yuzu-early/externals/libressl/ssl/t1_enc.c

1190 lines
35 KiB
C
Raw Normal View History

2020-12-28 16:15:37 +01:00
/* $OpenBSD: t1_enc.c,v 1.123 2020/08/30 15:40:20 jsing Exp $ */
/* Copyright (C) 1995-1998 Eric Young (eay@cryptsoft.com)
* All rights reserved.
*
* This package is an SSL implementation written
* by Eric Young (eay@cryptsoft.com).
* The implementation was written so as to conform with Netscapes SSL.
*
* This library is free for commercial and non-commercial use as long as
* the following conditions are aheared to. The following conditions
* apply to all code found in this distribution, be it the RC4, RSA,
* lhash, DES, etc., code; not just the SSL code. The SSL documentation
* included with this distribution is covered by the same copyright terms
* except that the holder is Tim Hudson (tjh@cryptsoft.com).
*
* Copyright remains Eric Young's, and as such any Copyright notices in
* the code are not to be removed.
* If this package is used in a product, Eric Young should be given attribution
* as the author of the parts of the library used.
* This can be in the form of a textual message at program startup or
* in documentation (online or textual) provided with the package.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* 3. All advertising materials mentioning features or use of this software
* must display the following acknowledgement:
* "This product includes cryptographic software written by
* Eric Young (eay@cryptsoft.com)"
* The word 'cryptographic' can be left out if the rouines from the library
* being used are not cryptographic related :-).
* 4. If you include any Windows specific code (or a derivative thereof) from
* the apps directory (application code) you must include an acknowledgement:
* "This product includes software written by Tim Hudson (tjh@cryptsoft.com)"
*
* THIS SOFTWARE IS PROVIDED BY ERIC YOUNG ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*
* The licence and distribution terms for any publically available version or
* derivative of this code cannot be changed. i.e. this code cannot simply be
* copied and put under another distribution licence
* [including the GNU Public Licence.]
*/
/* ====================================================================
* Copyright (c) 1998-2007 The OpenSSL Project. All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
*
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
*
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in
* the documentation and/or other materials provided with the
* distribution.
*
* 3. All advertising materials mentioning features or use of this
* software must display the following acknowledgment:
* "This product includes software developed by the OpenSSL Project
* for use in the OpenSSL Toolkit. (http://www.openssl.org/)"
*
* 4. The names "OpenSSL Toolkit" and "OpenSSL Project" must not be used to
* endorse or promote products derived from this software without
* prior written permission. For written permission, please contact
* openssl-core@openssl.org.
*
* 5. Products derived from this software may not be called "OpenSSL"
* nor may "OpenSSL" appear in their names without prior written
* permission of the OpenSSL Project.
*
* 6. Redistributions of any form whatsoever must retain the following
* acknowledgment:
* "This product includes software developed by the OpenSSL Project
* for use in the OpenSSL Toolkit (http://www.openssl.org/)"
*
* THIS SOFTWARE IS PROVIDED BY THE OpenSSL PROJECT ``AS IS'' AND ANY
* EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
* PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE OpenSSL PROJECT OR
* ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
* SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
* NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
* LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
* STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
* OF THE POSSIBILITY OF SUCH DAMAGE.
* ====================================================================
*
* This product includes cryptographic software written by Eric Young
* (eay@cryptsoft.com). This product includes software written by Tim
* Hudson (tjh@cryptsoft.com).
*
*/
/* ====================================================================
* Copyright 2005 Nokia. All rights reserved.
*
* The portions of the attached software ("Contribution") is developed by
* Nokia Corporation and is licensed pursuant to the OpenSSL open source
* license.
*
* The Contribution, originally written by Mika Kousa and Pasi Eronen of
* Nokia Corporation, consists of the "PSK" (Pre-Shared Key) ciphersuites
* support (see RFC 4279) to OpenSSL.
*
* No patent licenses or other rights except those expressly stated in
* the OpenSSL open source license shall be deemed granted or received
* expressly, by implication, estoppel, or otherwise.
*
* No assurances are provided by Nokia that the Contribution does not
* infringe the patent or other intellectual property rights of any third
* party or that the license provides you with all the necessary rights
* to make use of the Contribution.
*
* THE SOFTWARE IS PROVIDED "AS IS" WITHOUT WARRANTY OF ANY KIND. IN
* ADDITION TO THE DISCLAIMERS INCLUDED IN THE LICENSE, NOKIA
* SPECIFICALLY DISCLAIMS ANY LIABILITY FOR CLAIMS BROUGHT BY YOU OR ANY
* OTHER ENTITY BASED ON INFRINGEMENT OF INTELLECTUAL PROPERTY RIGHTS OR
* OTHERWISE.
*/
#include <limits.h>
#include <stdio.h>
#include "ssl_locl.h"
#include <openssl/evp.h>
#include <openssl/hmac.h>
#include <openssl/md5.h>
int tls1_PRF(SSL *s, const unsigned char *secret, size_t secret_len,
const void *seed1, size_t seed1_len, const void *seed2, size_t seed2_len,
const void *seed3, size_t seed3_len, const void *seed4, size_t seed4_len,
const void *seed5, size_t seed5_len, unsigned char *out, size_t out_len);
void
tls1_cleanup_key_block(SSL *s)
{
freezero(S3I(s)->hs.key_block, S3I(s)->hs.key_block_len);
S3I(s)->hs.key_block = NULL;
S3I(s)->hs.key_block_len = 0;
}
void
tls1_record_sequence_increment(unsigned char *seq)
{
int i;
for (i = SSL3_SEQUENCE_SIZE - 1; i >= 0; i--) {
if (++seq[i] != 0)
break;
}
}
/*
* TLS P_hash() data expansion function - see RFC 5246, section 5.
