1736 lines
44 KiB
C
Raw Normal View History

2020-12-28 15:15:37 +00:00
/* $OpenBSD: e_aes.c,v 1.42 2020/06/05 18:44:42 tb Exp $ */
/* ====================================================================
* Copyright (c) 2001-2011 The OpenSSL Project. All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
*
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
*
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in
* the documentation and/or other materials provided with the
* distribution.
*
* 3. All advertising materials mentioning features or use of this
* software must display the following acknowledgment:
* "This product includes software developed by the OpenSSL Project
* for use in the OpenSSL Toolkit. (http://www.openssl.org/)"
*
* 4. The names "OpenSSL Toolkit" and "OpenSSL Project" must not be used to
* endorse or promote products derived from this software without
* prior written permission. For written permission, please contact
* openssl-core@openssl.org.
*
* 5. Products derived from this software may not be called "OpenSSL"
* nor may "OpenSSL" appear in their names without prior written
* permission of the OpenSSL Project.
*
* 6. Redistributions of any form whatsoever must retain the following
* acknowledgment:
* "This product includes software developed by the OpenSSL Project
* for use in the OpenSSL Toolkit (http://www.openssl.org/)"
*
* THIS SOFTWARE IS PROVIDED BY THE OpenSSL PROJECT ``AS IS'' AND ANY
* EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
* PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE OpenSSL PROJECT OR
* ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
* SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
* NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
* LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
* STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
* OF THE POSSIBILITY OF SUCH DAMAGE.
* ====================================================================
*
*/
#include <limits.h>
#include <stdlib.h>
#include <string.h>
#include <openssl/opensslconf.h>
#ifndef OPENSSL_NO_AES
#include <openssl/aes.h>
#include <openssl/err.h>
#include <openssl/evp.h>
#include "evp_locl.h"
#include "modes_lcl.h"
typedef struct {
AES_KEY ks;
block128_f block;
union {
cbc128_f cbc;
ctr128_f ctr;
} stream;
} EVP_AES_KEY;
typedef struct {
AES_KEY ks; /* AES key schedule to use */
int key_set; /* Set if key initialised */
int iv_set; /* Set if an iv is set */
GCM128_CONTEXT gcm;
unsigned char *iv; /* Temporary IV store */
int ivlen; /* IV length */
int taglen;
int iv_gen; /* It is OK to generate IVs */
int tls_aad_len; /* TLS AAD length */
ctr128_f ctr;
} EVP_AES_GCM_CTX;
typedef struct {
AES_KEY ks1, ks2; /* AES key schedules to use */
XTS128_CONTEXT xts;
void (*stream)(const unsigned char *in, unsigned char *out,
size_t length, const AES_KEY *key1, const AES_KEY *key2,
const unsigned char iv[16]);
} EVP_AES_XTS_CTX;
typedef struct {
AES_KEY ks; /* AES key schedule to use */
int key_set; /* Set if key initialised */
int iv_set; /* Set if an iv is set */
int tag_set; /* Set if tag is valid */
int len_set; /* Set if message length set */
int L, M; /* L and M parameters from RFC3610 */
CCM128_CONTEXT ccm;
ccm128_f str;
} EVP_AES_CCM_CTX;
#define MAXBITCHUNK ((size_t)1<<(sizeof(size_t)*8-4))
#ifdef VPAES_ASM
int vpaes_set_encrypt_key(const unsigned char *userKey, int bits,
AES_KEY *key);
int vpaes_set_decrypt_key(const unsigned char *userKey, int bits,
AES_KEY *key);
void vpaes_encrypt(const unsigned char *in, unsigned char *out,
const AES_KEY *key);
