTBLEND, D3DBLEND_ZERO);
for (int i=0; i<2; i++)
{
fZoom = (i==0) ? 1.0f : fVideoEchoZoom;
float temp_lo = 0.5f - 0.5f/fZoom;
float temp_hi = 0.5f + 0.5f/fZoom;
v3[0].tu = temp_lo;
v3[0].tv = temp_hi;
v3[1].tu = temp_hi;
v3[1].tv = temp_hi;
v3[2].tu = temp_lo;
v3[2].tv = temp_lo;
v3[3].tu = temp_hi;
v3[3].tv = temp_lo;
// flipping
if (i==1)
{
for (int j=0; j<4; j++)
{
if (nVideoEchoOrientation % 2)
v3[j].tu = 1.0f - v3[j].tu;
if (nVideoEchoOrientation >= 2)
v3[j].tv = 1.0f - v3[j].tv;
}
}
float mix = (i==1) ? fVideoEchoAlpha : 1.0f - fVideoEchoAlpha;
for (int k=0; k<4; k++)
v3[k].Diffuse = D3DCOLOR_RGBA_01(mix*shade[k][0],mix*shade[k][1],mix*shade[k][2],1);
lpDevice->DrawPrimitiveUP(D3DPT_TRIANGLESTRIP, 2, (void*)v3, sizeof(SPRITEVERTEX));
if (i==0)
{
lpDevice->SetRenderState(D3DRS_SRCBLEND, D3DBLEND_ONE);
lpDevice->SetRenderState(D3DRS_DESTBLEND, D3DBLEND_ONE);
}
if (fGammaAdj > 0.001f)
{
// draw layer 'i' a 2nd (or 3rd, or 4th...) time, additively
int nRedraws = (int)(fGammaAdj - 0.0001f);
float gamma;
for (int nRedraw=0; nRedraw < nRedraws; nRedraw++)
{
if (nRedraw == nRedraws-1)
gamma = fGammaAdj - (int)(fGammaAdj - 0.0001f);
else
gamma = 1.0f;
for (int k=0; k<4; k++)
v3[k].Diffuse = D3DCOLOR_RGBA_01(gamma*mix*shade[k][0],gamma*mix*shade[k][1],gamma*mix*shade[k][2],1);
lpDevice->DrawPrimitiveUP(D3DPT_TRIANGLESTRIP, 2, (void*)v3, sizeof(SPRITEVERTEX));
}
}
}
}
else
{
// no video echo
v3[0].tu = 0; v3[1].tu = 1; v3[2].tu = 0; v3[3].tu = 1;
v3[0].tv = 1; v3[1].tv = 1; v3[2].tv = 0; v3[3].tv = 0;
lpDevice->SetRenderState(D3DRS_ALPHABLENDENABLE, FALSE);
lpDevice->SetRenderState(D3DRS_SRCBLEND, D3DBLEND_ONE);
lpDevice->SetRenderState(D3DRS_DESTBLEND, D3DBLEND_ZERO);
// draw it iteratively, solid the first time, and additively after that
int nPasses = (int)(fGammaAdj - 0.001f) + 1;
float gamma;
for (int nPass=0; nPass < nPasses; nPass++)
{
if (nPass == nPasses - 1)
gamma = fGammaAdj - (float)nPass;
else
gamma = 1.0f;
for (int k=0; k<4; k++)
v3[k].Diffuse = D3DCOLOR_RGBA_01(gamma*shade[k][0],gamma*shade[k][1],gamma*shade[k][2],1);
lpDevice->DrawPrimitiveUP(D3DPT_TRIANGLESTRIP, 2, (void*)v3, sizeof(SPRITEVERTEX));
if (nPass==0)
{
lpDevice->SetRenderState(D3DRS_ALPHABLENDENABLE, TRUE);
lpDevice->SetRenderState(D3DRS_SRCBLEND, D3DBLEND_ONE);
lpDevice->SetRenderState(D3DRS_DESTBLEND, D3DBLEND_ONE);
}
}
}
SPRITEVERTEX v3[4];
ZeroMemory(v3, sizeof(SPRITEVERTEX)*4);