*/
static int
tls1_P_hash(const EVP_MD *md, const unsigned char *secret, size_t secret_len,
const void *seed1, size_t seed1_len, const void *seed2, size_t seed2_len,
const void *seed3, size_t seed3_len, const void *seed4, size_t seed4_len,
const void *seed5, size_t seed5_len, unsigned char *out, size_t out_len)
{
unsigned char A1[EVP_MAX_MD_SIZE], hmac[EVP_MAX_MD_SIZE];
size_t A1_len, hmac_len;
EVP_MD_CTX ctx;
EVP_PKEY *mac_key;
int ret = 0;
int chunk;
size_t i;
chunk = EVP_MD_size(md);
OPENSSL_assert(chunk >= 0);
EVP_MD_CTX_init(&ctx);
mac_key = EVP_PKEY_new_mac_key(EVP_PKEY_HMAC, NULL, secret, secret_len);
if (!mac_key)
goto err;
if (!EVP_DigestSignInit(&ctx, NULL, md, NULL, mac_key))
goto err;
if (seed1 && !EVP_DigestSignUpdate(&ctx, seed1, seed1_len))
goto err;
if (seed2 && !EVP_DigestSignUpdate(&ctx, seed2, seed2_len))
goto err;
if (seed3 && !EVP_DigestSignUpdate(&ctx, seed3, seed3_len))
goto err;
if (seed4 && !EVP_DigestSignUpdate(&ctx, seed4, seed4_len))
goto err;
if (seed5 && !EVP_DigestSignUpdate(&ctx, seed5, seed5_len))
goto err;
if (!EVP_DigestSignFinal(&ctx, A1, &A1_len))
goto err;
for (;;) {
if (!EVP_DigestSignInit(&ctx, NULL, md, NULL, mac_key))
goto err;
if (!EVP_DigestSignUpdate(&ctx, A1, A1_len))
goto err;
if (seed1 && !EVP_DigestSignUpdate(&ctx, seed1, seed1_len))
goto err;
if (seed2 && !EVP_DigestSignUpdate(&ctx, seed2, seed2_len))
goto err;
if (seed3 && !EVP_DigestSignUpdate(&ctx, seed3, seed3_len))
goto err;
if (seed4 && !EVP_DigestSignUpdate(&ctx, seed4, seed4_len))
goto err;
if (seed5 && !EVP_DigestSignUpdate(&ctx, seed5, seed5_len))
goto err;
if (!EVP_DigestSignFinal(&ctx, hmac, &hmac_len))
goto err;
if (hmac_len > out_len)
hmac_len = out_len;
for (i = 0; i < hmac_len; i++)
out[i] ^= hmac[i];
out += hmac_len;
out_len -= hmac_len;
if (out_len == 0)
break;
if (!EVP_DigestSignInit(&ctx, NULL, md, NULL, mac_key))
goto err;
if (!EVP_DigestSignUpdate(&ctx, A1, A1_len))
goto err;
if (!EVP_DigestSignFinal(&ctx, A1, &A1_len))
goto err;
}
ret = 1;
err:
EVP_PKEY_free(mac_key);
EVP_MD_CTX_cleanup(&ctx);
explicit_bzero(A1, sizeof(A1));
explicit_bzero(hmac, sizeof(hmac));
return ret;
}
int
tls1_PRF(SSL *s, const unsigned char *secret, size_t secret_len,
const void *seed1, size_t seed1_len, const void *seed2, size_t seed2_len,
const void *seed3, size_t seed3_len, const void *seed4, size_t seed4_len,
const void *seed5, size_t seed5_len, unsigned char *out, size_t out_len)
{
const EVP_MD *md;
size_t half_len;
memset(out, 0, out_len);
if (!ssl_get_handshake_evp_md(s, &md))
return (0);
if (md->type == NID_md5_sha1) {
/*
* Partition secret between MD5 and SHA1, then XOR result.
* If the secret length is odd, a one byte overlap is used.
*/
half_len = secret_len - (secret_len / 2);
if (!tls1_P_hash(EVP_md5(), secret, half_len, seed1, seed1_len,
seed2, seed2_len, seed3, seed3_len, seed4, seed4_len,
seed5, seed5_len, out, out_len))
return (0);
secret += secret_len - half_len;
if (!tls1_P_hash(EVP_sha1(), secret, half_len, seed1, seed1_len,
seed2, seed2_len, seed3, seed3_len, seed4, seed4_len,
seed5, seed5_len, out, out_len))
return (0);
return (1);
}
if (!tls1_P_hash(md, secret, secret_len, seed1, seed1_len,
seed2, seed2_len, seed3, seed3_len, seed4, seed4_len,
seed5, seed5_len, out, out_len))
return (0);
return (1);
}
static int
tls1_generate_key_block(SSL *s, unsigned char *km, int num)
{
if (num < 0)
return (0);
return tls1_PRF(s,
s->session->master_key, s->session->master_key_length,
TLS_MD_KEY_EXPANSION_CONST, TLS_MD_KEY_EXPANSION_CONST_SIZE,
s->s3->server_random, SSL3_RANDOM_SIZE,
s->s3->client_random, SSL3_RANDOM_SIZE,
NULL, 0, NULL, 0, km, num);
}
/*
* tls1_aead_ctx_init allocates aead_ctx, if needed. It returns 1 on success
* and 0 on failure.