void vpaes_decrypt(const unsigned char *in, unsigned char *out,
const AES_KEY *key);
void vpaes_cbc_encrypt(const unsigned char *in, unsigned char *out,
size_t length, const AES_KEY *key, unsigned char *ivec, int enc);
#endif
#ifdef BSAES_ASM
void bsaes_cbc_encrypt(const unsigned char *in, unsigned char *out,
size_t length, const AES_KEY *key, unsigned char ivec[16], int enc);
void bsaes_ctr32_encrypt_blocks(const unsigned char *in, unsigned char *out,
size_t len, const AES_KEY *key, const unsigned char ivec[16]);
void bsaes_xts_encrypt(const unsigned char *inp, unsigned char *out,
size_t len, const AES_KEY *key1, const AES_KEY *key2,
const unsigned char iv[16]);
void bsaes_xts_decrypt(const unsigned char *inp, unsigned char *out,
size_t len, const AES_KEY *key1, const AES_KEY *key2,
const unsigned char iv[16]);
#endif
#ifdef AES_CTR_ASM
void AES_ctr32_encrypt(const unsigned char *in, unsigned char *out,
size_t blocks, const AES_KEY *key,
const unsigned char ivec[AES_BLOCK_SIZE]);
#endif
#ifdef AES_XTS_ASM
void AES_xts_encrypt(const char *inp, char *out, size_t len,
const AES_KEY *key1, const AES_KEY *key2, const unsigned char iv[16]);
void AES_xts_decrypt(const char *inp, char *out, size_t len,
const AES_KEY *key1, const AES_KEY *key2, const unsigned char iv[16]);
#endif
#if defined(AES_ASM) && ( \
((defined(__i386) || defined(__i386__) || \
defined(_M_IX86)) && defined(OPENSSL_IA32_SSE2))|| \
defined(__x86_64) || defined(__x86_64__) || \
defined(_M_AMD64) || defined(_M_X64) || \
defined(__INTEL__) )
#include "x86_arch.h"
#ifdef VPAES_ASM
#define VPAES_CAPABLE (OPENSSL_cpu_caps() & CPUCAP_MASK_SSSE3)
#endif
#ifdef BSAES_ASM
#define BSAES_CAPABLE VPAES_CAPABLE
#endif
/*
* AES-NI section
*/
#define AESNI_CAPABLE (OPENSSL_cpu_caps() & CPUCAP_MASK_AESNI)
int aesni_set_encrypt_key(const unsigned char *userKey, int bits,
AES_KEY *key);
int aesni_set_decrypt_key(const unsigned char *userKey, int bits,
AES_KEY *key);
void aesni_encrypt(const unsigned char *in, unsigned char *out,
const AES_KEY *key);
void aesni_decrypt(const unsigned char *in, unsigned char *out,
const AES_KEY *key);
void aesni_ecb_encrypt(const unsigned char *in, unsigned char *out,
size_t length, const AES_KEY *key, int enc);
void aesni_cbc_encrypt(const unsigned char *in, unsigned char *out,
size_t length, const AES_KEY *key, unsigned char *ivec, int enc);
void aesni_ctr32_encrypt_blocks(const unsigned char *in, unsigned char *out,
size_t blocks, const void *key, const unsigned char *ivec);
void aesni_xts_encrypt(const unsigned char *in, unsigned char *out,
size_t length, const AES_KEY *key1, const AES_KEY *key2,
const unsigned char iv[16]);
void aesni_xts_decrypt(const unsigned char *in, unsigned char *out,
size_t length, const AES_KEY *key1, const AES_KEY *key2,
const unsigned char iv[16]);
void aesni_ccm64_encrypt_blocks (const unsigned char *in, unsigned char *out,
size_t blocks, const void *key, const unsigned char ivec[16],
unsigned char cmac[16]);
void aesni_ccm64_decrypt_blocks (const unsigned char *in, unsigned char *out,
size_t blocks, const void *key, const unsigned char ivec[16],
unsigned char cmac[16]);
static int
aesni_init_key(EVP_CIPHER_CTX *ctx, const unsigned char *key,
const unsigned char *iv, int enc)
{
int ret, mode;
EVP_AES_KEY *dat = (EVP_AES_KEY *)ctx->cipher_data;
mode = ctx->cipher->flags & EVP_CIPH_MODE;
if ((mode == EVP_CIPH_ECB_MODE || mode == EVP_CIPH_CBC_MODE) &&
!enc) {
ret = aesni_set_decrypt_key(key, ctx->key_len * 8,
ctx->cipher_data);
dat->block = (block128_f)aesni_decrypt;
dat->stream.cbc = mode == EVP_CIPH_CBC_MODE ?