float fOnePlusInvWidth = 1.0f + 1.0f/(float)GetWidth();
float fOnePlusInvHeight = 1.0f + 1.0f/(float)GetHeight();
v3[0].x = -fOnePlusInvWidth;
v3[1].x = fOnePlusInvWidth;
v3[2].x = -fOnePlusInvWidth;
v3[3].x = fOnePlusInvWidth;
v3[0].y = fOnePlusInvHeight;
v3[1].y = fOnePlusInvHeight;
v3[2].y = -fOnePlusInvHeight;
v3[3].y = -fOnePlusInvHeight;
for (int i=0; i<4; i++) v3[i].Diffuse = D3DCOLOR_RGBA_01(1,1,1,1);
if (*m_pState->var_pf_brighten &&
(GetCaps()->SrcBlendCaps & D3DPBLENDCAPS_INVDESTCOLOR ) &&
(GetCaps()->DestBlendCaps & D3DPBLENDCAPS_DESTCOLOR)
)
{
// square root filter
//lpDevice->SetRenderState(D3DRS_COLORVERTEX, FALSE); //?
//lpDevice->SetRenderState(D3DRS_SHADEMODE, D3DSHADE_FLAT); //?
lpDevice->SetTexture(0, NULL);
lpDevice->SetRenderState(D3DRS_ALPHABLENDENABLE, TRUE);
// first, a perfect invert
lpDevice->SetRenderState(D3DRS_SRCBLEND, D3DBLEND_INVDESTCOLOR);
lpDevice->SetRenderState(D3DRS_DESTBLEND, D3DBLEND_ZERO);
lpDevice->DrawPrimitiveUP(D3DPT_TRIANGLESTRIP, 2, (void*)v3, sizeof(SPRITEVERTEX));
// then modulate by self (square it)
lpDevice->SetRenderState(D3DRS_SRCBLEND, D3DBLEND_ZERO);
lpDevice->SetRenderState(D3DRS_DESTBLEND, D3DBLEND_DESTCOLOR);
lpDevice->DrawPrimitiveUP(D3DPT_TRIANGLESTRIP, 2, (void*)v3, sizeof(SPRITEVERTEX));
// then another perfect invert
lpDevice->SetRenderState(D3DRS_SRCBLEND, D3DBLEND_INVDESTCOLOR);
lpDevice->SetRenderState(D3DRS_DESTBLEND, D3DBLEND_ZERO);
lpDevice->DrawPrimitiveUP(D3DPT_TRIANGLESTRIP, 2, (void*)v3, sizeof(SPRITEVERTEX));
}
if (*m_pState->var_pf_darken &&
(GetCaps()->DestBlendCaps & D3DPBLENDCAPS_DESTCOLOR)
)
{
// squaring filter
//lpDevice->SetRenderState(D3DRS_COLORVERTEX, FALSE); //?
//lpDevice->SetRenderState(D3DRS_SHADEMODE, D3DSHADE_FLAT); //?
lpDevice->SetTexture(0, NULL);
lpDevice->SetRenderState(D3DRS_ALPHABLENDENABLE, TRUE);
lpDevice->SetRenderState(D3DRS_SRCBLEND, D3DBLEND_ZERO);
lpDevice->SetRenderState(D3DRS_DESTBLEND, D3DBLEND_DESTCOLOR);
lpDevice->DrawPrimitiveUP(D3DPT_TRIANGLESTRIP, 2, (void*)v3, sizeof(SPRITEVERTEX));
//lpDevice->SetRenderState(D3DRS_SRCBLEND, D3DBLEND_DESTCOLOR);
//lpDevice->SetRenderState(D3DRS_DESTBLEND, D3DBLEND_ONE);
//lpDevice->DrawPrimitiveUP(D3DPT_TRIANGLESTRIP, 2, (void*)v3, sizeof(SPRITEVERTEX));
}
if (*m_pState->var_pf_solarize &&
(GetCaps()->SrcBlendCaps & D3DPBLENDCAPS_DESTCOLOR ) &&
(GetCaps()->DestBlendCaps & D3DPBLENDCAPS_INVDESTCOLOR)
)
{
//lpDevice->SetRenderState(D3DRS_COLORVERTEX, FALSE); //?