*/
static int
tls1_aead_ctx_init(SSL_AEAD_CTX **aead_ctx)
{
if (*aead_ctx != NULL) {
EVP_AEAD_CTX_cleanup(&(*aead_ctx)->ctx);
return (1);
}
*aead_ctx = malloc(sizeof(SSL_AEAD_CTX));
if (*aead_ctx == NULL) {
SSLerrorx(ERR_R_MALLOC_FAILURE);
return (0);
}
return (1);
}
static int
tls1_change_cipher_state_aead(SSL *s, char is_read, const unsigned char *key,
unsigned int key_len, const unsigned char *iv, unsigned int iv_len)
{
const EVP_AEAD *aead = S3I(s)->tmp.new_aead;
SSL_AEAD_CTX *aead_ctx;
/* XXX - Need to avoid clearing write state for DTLS. */
if (SSL_IS_DTLS(s))
return 0;
if (is_read) {
ssl_clear_cipher_read_state(s);
if (!tls1_aead_ctx_init(&s->internal->aead_read_ctx))
return 0;
aead_ctx = s->internal->aead_read_ctx;
if (!tls12_record_layer_set_read_aead(s->internal->rl, aead_ctx))
return 0;
} else {
ssl_clear_cipher_write_state(s);
if (!tls1_aead_ctx_init(&s->internal->aead_write_ctx))
return 0;
aead_ctx = s->internal->aead_write_ctx;
if (!tls12_record_layer_set_write_aead(s->internal->rl, aead_ctx))
return 0;
}
if (!EVP_AEAD_CTX_init(&aead_ctx->ctx, aead, key, key_len,
EVP_AEAD_DEFAULT_TAG_LENGTH, NULL))
return (0);
if (iv_len > sizeof(aead_ctx->fixed_nonce)) {
SSLerrorx(ERR_R_INTERNAL_ERROR);
return (0);
}
memcpy(aead_ctx->fixed_nonce, iv, iv_len);
aead_ctx->fixed_nonce_len = iv_len;
aead_ctx->variable_nonce_len = 8; /* always the case, currently. */
aead_ctx->variable_nonce_in_record =
(S3I(s)->hs.new_cipher->algorithm2 &
SSL_CIPHER_ALGORITHM2_VARIABLE_NONCE_IN_RECORD) != 0;
aead_ctx->xor_fixed_nonce =
S3I(s)->hs.new_cipher->algorithm_enc == SSL_CHACHA20POLY1305;
aead_ctx->tag_len = EVP_AEAD_max_overhead(aead);
if (aead_ctx->xor_fixed_nonce) {
if (aead_ctx->fixed_nonce_len != EVP_AEAD_nonce_length(aead) ||
aead_ctx->variable_nonce_len > EVP_AEAD_nonce_length(aead)) {
SSLerrorx(ERR_R_INTERNAL_ERROR);
return (0);
}
} else {
if (aead_ctx->variable_nonce_len + aead_ctx->fixed_nonce_len !=
EVP_AEAD_nonce_length(aead)) {
SSLerrorx(ERR_R_INTERNAL_ERROR);
return (0);
}
}
return (1);
}
/*
* tls1_change_cipher_state_cipher performs the work needed to switch cipher
* states when using EVP_CIPHER. The argument is_read is true iff this function
* is being called due to reading, as opposed to writing, a ChangeCipherSpec
* message.
*/
static int
tls1_change_cipher_state_cipher(SSL *s, char is_read,
const unsigned char *mac_secret, unsigned int mac_secret_size,
const unsigned char *key, unsigned int key_len, const unsigned char *iv,
unsigned int iv_len)
{
EVP_CIPHER_CTX *cipher_ctx;
const EVP_CIPHER *cipher;
EVP_MD_CTX *mac_ctx;
EVP_PKEY *mac_key;
const EVP_MD *mac;
int stream_mac;
int mac_type;
cipher = S3I(s)->tmp.new_sym_enc;
mac = S3I(s)->tmp.new_hash;
mac_type = S3I(s)->tmp.new_mac_pkey_type;
stream_mac = S3I(s)->hs.new_cipher->algorithm2 & TLS1_STREAM_MAC;
if (is_read) {
if (stream_mac)
s->internal->mac_flags |= SSL_MAC_FLAG_READ_MAC_STREAM;
else
s->internal->mac_flags &= ~SSL_MAC_FLAG_READ_MAC_STREAM;
ssl_clear_cipher_read_state(s);
if ((cipher_ctx = EVP_CIPHER_CTX_new()) == NULL)
goto err;
s->enc_read_ctx = cipher_ctx;
if ((mac_ctx = EVP_MD_CTX_new()) == NULL)
goto err;
s->read_hash = mac_ctx;
if (!tls12_record_layer_set_read_cipher_hash(s->internal->rl,
cipher_ctx, mac_ctx, stream_mac))
goto err;
} else {
if (stream_mac)
s->internal->mac_flags |= SSL_MAC_FLAG_WRITE_MAC_STREAM;
else
s->internal->mac_flags &= ~SSL_MAC_FLAG_WRITE_MAC_STREAM;
/*
* DTLS fragments retain a pointer to the compression, cipher
* and hash contexts, so that it can restore state in order
* to perform retransmissions. As such, we cannot free write
* contexts that are used for DTLS - these are instead freed
* by DTLS when its frees a ChangeCipherSpec fragment.