(cbc128_f)aesni_cbc_encrypt : NULL;
} else {
ret = aesni_set_encrypt_key(key, ctx->key_len * 8,
ctx->cipher_data);
dat->block = (block128_f)aesni_encrypt;
if (mode == EVP_CIPH_CBC_MODE)
dat->stream.cbc = (cbc128_f)aesni_cbc_encrypt;
else if (mode == EVP_CIPH_CTR_MODE)
dat->stream.ctr = (ctr128_f)aesni_ctr32_encrypt_blocks;
else
dat->stream.cbc = NULL;
}
if (ret < 0) {
EVPerror(EVP_R_AES_KEY_SETUP_FAILED);
return 0;
}
return 1;
}
static int
aesni_cbc_cipher(EVP_CIPHER_CTX *ctx, unsigned char *out,
const unsigned char *in, size_t len)
{
aesni_cbc_encrypt(in, out, len, ctx->cipher_data, ctx->iv,
ctx->encrypt);
return 1;
}
static int
aesni_ecb_cipher(EVP_CIPHER_CTX *ctx, unsigned char *out,
const unsigned char *in, size_t len)
{
size_t bl = ctx->cipher->block_size;
if (len < bl)
return 1;
aesni_ecb_encrypt(in, out, len, ctx->cipher_data, ctx->encrypt);
return 1;
}
#define aesni_ofb_cipher aes_ofb_cipher
static int aesni_ofb_cipher(EVP_CIPHER_CTX *ctx, unsigned char *out,
const unsigned char *in, size_t len);
#define aesni_cfb_cipher aes_cfb_cipher
static int aesni_cfb_cipher(EVP_CIPHER_CTX *ctx, unsigned char *out,
const unsigned char *in, size_t len);
#define aesni_cfb8_cipher aes_cfb8_cipher
static int aesni_cfb8_cipher(EVP_CIPHER_CTX *ctx, unsigned char *out,
const unsigned char *in, size_t len);
#define aesni_cfb1_cipher aes_cfb1_cipher
static int aesni_cfb1_cipher(EVP_CIPHER_CTX *ctx, unsigned char *out,
const unsigned char *in, size_t len);
#define aesni_ctr_cipher aes_ctr_cipher
static int aesni_ctr_cipher(EVP_CIPHER_CTX *ctx, unsigned char *out,
const unsigned char *in, size_t len);
static int
aesni_gcm_init_key(EVP_CIPHER_CTX *ctx, const unsigned char *key,
const unsigned char *iv, int enc)
{
EVP_AES_GCM_CTX *gctx = ctx->cipher_data;
if (!iv && !key)
return 1;
if (key) {
aesni_set_encrypt_key(key, ctx->key_len * 8, &gctx->ks);
CRYPTO_gcm128_init(&gctx->gcm, &gctx->ks,
(block128_f)aesni_encrypt);
gctx->ctr = (ctr128_f)aesni_ctr32_encrypt_blocks;
/* If we have an iv can set it directly, otherwise use
* saved IV.