//lpDevice->SetRenderState(D3DRS_SHADEMODE, D3DSHADE_FLAT); //?
lpDevice->SetTexture(0, NULL);
lpDevice->SetRenderState(D3DRS_ALPHABLENDENABLE, TRUE);
lpDevice->SetRenderState(D3DRS_SRCBLEND, D3DBLEND_ZERO);
lpDevice->SetRenderState(D3DRS_DESTBLEND, D3DBLEND_INVDESTCOLOR);
lpDevice->DrawPrimitiveUP(D3DPT_TRIANGLESTRIP, 2, (void*)v3, sizeof(SPRITEVERTEX));
lpDevice->SetRenderState(D3DRS_SRCBLEND, D3DBLEND_DESTCOLOR);
lpDevice->SetRenderState(D3DRS_DESTBLEND, D3DBLEND_ONE);
lpDevice->DrawPrimitiveUP(D3DPT_TRIANGLESTRIP, 2, (void*)v3, sizeof(SPRITEVERTEX));
}
if (*m_pState->var_pf_invert &&
(GetCaps()->SrcBlendCaps & D3DPBLENDCAPS_INVDESTCOLOR )
)
{
//lpDevice->SetRenderState(D3DRS_COLORVERTEX, FALSE); //?
//lpDevice->SetRenderState(D3DRS_SHADEMODE, D3DSHADE_FLAT); //?
lpDevice->SetTexture(0, NULL);
lpDevice->SetRenderState(D3DRS_ALPHABLENDENABLE, TRUE);
lpDevice->SetRenderState(D3DRS_SRCBLEND, D3DBLEND_INVDESTCOLOR);
lpDevice->SetRenderState(D3DRS_DESTBLEND, D3DBLEND_ZERO);
lpDevice->DrawPrimitiveUP(D3DPT_TRIANGLESTRIP, 2, (void*)v3, sizeof(SPRITEVERTEX));
}
lpDevice->SetRenderState(D3DRS_ALPHABLENDENABLE, FALSE);
}
}
void CPlugin::ShowToUser_Shaders(int nPass, bool bAlphaBlend, bool bFlipAlpha, bool bCullTiles, bool bFlipCulling)//int bRedraw, int nPassOverride, bool bFlipAlpha)
{
LPDIRECT3DDEVICE9 lpDevice = GetDevice();
if (!lpDevice)
return;
//lpDevice->SetTexture(0, m_lpVS[1]);
lpDevice->SetVertexShader( NULL );
lpDevice->SetFVF( MYVERTEX_FORMAT );
lpDevice->SetRenderState(D3DRS_ALPHABLENDENABLE, FALSE);
float fZoom = 1.0f;
float aspect = GetWidth() / (float)(GetHeight()*m_fInvAspectY/**4.0f/3.0f*/);
float x_aspect_mult = 1.0f;
float y_aspect_mult = 1.0f;
if (aspect>1)
y_aspect_mult = aspect;
else
x_aspect_mult = 1.0f/aspect;
// hue shader
float shade[4][3] = {
{ 1.0f, 1.0f, 1.0f },
{ 1.0f, 1.0f, 1.0f },
{ 1.0f, 1.0f, 1.0f },
{ 1.0f, 1.0f, 1.0f } }; // for each vertex, then each comp.