*/
if (!SSL_IS_DTLS(s))
ssl_clear_cipher_write_state(s);
if ((cipher_ctx = EVP_CIPHER_CTX_new()) == NULL)
goto err;
s->internal->enc_write_ctx = cipher_ctx;
if ((mac_ctx = EVP_MD_CTX_new()) == NULL)
goto err;
s->internal->write_hash = mac_ctx;
if (!tls12_record_layer_set_write_cipher_hash(s->internal->rl,
cipher_ctx, mac_ctx, stream_mac))
goto err;
}
EVP_CipherInit_ex(cipher_ctx, cipher, NULL, key, iv, !is_read);
if ((mac_key = EVP_PKEY_new_mac_key(mac_type, NULL, mac_secret,
mac_secret_size)) == NULL)
goto err;
EVP_DigestSignInit(mac_ctx, NULL, mac, NULL, mac_key);
EVP_PKEY_free(mac_key);
if (S3I(s)->hs.new_cipher->algorithm_enc == SSL_eGOST2814789CNT) {
int nid;
if (S3I(s)->hs.new_cipher->algorithm2 & SSL_HANDSHAKE_MAC_GOST94)
nid = NID_id_Gost28147_89_CryptoPro_A_ParamSet;
else
nid = NID_id_tc26_gost_28147_param_Z;
EVP_CIPHER_CTX_ctrl(cipher_ctx, EVP_CTRL_GOST_SET_SBOX, nid, 0);
if (S3I(s)->hs.new_cipher->algorithm_mac == SSL_GOST89MAC)
EVP_MD_CTX_ctrl(mac_ctx, EVP_MD_CTRL_GOST_SET_SBOX, nid, 0);
}
return (1);
err:
SSLerrorx(ERR_R_MALLOC_FAILURE);
return (0);
}
int
tls1_change_cipher_state(SSL *s, int which)
{
const unsigned char *client_write_mac_secret, *server_write_mac_secret;
const unsigned char *client_write_key, *server_write_key;
const unsigned char *client_write_iv, *server_write_iv;
const unsigned char *mac_secret, *key, *iv;
int mac_secret_size, key_len, iv_len;
unsigned char *key_block, *seq;
const EVP_CIPHER *cipher;
const EVP_AEAD *aead;
char is_read, use_client_keys;
cipher = S3I(s)->tmp.new_sym_enc;
aead = S3I(s)->tmp.new_aead;
/*
* is_read is true if we have just read a ChangeCipherSpec message,
* that is we need to update the read cipherspec. Otherwise we have
* just written one.
*/
is_read = (which & SSL3_CC_READ) != 0;
/*
* use_client_keys is true if we wish to use the keys for the "client
* write" direction. This is the case if we're a client sending a
* ChangeCipherSpec, or a server reading a client's ChangeCipherSpec.
*/
use_client_keys = ((which == SSL3_CHANGE_CIPHER_CLIENT_WRITE) ||
(which == SSL3_CHANGE_CIPHER_SERVER_READ));
/*
* Reset sequence number to zero - for DTLS this is handled in
* dtls1_reset_seq_numbers().
*/
if (!SSL_IS_DTLS(s)) {
seq = is_read ? S3I(s)->read_sequence : S3I(s)->write_sequence;
memset(seq, 0, SSL3_SEQUENCE_SIZE);
}
if (aead != NULL) {
key_len = EVP_AEAD_key_length(aead);
iv_len = SSL_CIPHER_AEAD_FIXED_NONCE_LEN(S3I(s)->hs.new_cipher);
} else {
key_len = EVP_CIPHER_key_length(cipher);
iv_len = EVP_CIPHER_iv_length(cipher);
}
mac_secret_size = S3I(s)->tmp.new_mac_secret_size;
key_block = S3I(s)->hs.key_block;
client_write_mac_secret = key_block;
key_block += mac_secret_size;
server_write_mac_secret = key_block;
key_block += mac_secret_size;
client_write_key = key_block;
key_block += key_len;
server_write_key = key_block;
key_block += key_len;
client_write_iv = key_block;
key_block += iv_len;
server_write_iv = key_block;
key_block += iv_len;
if (use_client_keys) {
mac_secret = client_write_mac_secret;
key = client_write_key;
iv = client_write_iv;
} else {
mac_secret = server_write_mac_secret;
key = server_write_key;
iv = server_write_iv;
}
if (key_block - S3I(s)->hs.key_block != S3I(s)->hs.key_block_len) {
SSLerror(s, ERR_R_INTERNAL_ERROR);
goto err2;
}
if (is_read) {
memcpy(S3I(s)->read_mac_secret, mac_secret, mac_secret_size);
S3I(s)->read_mac_secret_size = mac_secret_size;
} else {
memcpy(S3I(s)->write_mac_secret, mac_secret, mac_secret_size);
S3I(s)->write_mac_secret_size = mac_secret_size;
}
if (aead != NULL) {
return tls1_change_cipher_state_aead(s, is_read, key, key_len,
iv, iv_len);
}
return tls1_change_cipher_state_cipher(s, is_read,
mac_secret, mac_secret_size, key, key_len, iv, iv_len);
err2:
return (0);
}
int
tls1_setup_key_block(SSL *s)
{
unsigned char *key_block;
int mac_type = NID_undef, mac_secret_size = 0;