*/
if (iv == NULL && gctx->iv_set)
iv = gctx->iv;
if (iv) {
CRYPTO_gcm128_setiv(&gctx->gcm, iv, gctx->ivlen);
gctx->iv_set = 1;
}
gctx->key_set = 1;
} else {
/* If key set use IV, otherwise copy */
if (gctx->key_set)
CRYPTO_gcm128_setiv(&gctx->gcm, iv, gctx->ivlen);
else
memcpy(gctx->iv, iv, gctx->ivlen);
gctx->iv_set = 1;
gctx->iv_gen = 0;
}
return 1;
}
#define aesni_gcm_cipher aes_gcm_cipher
static int aesni_gcm_cipher(EVP_CIPHER_CTX *ctx, unsigned char *out,
const unsigned char *in, size_t len);
static int
aesni_xts_init_key(EVP_CIPHER_CTX *ctx, const unsigned char *key,
const unsigned char *iv, int enc)
{
EVP_AES_XTS_CTX *xctx = ctx->cipher_data;
if (!iv && !key)
return 1;
if (key) {
/* key_len is two AES keys */
if (enc) {
aesni_set_encrypt_key(key, ctx->key_len * 4,
&xctx->ks1);
xctx->xts.block1 = (block128_f)aesni_encrypt;
xctx->stream = aesni_xts_encrypt;
} else {
aesni_set_decrypt_key(key, ctx->key_len * 4,
&xctx->ks1);
xctx->xts.block1 = (block128_f)aesni_decrypt;
xctx->stream = aesni_xts_decrypt;
}
aesni_set_encrypt_key(key + ctx->key_len / 2,
ctx->key_len * 4, &xctx->ks2);
xctx->xts.block2 = (block128_f)aesni_encrypt;
xctx->xts.key1 = &xctx->ks1;
}
if (iv) {
xctx->xts.key2 = &xctx->ks2;
memcpy(ctx->iv, iv, 16);
}
return 1;
}
#define aesni_xts_cipher aes_xts_cipher
static int aesni_xts_cipher(EVP_CIPHER_CTX *ctx, unsigned char *out,
const unsigned char *in, size_t len);
static int
aesni_ccm_init_key(EVP_CIPHER_CTX *ctx, const unsigned char *key,
const unsigned char *iv, int enc)
{
EVP_AES_CCM_CTX *cctx = ctx->cipher_data;
if (!iv && !key)
return 1;
if (key) {
aesni_set_encrypt_key(key, ctx->key_len * 8, &cctx->ks);
CRYPTO_ccm128_init(&cctx->ccm, cctx->M, cctx->L,
&cctx->ks, (block128_f)aesni_encrypt);
cctx->str = enc ? (ccm128_f)aesni_ccm64_encrypt_blocks :
(ccm128_f)aesni_ccm64_decrypt_blocks;
cctx->key_set = 1;
}
if (iv) {
memcpy(ctx->iv, iv, 15 - cctx->L);
cctx->iv_set = 1;
}
return 1;
}
#define aesni_ccm_cipher aes_ccm_cipher
static int aesni_ccm_cipher(EVP_CIPHER_CTX *ctx, unsigned char *out,
const unsigned char *in, size_t len);
#define BLOCK_CIPHER_generic(n,keylen,blocksize,ivlen,nmode,mode,MODE,fl) \
static const EVP_CIPHER aesni_##keylen##_##mode = { \
.nid = n##_##keylen##_##nmode, \
.block_size = blocksize, \
.key_len = keylen / 8, \
.iv_len = ivlen, \
.flags = fl | EVP_CIPH_##MODE##_MODE, \
.init = aesni_init_key, \