float fShaderAmount = 1;//since we don't know if shader uses it or not! m_pState->m_fShader.eval(GetTime());
if (fShaderAmount > 0.001f || m_pState->m_bBlending)
{
// pick 4 colors for the 4 corners
for (int i=0; i<4; i++)
{
shade[i][0] = 0.6f + 0.3f*sinf(GetTime()*30.0f*0.0143f + 3 + i*21 + m_fRandStart[3]);
shade[i][1] = 0.6f + 0.3f*sinf(GetTime()*30.0f*0.0107f + 1 + i*13 + m_fRandStart[1]);
shade[i][2] = 0.6f + 0.3f*sinf(GetTime()*30.0f*0.0129f + 6 + i*9 + m_fRandStart[2]);
float max = ((shade[i][0] > shade[i][1]) ? shade[i][0] : shade[i][1]);
if (shade[i][2] > max) max = shade[i][2];
for (int k=0; k<3; k++)
{
shade[i][k] /= max;
shade[i][k] = 0.5f + 0.5f*shade[i][k];
}
// note: we now pass the raw hue shader colors down; the shader can only use a certain % if it wants.
//for (k=0; k<3; k++)
// shade[i][k] = shade[i][k]*(fShaderAmount) + 1.0f*(1.0f - fShaderAmount);
//m_comp_verts[i].Diffuse = D3DCOLOR_RGBA_01(shade[i][0],shade[i][1],shade[i][2],1);
}
// interpolate the 4 colors & apply to all the verts
for (int j=0; j<FCGSY; j++)
{
for (int i=0; i<FCGSX; i++)
{
MYVERTEX* p = &m_comp_verts[i + j*FCGSX];
float x = p->x*0.5f + 0.5f;
float y = p->y*0.5f + 0.5f;
float col[3] = { 1, 1, 1 };
if (fShaderAmount > 0.001f)
{
for (int c=0; c<3; c++)
col[c] = shade[0][c]*( x)*( y) +
shade[1][c]*(1-x)*( y) +
shade[2][c]*( x)*(1-y) +
shade[3][c]*(1-x)*(1-y);
}
// TO DO: improve interp here?
// TO DO: during blend, only send the triangles needed
// if blending, also set up the alpha values - pull them from the alphas used for the Warped Blit
double alpha = 1;
if (m_pState->m_bBlending)
{
x *= (m_nGridX + 1);
y *= (m_nGridY + 1);
x = max(min(x,m_nGridX-1),0);
y = max(min(y,m_nGridY-1),0);
int nx = (int)x;
int ny = (int)y;
double dx = x - nx;
double dy = y - ny;
double alpha00 = (m_verts[(ny )*(m_nGridX+1) + (nx )].Diffuse >> 24);
double alpha01 = (m_verts[(ny )*(m_nGridX+1) + (nx+1)].Diffuse >> 24);
double alpha10 = (m_verts[(ny+1)*(m_nGridX+1) + (nx )].Diffuse >> 24);
double alpha11 = (m_verts[(ny+1)*(m_nGridX+1) + (nx+1)].Diffuse >> 24);
alpha = alpha00*(1-dx)*(1-dy) +
alpha01*( dx)*(1-dy) +
alpha10*(1-dx)*( dy) +
alpha11*( dx)*( dy);
alpha /= 255.0f;
//if (bFlipAlpha)
// alpha = 1-alpha;
//alpha = (m_verts[y*(m_nGridX+1) + x].Diffuse >> 24) / 255.0f;
}
p->Diffuse = D3DCOLOR_RGBA_01(col[0],col[1],col[2],alpha);
}
}
}
int nAlphaTestValue = 0;
if (bFlipCulling)
nAlphaTestValue = 1-nAlphaTestValue;
if (bAlphaBlend)
{
lpDevice->SetRenderState(D3DRS_ALPHABLENDENABLE, TRUE);
if (bFlipAlpha)
{
lpDevice->SetRenderState(D3DRS_SRCBLEND, D3DBLEND_INVSRCALPHA);
lpDevice->SetRenderState(D3DRS_DESTBLEND, D3DBLEND_SRCALPHA);
}
else
{
lpDevice->SetRenderState(D3DRS_SRCBLEND, D3DBLEND_SRCALPHA);
lpDevice->SetRenderState(D3DRS_DESTBLEND, D3DBLEND_INVSRCALPHA);
}
}
else
lpDevice->SetRenderState(D3DRS_ALPHABLENDENABLE, FALSE);
// Now do the final composite blit, fullscreen;
// or do it twice, alpha-blending, if we're blending between two sets of shaders.
int pass = nPass;
{
// PASS 0: draw using *blended per-vertex motion vectors*, but with the OLD comp shader.