int key_block_len, key_len, iv_len;
const EVP_CIPHER *cipher = NULL;
const EVP_AEAD *aead = NULL;
const EVP_MD *mac = NULL;
int ret = 0;
if (S3I(s)->hs.key_block_len != 0)
return (1);
if (s->session->cipher &&
(s->session->cipher->algorithm_mac & SSL_AEAD)) {
if (!ssl_cipher_get_evp_aead(s->session, &aead)) {
SSLerror(s, SSL_R_CIPHER_OR_HASH_UNAVAILABLE);
return (0);
}
key_len = EVP_AEAD_key_length(aead);
iv_len = SSL_CIPHER_AEAD_FIXED_NONCE_LEN(s->session->cipher);
} else {
if (!ssl_cipher_get_evp(s->session, &cipher, &mac, &mac_type,
&mac_secret_size)) {
SSLerror(s, SSL_R_CIPHER_OR_HASH_UNAVAILABLE);
return (0);
}
key_len = EVP_CIPHER_key_length(cipher);
iv_len = EVP_CIPHER_iv_length(cipher);
}
S3I(s)->tmp.new_aead = aead;
S3I(s)->tmp.new_sym_enc = cipher;
S3I(s)->tmp.new_hash = mac;
S3I(s)->tmp.new_mac_pkey_type = mac_type;
S3I(s)->tmp.new_mac_secret_size = mac_secret_size;
tls1_cleanup_key_block(s);
if ((key_block = reallocarray(NULL, mac_secret_size + key_len + iv_len,
2)) == NULL) {
SSLerror(s, ERR_R_MALLOC_FAILURE);
goto err;
}
key_block_len = (mac_secret_size + key_len + iv_len) * 2;
S3I(s)->hs.key_block_len = key_block_len;
S3I(s)->hs.key_block = key_block;
if (!tls1_generate_key_block(s, key_block, key_block_len))
goto err;
if (!(s->internal->options & SSL_OP_DONT_INSERT_EMPTY_FRAGMENTS) &&
s->method->internal->version <= TLS1_VERSION) {
/*
* Enable vulnerability countermeasure for CBC ciphers with
* known-IV problem (http://www.openssl.org/~bodo/tls-cbc.txt)
*/
S3I(s)->need_empty_fragments = 1;
if (s->session->cipher != NULL) {
if (s->session->cipher->algorithm_enc == SSL_eNULL)
S3I(s)->need_empty_fragments = 0;
#ifndef OPENSSL_NO_RC4
if (s->session->cipher->algorithm_enc == SSL_RC4)
S3I(s)->need_empty_fragments = 0;
#endif
}
}
ret = 1;
err:
return (ret);
}
/* tls1_enc encrypts/decrypts the record in |s->wrec| / |s->rrec|, respectively.
*
* Returns:
* 0: (in non-constant time) if the record is publically invalid (i.e. too
* short etc).
* 1: if the record's padding is valid / the encryption was successful.
* -1: if the record's padding/AEAD-authenticator is invalid or, if sending,
* an internal error occured.
*/
int
tls1_enc(SSL *s, int send)
{
const SSL_AEAD_CTX *aead;
const EVP_CIPHER *enc;
EVP_CIPHER_CTX *ds;
SSL3_RECORD_INTERNAL *rec;
unsigned char *seq;
unsigned long l;
int bs, i, j, k, ret, mac_size = 0;
if (send) {
/* No longer supported. */
return -1;
} else {
aead = s->internal->aead_read_ctx;
rec = &S3I(s)->rrec;
seq = S3I(s)->read_sequence;
}
if (aead) {
unsigned char ad[13], *in, *out, nonce[16];
size_t out_len, pad_len = 0;
unsigned int nonce_used;
if (SSL_IS_DTLS(s)) {
dtls1_build_sequence_number(ad, seq,
send ? D1I(s)->w_epoch : D1I(s)->r_epoch);
} else {
memcpy(ad, seq, SSL3_SEQUENCE_SIZE);
tls1_record_sequence_increment(seq);
}
ad[8] = rec->type;
ad[9] = (unsigned char)(s->version >> 8);
ad[10] = (unsigned char)(s->version);
if (aead->variable_nonce_len > 8 ||
aead->variable_nonce_len > sizeof(nonce))
return -1;
if (aead->xor_fixed_nonce) {
if (aead->fixed_nonce_len > sizeof(nonce) ||
aead->variable_nonce_len > aead->fixed_nonce_len)
return -1; /* Should never happen. */
pad_len = aead->fixed_nonce_len - aead->variable_nonce_len;
} else {
if (aead->fixed_nonce_len +
aead->variable_nonce_len > sizeof(nonce))
return -1; /* Should never happen. */
}
if (send) {
size_t len = rec->length;
size_t eivlen = 0;
in = rec->input;
out = rec->data;
if (aead->xor_fixed_nonce) {
/*
* The sequence number is left zero
* padded, then xored with the fixed
* nonce.
*/
memset(nonce, 0, pad_len);
memcpy(nonce + pad_len, ad,
aead->variable_nonce_len);
for (i = 0; i < aead->fixed_nonce_len; i++)
nonce[i] ^= aead->fixed_nonce[i];
nonce_used = aead->fixed_nonce_len;
} else {
/*
* When sending we use the sequence number as
* the variable part of the nonce.