.do_cipher = aesni_##mode##_cipher, \
.ctx_size = sizeof(EVP_AES_KEY) \
}; \
static const EVP_CIPHER aes_##keylen##_##mode = { \
.nid = n##_##keylen##_##nmode, \
.block_size = blocksize, \
.key_len = keylen / 8, \
.iv_len = ivlen, \
.flags = fl | EVP_CIPH_##MODE##_MODE, \
.init = aes_init_key, \
.do_cipher = aes_##mode##_cipher, \
.ctx_size = sizeof(EVP_AES_KEY) \
}; \
const EVP_CIPHER * \
EVP_aes_##keylen##_##mode(void) \
{ \
return AESNI_CAPABLE ? \
&aesni_##keylen##_##mode : &aes_##keylen##_##mode; \
}
#define BLOCK_CIPHER_custom(n,keylen,blocksize,ivlen,mode,MODE,fl) \
static const EVP_CIPHER aesni_##keylen##_##mode = { \
.nid = n##_##keylen##_##mode, \
.block_size = blocksize, \
.key_len = \
(EVP_CIPH_##MODE##_MODE == EVP_CIPH_XTS_MODE ? 2 : 1) * \
keylen / 8, \
.iv_len = ivlen, \
.flags = fl | EVP_CIPH_##MODE##_MODE, \
.init = aesni_##mode##_init_key, \
.do_cipher = aesni_##mode##_cipher, \
.cleanup = aes_##mode##_cleanup, \
.ctx_size = sizeof(EVP_AES_##MODE##_CTX), \
.ctrl = aes_##mode##_ctrl \
}; \
static const EVP_CIPHER aes_##keylen##_##mode = { \
.nid = n##_##keylen##_##mode, \
.block_size = blocksize, \
.key_len = \
(EVP_CIPH_##MODE##_MODE == EVP_CIPH_XTS_MODE ? 2 : 1) * \
keylen / 8, \
.iv_len = ivlen, \
.flags = fl | EVP_CIPH_##MODE##_MODE, \
.init = aes_##mode##_init_key, \
.do_cipher = aes_##mode##_cipher, \
.cleanup = aes_##mode##_cleanup, \
.ctx_size = sizeof(EVP_AES_##MODE##_CTX), \
.ctrl = aes_##mode##_ctrl \
}; \
const EVP_CIPHER * \
EVP_aes_##keylen##_##mode(void) \
{ \
return AESNI_CAPABLE ? \
&aesni_##keylen##_##mode : &aes_##keylen##_##mode; \
}
#else
#define BLOCK_CIPHER_generic(n,keylen,blocksize,ivlen,nmode,mode,MODE,fl) \
static const EVP_CIPHER aes_##keylen##_##mode = { \
.nid = n##_##keylen##_##nmode, \
.block_size = blocksize, \
.key_len = keylen / 8, \
.iv_len = ivlen, \
.flags = fl | EVP_CIPH_##MODE##_MODE, \
.init = aes_init_key, \
.do_cipher = aes_##mode##_cipher, \
.ctx_size = sizeof(EVP_AES_KEY) \
}; \
const EVP_CIPHER * \
EVP_aes_##keylen##_##mode(void) \
{ \
return &aes_##keylen##_##mode; \
}
#define BLOCK_CIPHER_custom(n,keylen,blocksize,ivlen,mode,MODE,fl) \
static const EVP_CIPHER aes_##keylen##_##mode = { \
.nid = n##_##keylen##_##mode, \
.block_size = blocksize, \
.key_len = \
(EVP_CIPH_##MODE##_MODE == EVP_CIPH_XTS_MODE ? 2 : 1) * \
keylen / 8, \
.iv_len = ivlen, \
.flags = fl | EVP_CIPH_##MODE##_MODE, \
.init = aes_##mode##_init_key, \