// PASS 1: draw using *blended per-vertex motion vectors*, but with the NEW comp shader.
PShaderInfo* si = (pass==0) ? &m_OldShaders.comp : &m_shaders.comp;
CState* state = (pass==0) ? m_pOldState : m_pState;
lpDevice->SetVertexDeclaration(m_pMyVertDecl);
lpDevice->SetVertexShader(m_fallbackShaders_vs.comp.ptr);
lpDevice->SetPixelShader (si->ptr);
ApplyShaderParams( &(si->params), si->CT, state );
// Hurl the triangles at the video card.
// We're going to un-index it, so that we don't stress any crappy (AHEM intel g33)
// drivers out there. Not a big deal - only ~800 polys / 24kb of data.
// If we're blending, we'll skip any polygon that is all alpha-blended out.
// This also respects the MaxPrimCount limit of the video card.
MYVERTEX tempv[1024 * 3];
int primCount = (FCGSX-2)*(FCGSY-2)*2; // although, some might not be drawn!
int max_prims_per_batch = min( GetCaps()->MaxPrimitiveCount, (sizeof(tempv)/sizeof(tempv[0]))/3) - 4;
int src_idx = 0;
while (src_idx < primCount*3)
{
int prims_queued = 0;
int i=0;
while (prims_queued < max_prims_per_batch && src_idx < primCount*3)
{
// copy 3 verts
for (int j=0; j<3; j++)
tempv[i++] = m_comp_verts[ m_comp_indices[src_idx++] ];
if (bCullTiles)
{
DWORD d1 = (tempv[i-3].Diffuse >> 24);
DWORD d2 = (tempv[i-2].Diffuse >> 24);
DWORD d3 = (tempv[i-1].Diffuse >> 24);
bool bIsNeeded;
if (nAlphaTestValue)
bIsNeeded = ((d1 & d2 & d3) < 255);//(d1 < 255) || (d2 < 255) || (d3 < 255);
else
bIsNeeded = ((d1|d2|d3) > 0);//(d1 > 0) || (d2 > 0) || (d3 > 0);
if (!bIsNeeded)
i -= 3;
else
prims_queued++;
}
else
prims_queued++;
}
if (prims_queued > 0)
lpDevice->DrawPrimitiveUP( D3DPT_TRIANGLELIST, prims_queued, tempv, sizeof(MYVERTEX) );
}
}
lpDevice->SetRenderState(D3DRS_ALPHABLENDENABLE, FALSE);
RestoreShaderParams();
}
void CPlugin::ShowSongTitleAnim(int w, int h, float fProgress)
{
int i,x,y;
if (!m_lpDDSTitle) // this *can* be NULL, if not much video mem!