*/
memcpy(nonce, aead->fixed_nonce,
aead->fixed_nonce_len);
nonce_used = aead->fixed_nonce_len;
memcpy(nonce + nonce_used, ad,
aead->variable_nonce_len);
nonce_used += aead->variable_nonce_len;
}
/*
* In do_ssl3_write, rec->input is moved forward by
* variable_nonce_len in order to leave space for the
* variable nonce. Thus we can copy the sequence number
* bytes into place without overwriting any of the
* plaintext.
*/
if (aead->variable_nonce_in_record) {
memcpy(out, ad, aead->variable_nonce_len);
len -= aead->variable_nonce_len;
eivlen = aead->variable_nonce_len;
}
ad[11] = len >> 8;
ad[12] = len & 0xff;
if (!EVP_AEAD_CTX_seal(&aead->ctx,
out + eivlen, &out_len, len + aead->tag_len, nonce,
nonce_used, in + eivlen, len, ad, sizeof(ad)))
return -1;
if (aead->variable_nonce_in_record)
out_len += aead->variable_nonce_len;
} else {
/* receive */
size_t len = rec->length;
if (rec->data != rec->input)
return -1; /* internal error - should never happen. */
out = in = rec->input;
if (len < aead->variable_nonce_len)
return 0;
if (aead->xor_fixed_nonce) {
/*
* The sequence number is left zero
* padded, then xored with the fixed
* nonce.
*/
memset(nonce, 0, pad_len);
memcpy(nonce + pad_len, ad,
aead->variable_nonce_len);
for (i = 0; i < aead->fixed_nonce_len; i++)
nonce[i] ^= aead->fixed_nonce[i];
nonce_used = aead->fixed_nonce_len;
} else {
memcpy(nonce, aead->fixed_nonce,
aead->fixed_nonce_len);
nonce_used = aead->fixed_nonce_len;
memcpy(nonce + nonce_used,
aead->variable_nonce_in_record ? in : ad,
aead->variable_nonce_len);
nonce_used += aead->variable_nonce_len;
}
if (aead->variable_nonce_in_record) {
in += aead->variable_nonce_len;
len -= aead->variable_nonce_len;
out += aead->variable_nonce_len;
}
if (len < aead->tag_len)
return 0;
len -= aead->tag_len;
ad[11] = len >> 8;
ad[12] = len & 0xff;
if (!EVP_AEAD_CTX_open(&aead->ctx, out, &out_len, len,
nonce, nonce_used, in, len + aead->tag_len, ad,
sizeof(ad)))
return -1;
rec->data = rec->input = out;
}
rec->length = out_len;
return 1;
}
if (send) {
if (EVP_MD_CTX_md(s->internal->write_hash)) {
int n = EVP_MD_CTX_size(s->internal->write_hash);
OPENSSL_assert(n >= 0);
}
ds = s->internal->enc_write_ctx;
if (s->internal->enc_write_ctx == NULL)
enc = NULL;
else {
int ivlen = 0;
enc = EVP_CIPHER_CTX_cipher(s->internal->enc_write_ctx);
if (SSL_USE_EXPLICIT_IV(s) &&
EVP_CIPHER_mode(enc) == EVP_CIPH_CBC_MODE)
ivlen = EVP_CIPHER_iv_length(enc);
if (ivlen > 1) {
if (rec->data != rec->input) {
#ifdef DEBUG
/* we can't write into the input stream:
* Can this ever happen?? (steve)
*/
fprintf(stderr,
"%s:%d: rec->data != rec->input\n",
__FILE__, __LINE__);
#endif
} else
arc4random_buf(rec->input, ivlen);
}
}
} else {
if (EVP_MD_CTX_md(s->read_hash)) {
int n = EVP_MD_CTX_size(s->read_hash);
OPENSSL_assert(n >= 0);
}
ds = s->enc_read_ctx;
if (s->enc_read_ctx == NULL)
enc = NULL;
else
enc = EVP_CIPHER_CTX_cipher(s->enc_read_ctx);
}
if ((s->session == NULL) || (ds == NULL) || (enc == NULL)) {
memmove(rec->data, rec->input, rec->length);
rec->input = rec->data;
ret = 1;
} else {
l = rec->length;
bs = EVP_CIPHER_block_size(ds->cipher);
if (bs != 1 && send) {
i = bs - ((int)l % bs);
/* Add weird padding of upto 256 bytes */
/* we need to add 'i' padding bytes of value j */
j = i - 1;
for (k = (int)l; k < (int)(l + i); k++)
rec->input[k] = j;
l += i;
rec->length += i;
}
if (!send) {
if (l == 0 || l % bs != 0)
return 0;
}
i = EVP_Cipher(ds, rec->data, rec->input, l);
if ((EVP_CIPHER_flags(ds->cipher) &
EVP_CIPH_FLAG_CUSTOM_CIPHER) ? (i < 0) : (i == 0))
return -1; /* AEAD can fail to verify MAC */
ret = 1;
if (EVP_MD_CTX_md(s->read_hash) != NULL)
mac_size = EVP_MD_CTX_size(s->read_hash);
if ((bs != 1) && !send)
ret = tls1_cbc_remove_padding(s, rec, bs, mac_size);
}
return ret;
}
int
tls1_final_finish_mac(SSL *s, const char *str, int str_len, unsigned char *out)
{
unsigned char buf[EVP_MAX_MD_SIZE];
size_t hash_len;
if (str_len < 0)
return 0;
if (!tls1_transcript_hash_value(s, buf, sizeof(buf), &hash_len))
return 0;
if (!tls1_PRF(s, s->session->master_key, s->session->master_key_length,
str, str_len, buf, hash_len, NULL, 0, NULL, 0, NULL, 0,
out, TLS1_FINISH_MAC_LENGTH))
return 0;
return TLS1_FINISH_MAC_LENGTH;
}
int
tls1_mac(SSL *ssl, unsigned char *md, int send)
{
SSL3_RECORD_INTERNAL *rec;
unsigned char *seq;
EVP_MD_CTX *hash;
size_t md_size, orig_len;
EVP_MD_CTX hmac, *mac_ctx;
unsigned char header[13];
int stream_mac = (send ?