.do_cipher = aes_##mode##_cipher, \
.cleanup = aes_##mode##_cleanup, \
.ctx_size = sizeof(EVP_AES_##MODE##_CTX), \
.ctrl = aes_##mode##_ctrl \
}; \
const EVP_CIPHER * \
EVP_aes_##keylen##_##mode(void) \
{ \
return &aes_##keylen##_##mode; \
}
#endif
#define BLOCK_CIPHER_generic_pack(nid,keylen,flags) \
BLOCK_CIPHER_generic(nid,keylen,16,16,cbc,cbc,CBC,flags|EVP_CIPH_FLAG_DEFAULT_ASN1) \
BLOCK_CIPHER_generic(nid,keylen,16,0,ecb,ecb,ECB,flags|EVP_CIPH_FLAG_DEFAULT_ASN1) \
BLOCK_CIPHER_generic(nid,keylen,1,16,ofb128,ofb,OFB,flags|EVP_CIPH_FLAG_DEFAULT_ASN1) \
BLOCK_CIPHER_generic(nid,keylen,1,16,cfb128,cfb,CFB,flags|EVP_CIPH_FLAG_DEFAULT_ASN1) \
BLOCK_CIPHER_generic(nid,keylen,1,16,cfb1,cfb1,CFB,flags) \
BLOCK_CIPHER_generic(nid,keylen,1,16,cfb8,cfb8,CFB,flags) \
BLOCK_CIPHER_generic(nid,keylen,1,16,ctr,ctr,CTR,flags)
static int
aes_init_key(EVP_CIPHER_CTX *ctx, const unsigned char *key,
const unsigned char *iv, int enc)
{
int ret, mode;
EVP_AES_KEY *dat = (EVP_AES_KEY *)ctx->cipher_data;
mode = ctx->cipher->flags & EVP_CIPH_MODE;
if ((mode == EVP_CIPH_ECB_MODE || mode == EVP_CIPH_CBC_MODE) &&
!enc)
#ifdef BSAES_CAPABLE
if (BSAES_CAPABLE && mode == EVP_CIPH_CBC_MODE) {
ret = AES_set_decrypt_key(key, ctx->key_len * 8,
&dat->ks);
dat->block = (block128_f)AES_decrypt;
dat->stream.cbc = (cbc128_f)bsaes_cbc_encrypt;
} else
#endif
#ifdef VPAES_CAPABLE
if (VPAES_CAPABLE) {
ret = vpaes_set_decrypt_key(key, ctx->key_len * 8,
&dat->ks);
dat->block = (block128_f)vpaes_decrypt;
dat->stream.cbc = mode == EVP_CIPH_CBC_MODE ?
(cbc128_f)vpaes_cbc_encrypt : NULL;
} else
#endif
{
ret = AES_set_decrypt_key(key, ctx->key_len * 8,
&dat->ks);
dat->block = (block128_f)AES_decrypt;
dat->stream.cbc = mode == EVP_CIPH_CBC_MODE ?
(cbc128_f)AES_cbc_encrypt : NULL;
} else
#ifdef BSAES_CAPABLE
if (BSAES_CAPABLE && mode == EVP_CIPH_CTR_MODE) {
ret = AES_set_encrypt_key(key, ctx->key_len * 8,
&dat->ks);
dat->block = (block128_f)AES_encrypt;
dat->stream.ctr = (ctr128_f)bsaes_ctr32_encrypt_blocks;
} else
#endif
#ifdef VPAES_CAPABLE
if (VPAES_CAPABLE) {
ret = vpaes_set_encrypt_key(key, ctx->key_len * 8,
&dat->ks);
dat->block = (block128_f)vpaes_encrypt;
dat->stream.cbc = mode == EVP_CIPH_CBC_MODE ?
(cbc128_f)vpaes_cbc_encrypt : NULL;
} else
#endif
{
ret = AES_set_encrypt_key(key, ctx->key_len * 8,
&dat->ks);
dat->block = (block128_f)AES_encrypt;
dat->stream.cbc = mode == EVP_CIPH_CBC_MODE ?