return;
LPDIRECT3DDEVICE9 lpDevice = GetDevice();
if (!lpDevice)
return;
lpDevice->SetTexture(0, m_lpDDSTitle);
lpDevice->SetVertexShader( NULL );
lpDevice->SetFVF( SPRITEVERTEX_FORMAT );
lpDevice->SetRenderState(D3DRS_ALPHABLENDENABLE, TRUE);
lpDevice->SetRenderState(D3DRS_SRCBLEND, D3DBLEND_ONE);
lpDevice->SetRenderState(D3DRS_DESTBLEND, D3DBLEND_ONE);
SPRITEVERTEX v3[128];
ZeroMemory(v3, sizeof(SPRITEVERTEX)*128);
if (m_supertext.bIsSongTitle)
{
// positioning:
float fSizeX = 50.0f / (float)m_supertext.nFontSizeUsed * powf(1.5f, m_supertext.fFontSize - 2.0f);
float fSizeY = fSizeX * m_nTitleTexSizeY/(float)m_nTitleTexSizeX;// * m_nWidth/(float)m_nHeight;
if (fSizeX > 0.88f)
{
fSizeY *= 0.88f/fSizeX;
fSizeX = 0.88f;
}
//fixme
if (fProgress < 1.0f)//(w!=h) // regular render-to-backbuffer
{
//float aspect = w/(float)(h*4.0f/3.0f);
//fSizeY *= aspect;
}
else // final render-to-VS0
{
//float aspect = GetWidth()/(float)(GetHeight()*4.0f/3.0f);
//if (aspect < 1.0f)
//{
// fSizeX *= aspect;
// fSizeY *= aspect;
//}
//fSizeY *= -1;
}
//if (fSizeX > 0.92f) fSizeX = 0.92f;
//if (fSizeY > 0.92f) fSizeY = 0.92f;
i = 0;
float vert_clip = VERT_CLIP;//1.0f;//0.45f; // warning: visible clipping has been observed at 0.4!
for (y=0; y<8; y++)
{
for (x=0; x<16; x++)
{
v3[i].tu = x/15.0f;
v3[i].tv = (y/7.0f - 0.5f)*vert_clip + 0.5f;
v3[i].x = (v3[i].tu*2.0f - 1.0f)*fSizeX;
v3[i].y = (v3[i].tv*2.0f - 1.0f)*fSizeY;
if (fProgress >= 1.0f)
v3[i].y += 1.0f/(float)m_nTexSizeY; //this is a pretty hacky guess @ getting it to align...
i++;
}
}
// warping
float ramped_progress = max(0.0f, 1-fProgress*1.5f);
float t2 = powf(ramped_progress, 1.8f)*1.3f;
for (y=0; y<8; y++)
{
for (x=0; x<16; x++)
{
i = y*16+x;
v3[i].x += t2*0.070f*sinf(GetTime()*0.31f + v3[i].x*0.39f - v3[i].y*1.94f);
v3[i].x += t2*0.044f*sinf(GetTime()*0.81f - v3[i].x*1.91f + v3[i].y*0.27f);
v3[i].x += t2*0.061f*sinf(GetTime()*1.31f + v3[i].x*0.61f + v3[i].y*0.74f);
v3[i].y += t2*0.061f*sinf(GetTime()*0.37f + v3[i].x*1.83f + v3[i].y*0.69f);
v3[i].y += t2*0.070f*sinf(GetTime()*0.67f + v3[i].x*0.42f - v3[i].y*1.39f);
v3[i].y += t2*0.087f*sinf(GetTime()*1.07f + v3[i].x*3.55f + v3[i].y*0.89f);
}
}
// scale down over time
float scale = 1.01f/(powf(fProgress, 0.21f) + 0.01f);
for (i=0; i<128; i++)
{
v3[i].x *= scale;
v3[i].y *= scale;
}
}
else
{
// positioning:
float fSizeX = (float)m_nTexSizeX/1024.0f * 100.0f / (float)m_supertext.nFontSizeUsed * powf(1.033f, m_supertext.fFontSize - 50.0f);
float fSizeY = fSizeX * m_nTitleTexSizeY/(float)m_nTitleTexSizeX;
//fixme
if (fProgress < 1.0f)//w!=h) // regular render-to-backbuffer
{
//float aspect = w/(float)(h*4.0f/3.0f);
//fSizeY *= aspect;
}
else // final render-to-VS0
{
//float aspect = GetWidth()/(float)(GetHeight()*4.0f/3.0f);
//if (aspect < 1.0f)
//{
// fSizeX *= aspect;
// fSizeY *= aspect;
//}
//fSizeY *= -1;
}
//if (fSize > 0.92f) fSize = 0.92f;
i = 0;
float vert_clip = VERT_CLIP;//0.67f; // warning: visible clipping has been observed at 0.5 (for very short strings) and even 0.6 (for wingdings)!