(ssl->internal->mac_flags & SSL_MAC_FLAG_WRITE_MAC_STREAM) :
(ssl->internal->mac_flags & SSL_MAC_FLAG_READ_MAC_STREAM));
int t;
if (send) {
/* No longer supported. */
return -1;
} else {
rec = &(ssl->s3->internal->rrec);
seq = &(ssl->s3->internal->read_sequence[0]);
hash = ssl->read_hash;
}
t = EVP_MD_CTX_size(hash);
OPENSSL_assert(t >= 0);
md_size = t;
/* I should fix this up TLS TLS TLS TLS TLS XXXXXXXX */
if (stream_mac) {
mac_ctx = hash;
} else {
if (!EVP_MD_CTX_copy(&hmac, hash))
return -1;
mac_ctx = &hmac;
}
if (SSL_IS_DTLS(ssl))
dtls1_build_sequence_number(header, seq,
send ? D1I(ssl)->w_epoch : D1I(ssl)->r_epoch);
else
memcpy(header, seq, SSL3_SEQUENCE_SIZE);
orig_len = rec->length + md_size + rec->padding_length;
header[8] = rec->type;
header[9] = (unsigned char)(ssl->version >> 8);
header[10] = (unsigned char)(ssl->version);
header[11] = (rec->length) >> 8;
header[12] = (rec->length) & 0xff;
if (!send &&
EVP_CIPHER_CTX_mode(ssl->enc_read_ctx) == EVP_CIPH_CBC_MODE &&
ssl3_cbc_record_digest_supported(mac_ctx)) {
/* This is a CBC-encrypted record. We must avoid leaking any
* timing-side channel information about how many blocks of
* data we are hashing because that gives an attacker a
* timing-oracle. */
if (!ssl3_cbc_digest_record(mac_ctx,
md, &md_size, header, rec->input,
rec->length + md_size, orig_len,
ssl->s3->internal->read_mac_secret,
ssl->s3->internal->read_mac_secret_size))
return -1;
} else {
EVP_DigestSignUpdate(mac_ctx, header, sizeof(header));
EVP_DigestSignUpdate(mac_ctx, rec->input, rec->length);
t = EVP_DigestSignFinal(mac_ctx, md, &md_size);
OPENSSL_assert(t > 0);
}
if (!stream_mac)
EVP_MD_CTX_cleanup(&hmac);
if (!SSL_IS_DTLS(ssl))
tls1_record_sequence_increment(seq);
return (md_size);
}
int
tls1_generate_master_secret(SSL *s, unsigned char *out, unsigned char *p,
int len)
{
if (len < 0)
return 0;
if (!tls1_PRF(s, p, len,
TLS_MD_MASTER_SECRET_CONST, TLS_MD_MASTER_SECRET_CONST_SIZE,
s->s3->client_random, SSL3_RANDOM_SIZE, NULL, 0,
s->s3->server_random, SSL3_RANDOM_SIZE, NULL, 0,
s->session->master_key, SSL_MAX_MASTER_KEY_LENGTH))
return 0;
return (SSL_MAX_MASTER_KEY_LENGTH);
}
int
tls1_export_keying_material(SSL *s, unsigned char *out, size_t olen,
const char *label, size_t llen, const unsigned char *context,
size_t contextlen, int use_context)
{
unsigned char *val = NULL;
size_t vallen, currentvalpos;
int rv;
/* construct PRF arguments
* we construct the PRF argument ourself rather than passing separate
* values into the TLS PRF to ensure that the concatenation of values
* does not create a prohibited label.