(cbc128_f)AES_cbc_encrypt : NULL;
#ifdef AES_CTR_ASM
if (mode == EVP_CIPH_CTR_MODE)
dat->stream.ctr = (ctr128_f)AES_ctr32_encrypt;
#endif
}
if (ret < 0) {
EVPerror(EVP_R_AES_KEY_SETUP_FAILED);
return 0;
}
return 1;
}
static int
aes_cbc_cipher(EVP_CIPHER_CTX *ctx, unsigned char *out,
const unsigned char *in, size_t len)
{
EVP_AES_KEY *dat = (EVP_AES_KEY *)ctx->cipher_data;
if (dat->stream.cbc)
(*dat->stream.cbc)(in, out, len, &dat->ks, ctx->iv,
ctx->encrypt);
else if (ctx->encrypt)
CRYPTO_cbc128_encrypt(in, out, len, &dat->ks, ctx->iv,
dat->block);
else
CRYPTO_cbc128_decrypt(in, out, len, &dat->ks, ctx->iv,
dat->block);
return 1;
}
static int
aes_ecb_cipher(EVP_CIPHER_CTX *ctx, unsigned char *out,
const unsigned char *in, size_t len)
{
size_t bl = ctx->cipher->block_size;
size_t i;
EVP_AES_KEY *dat = (EVP_AES_KEY *)ctx->cipher_data;
if (len < bl)
return 1;
for (i = 0, len -= bl; i <= len; i += bl)
(*dat->block)(in + i, out + i, &dat->ks);
return 1;
}
static int
aes_ofb_cipher(EVP_CIPHER_CTX *ctx, unsigned char *out,
const unsigned char *in, size_t len)
{
EVP_AES_KEY *dat = (EVP_AES_KEY *)ctx->cipher_data;
CRYPTO_ofb128_encrypt(in, out, len, &dat->ks, ctx->iv, &ctx->num,
dat->block);
return 1;
}
static int
aes_cfb_cipher(EVP_CIPHER_CTX *ctx, unsigned char *out,
const unsigned char *in, size_t len)
{
EVP_AES_KEY *dat = (EVP_AES_KEY *)ctx->cipher_data;
CRYPTO_cfb128_encrypt(in, out, len, &dat->ks, ctx->iv, &ctx->num,
ctx->encrypt, dat->block);
return 1;
}
static int
aes_cfb8_cipher(EVP_CIPHER_CTX *ctx, unsigned char *out,
const unsigned char *in, size_t len)
{
EVP_AES_KEY *dat = (EVP_AES_KEY *)ctx->cipher_data;
CRYPTO_cfb128_8_encrypt(in, out, len, &dat->ks, ctx->iv, &ctx->num,
ctx->encrypt, dat->block);
return 1;
}
static int
aes_cfb1_cipher(EVP_CIPHER_CTX *ctx, unsigned char *out,
const unsigned char *in, size_t len)
{
EVP_AES_KEY *dat = (EVP_AES_KEY *)ctx->cipher_data;
if (ctx->flags&EVP_CIPH_FLAG_LENGTH_BITS) {
CRYPTO_cfb128_1_encrypt(in, out, len, &dat->ks, ctx->iv,
&ctx->num, ctx->encrypt, dat->block);
return 1;
}
while (len >= MAXBITCHUNK) {
CRYPTO_cfb128_1_encrypt(in, out, MAXBITCHUNK*8, &dat->ks,
ctx->iv, &ctx->num, ctx->encrypt, dat->block);
len -= MAXBITCHUNK;
}
if (len)
CRYPTO_cfb128_1_encrypt(in, out, len*8, &dat->ks,
ctx->iv, &ctx->num, ctx->encrypt, dat->block);
return 1;
}
static int aes_ctr_cipher (EVP_CIPHER_CTX *ctx, unsigned char *out,
const unsigned char *in, size_t len)
{
unsigned int num = ctx->num;
EVP_AES_KEY *dat = (EVP_AES_KEY *)ctx->cipher_data;
if (dat->stream.ctr)
CRYPTO_ctr128_encrypt_ctr32(in, out, len, &dat->ks,
ctx->iv, ctx->buf, &num, dat->stream.ctr);
else
CRYPTO_ctr128_encrypt(in, out, len, &dat->ks,
ctx->iv, ctx->buf, &num, dat->block);
ctx->num = (size_t)num;
return 1;
}
BLOCK_CIPHER_generic_pack(NID_aes, 128, EVP_CIPH_FLAG_FIPS)