for (y=0; y<8; y++)
{
for (x=0; x<16; x++)
{
v3[i].tu = x/15.0f;
v3[i].tv = (y/7.0f - 0.5f)*vert_clip + 0.5f;
v3[i].x = (v3[i].tu*2.0f - 1.0f)*fSizeX;
v3[i].y = (v3[i].tv*2.0f - 1.0f)*fSizeY;
if (fProgress >= 1.0f)
v3[i].y += 1.0f/(float)m_nTexSizeY; //this is a pretty hacky guess @ getting it to align...
i++;
}
}
// apply 'growth' factor and move to user-specified (x,y)
//if (fabsf(m_supertext.fGrowth-1.0f) > 0.001f)
{
float t = (1.0f)*(1-fProgress) + (fProgress)*(m_supertext.fGrowth);
float dx = (m_supertext.fX*2-1);
float dy = (m_supertext.fY*2-1);
if (w!=h) // regular render-to-backbuffer
{
float aspect = w/(float)(h*4.0f/3.0f);
if (aspect < 1)
dx /= aspect;
else
dy *= aspect;
}
for (i=0; i<128; i++)
{
// note: (x,y) are in (-1,1) range, but m_supertext.f{X|Y} are in (0..1) range
v3[i].x = (v3[i].x)*t + dx;
v3[i].y = (v3[i].y)*t + dy;
}
}
}
WORD indices[7*15*6];
i = 0;
for (y=0; y<7; y++)
{
for (x=0; x<15; x++)
{
indices[i++] = y*16 + x;
indices[i++] = y*16 + x + 1;
indices[i++] = y*16 + x + 16;
indices[i++] = y*16 + x + 1;
indices[i++] = y*16 + x + 16;
indices[i++] = y*16 + x + 17;
}
}
// final flip on y
//for (i=0; i<128; i++)
// v3[i].y *= -1.0f;
for (i=0; i<128; i++)
//v3[i].y /= ASPECT_Y;
v3[i].y *= m_fInvAspectY;
for (int it=0; it<2; it++)
{
// colors
{
float t;
if (m_supertext.bIsSongTitle)
t = powf(fProgress, 0.3f)*1.0f;
else
t = CosineInterp(min(1.0f, (fProgress/m_supertext.fFadeTime)));
if (it==0)
v3[0].Diffuse = D3DCOLOR_RGBA_01(t,t,t,t);
else
v3[0].Diffuse = D3DCOLOR_RGBA_01(t*m_supertext.nColorR/255.0f,t*m_supertext.nColorG/255.0f,t*m_supertext.nColorB/255.0f,t);
for (i=1; i<128; i++)
v3[i].Diffuse = v3[0].Diffuse;
}
// nudge down & right for shadow, up & left for solid text
float offset_x = 0, offset_y = 0;
switch(it)
{
case 0:
offset_x = 2.0f/(float)m_nTitleTexSizeX;
offset_y = 2.0f/(float)m_nTitleTexSizeY;
break;
case 1:
offset_x = -4.0f/(float)m_nTitleTexSizeX;
offset_y = -4.0f/(float)m_nTitleTexSizeY;
break;
}
for (i=0; i<128; i++)
{
v3[i].x += offset_x;
v3[i].y += offset_y;
}
if (it == 0)
{
lpDevice->SetRenderState(D3DRS_SRCBLEND, D3DBLEND_ZERO);//SRCALPHA);
lpDevice->SetRenderState(D3DRS_DESTBLEND, D3DBLEND_INVSRCCOLOR);
}
else
{
lpDevice->SetRenderState(D3DRS_SRCBLEND, D3DBLEND_ONE);//SRCALPHA);
lpDevice->SetRenderState(D3DRS_DESTBLEND, D3DBLEND_ONE);
}
lpDevice->DrawIndexedPrimitiveUP(D3DPT_TRIANGLELIST, 0, 128, 15*7*6/3, indices, D3DFMT_INDEX16, v3, sizeof(SPRITEVERTEX));
}
lpDevice->SetRenderState(D3DRS_ALPHABLENDENABLE, FALSE);
}