*/
vallen = llen + SSL3_RANDOM_SIZE * 2;
if (use_context) {
vallen += 2 + contextlen;
}
val = malloc(vallen);
if (val == NULL)
goto err2;
currentvalpos = 0;
memcpy(val + currentvalpos, (unsigned char *) label, llen);
currentvalpos += llen;
memcpy(val + currentvalpos, s->s3->client_random, SSL3_RANDOM_SIZE);
currentvalpos += SSL3_RANDOM_SIZE;
memcpy(val + currentvalpos, s->s3->server_random, SSL3_RANDOM_SIZE);
currentvalpos += SSL3_RANDOM_SIZE;
if (use_context) {
val[currentvalpos] = (contextlen >> 8) & 0xff;
currentvalpos++;
val[currentvalpos] = contextlen & 0xff;
currentvalpos++;
if ((contextlen > 0) || (context != NULL)) {
memcpy(val + currentvalpos, context, contextlen);
}
}
/* disallow prohibited labels
* note that SSL3_RANDOM_SIZE > max(prohibited label len) =
* 15, so size of val > max(prohibited label len) = 15 and the
* comparisons won't have buffer overflow
*/
if (memcmp(val, TLS_MD_CLIENT_FINISH_CONST,
TLS_MD_CLIENT_FINISH_CONST_SIZE) == 0)
goto err1;
if (memcmp(val, TLS_MD_SERVER_FINISH_CONST,
TLS_MD_SERVER_FINISH_CONST_SIZE) == 0)
goto err1;
if (memcmp(val, TLS_MD_MASTER_SECRET_CONST,
TLS_MD_MASTER_SECRET_CONST_SIZE) == 0)
goto err1;
if (memcmp(val, TLS_MD_KEY_EXPANSION_CONST,
TLS_MD_KEY_EXPANSION_CONST_SIZE) == 0)
goto err1;
rv = tls1_PRF(s, s->session->master_key, s->session->master_key_length,
val, vallen, NULL, 0, NULL, 0, NULL, 0, NULL, 0, out, olen);
goto ret;
err1:
SSLerror(s, SSL_R_TLS_ILLEGAL_EXPORTER_LABEL);
rv = 0;
goto ret;
err2:
SSLerror(s, ERR_R_MALLOC_FAILURE);
rv = 0;
ret:
free(val);
return (rv);
}
int
tls1_alert_code(int code)
{
switch (code) {
case SSL_AD_CLOSE_NOTIFY:
return (SSL3_AD_CLOSE_NOTIFY);
case SSL_AD_UNEXPECTED_MESSAGE:
return (SSL3_AD_UNEXPECTED_MESSAGE);
case SSL_AD_BAD_RECORD_MAC:
return (SSL3_AD_BAD_RECORD_MAC);
case SSL_AD_DECRYPTION_FAILED:
return (TLS1_AD_DECRYPTION_FAILED);
case SSL_AD_RECORD_OVERFLOW:
return (TLS1_AD_RECORD_OVERFLOW);
case SSL_AD_DECOMPRESSION_FAILURE:
return (SSL3_AD_DECOMPRESSION_FAILURE);
case SSL_AD_HANDSHAKE_FAILURE:
return (SSL3_AD_HANDSHAKE_FAILURE);
case SSL_AD_NO_CERTIFICATE:
return (-1);
case SSL_AD_BAD_CERTIFICATE:
return (SSL3_AD_BAD_CERTIFICATE);
case SSL_AD_UNSUPPORTED_CERTIFICATE:
return (SSL3_AD_UNSUPPORTED_CERTIFICATE);
case SSL_AD_CERTIFICATE_REVOKED:
return (SSL3_AD_CERTIFICATE_REVOKED);
case SSL_AD_CERTIFICATE_EXPIRED:
return (SSL3_AD_CERTIFICATE_EXPIRED);
case SSL_AD_CERTIFICATE_UNKNOWN:
return (SSL3_AD_CERTIFICATE_UNKNOWN);
case SSL_AD_ILLEGAL_PARAMETER:
return (SSL3_AD_ILLEGAL_PARAMETER);
case SSL_AD_UNKNOWN_CA:
return (TLS1_AD_UNKNOWN_CA);
case SSL_AD_ACCESS_DENIED:
return (TLS1_AD_ACCESS_DENIED);
case SSL_AD_DECODE_ERROR:
return (TLS1_AD_DECODE_ERROR);
case SSL_AD_DECRYPT_ERROR:
return (TLS1_AD_DECRYPT_ERROR);
case SSL_AD_EXPORT_RESTRICTION:
return (TLS1_AD_EXPORT_RESTRICTION);
case SSL_AD_PROTOCOL_VERSION:
return (TLS1_AD_PROTOCOL_VERSION);
case SSL_AD_INSUFFICIENT_SECURITY:
return (TLS1_AD_INSUFFICIENT_SECURITY);
case SSL_AD_INTERNAL_ERROR:
return (TLS1_AD_INTERNAL_ERROR);
case SSL_AD_INAPPROPRIATE_FALLBACK:
return(TLS1_AD_INAPPROPRIATE_FALLBACK);
case SSL_AD_USER_CANCELLED:
return (TLS1_AD_USER_CANCELLED);
case SSL_AD_NO_RENEGOTIATION:
return (TLS1_AD_NO_RENEGOTIATION);
case SSL_AD_UNSUPPORTED_EXTENSION:
return (TLS1_AD_UNSUPPORTED_EXTENSION);
case SSL_AD_CERTIFICATE_UNOBTAINABLE:
return (TLS1_AD_CERTIFICATE_UNOBTAINABLE);
case SSL_AD_UNRECOGNIZED_NAME:
return (TLS1_AD_UNRECOGNIZED_NAME);
case SSL_AD_BAD_CERTIFICATE_STATUS_RESPONSE:
return (TLS1_AD_BAD_CERTIFICATE_STATUS_RESPONSE);
case SSL_AD_BAD_CERTIFICATE_HASH_VALUE:
return (TLS1_AD_BAD_CERTIFICATE_HASH_VALUE);
case SSL_AD_UNKNOWN_PSK_IDENTITY:
return (TLS1_AD_UNKNOWN_PSK_IDENTITY);
default:
return (-1);
}
}