BLOCK_CIPHER_generic_pack(NID_aes, 192, EVP_CIPH_FLAG_FIPS)
BLOCK_CIPHER_generic_pack(NID_aes, 256, EVP_CIPH_FLAG_FIPS)
static int
aes_gcm_cleanup(EVP_CIPHER_CTX *c)
{
EVP_AES_GCM_CTX *gctx = c->cipher_data;
if (gctx->iv != c->iv)
free(gctx->iv);
explicit_bzero(gctx, sizeof(*gctx));
return 1;
}
/* increment counter (64-bit int) by 1 */
static void
ctr64_inc(unsigned char *counter)
{
int n = 8;
unsigned char c;
do {
--n;
c = counter[n];
++c;
counter[n] = c;
if (c)
return;
} while (n);
}
static int
aes_gcm_ctrl(EVP_CIPHER_CTX *c, int type, int arg, void *ptr)
{
EVP_AES_GCM_CTX *gctx = c->cipher_data;
switch (type) {
case EVP_CTRL_INIT:
gctx->key_set = 0;
gctx->iv_set = 0;
if (c->cipher->iv_len == 0) {
EVPerror(EVP_R_INVALID_IV_LENGTH);
return 0;
}
gctx->ivlen = c->cipher->iv_len;
gctx->iv = c->iv;
gctx->taglen = -1;
gctx->iv_gen = 0;
gctx->tls_aad_len = -1;
return 1;
case EVP_CTRL_GCM_SET_IVLEN:
if (arg <= 0)
return 0;
/* Allocate memory for IV if needed */
if ((arg > EVP_MAX_IV_LENGTH) && (arg > gctx->ivlen)) {
if (gctx->iv != c->iv)
free(gctx->iv);
gctx->iv = malloc(arg);
if (!gctx->iv)
return 0;
}
gctx->ivlen = arg;
return 1;
case EVP_CTRL_GCM_SET_TAG:
if (arg <= 0 || arg > 16 || c->encrypt)
return 0;
memcpy(c->buf, ptr, arg);
gctx->taglen = arg;
return 1;
case EVP_CTRL_GCM_GET_TAG:
if (arg <= 0 || arg > 16 || !c->encrypt || gctx->taglen < 0)
return 0;
memcpy(ptr, c->buf, arg);
return 1;
case EVP_CTRL_GCM_SET_IV_FIXED:
/* Special case: -1 length restores whole IV */
if (arg == -1) {
memcpy(gctx->iv, ptr, gctx->ivlen);
gctx->iv_gen = 1;
return 1;
}
/* Fixed field must be at least 4 bytes and invocation field
* at least 8.
*/
if ((arg < 4) || (gctx->ivlen - arg) < 8)
return 0;
if (arg)
memcpy(gctx->iv, ptr, arg);
if (c->encrypt)
arc4random_buf(gctx->iv + arg, gctx->ivlen - arg);
gctx->iv_gen = 1;
return 1;
case EVP_CTRL_GCM_IV_GEN:
if (gctx->iv_gen == 0 || gctx->key_set == 0)
return 0;
CRYPTO_gcm128_setiv(&gctx->gcm, gctx->iv, gctx->ivlen);
if (arg <= 0 || arg > gctx->ivlen)
arg = gctx->ivlen;
memcpy(ptr, gctx->iv + gctx->ivlen - arg, arg);
/* Invocation field will be at least 8 bytes in size and
* so no need to check wrap around or increment more than
* last 8 bytes.
*/
ctr64_inc(gctx->iv + gctx->ivlen - 8);
gctx->iv_set = 1;
return 1;
case EVP_CTRL_GCM_SET_IV_INV:
if (gctx->iv_gen == 0 || gctx->key_set == 0 || c->encrypt)
return 0;
memcpy(gctx->iv + gctx->ivlen - arg, ptr, arg);
CRYPTO_gcm128_setiv(&gctx->gcm, gctx->iv, gctx->ivlen);
gctx->iv_set = 1;
return 1;
case EVP_CTRL_AEAD_TLS1_AAD:
/* Save the AAD for later use */
if (arg != 13)
return 0;
memcpy(c->buf, ptr, arg);
gctx->tls_aad_len = arg;
{
unsigned int len = c->buf[arg - 2] << 8 |
c->buf[arg - 1];
/* Correct length for explicit IV */
if (len < EVP_GCM_TLS_EXPLICIT_IV_LEN)
return 0;
len -= EVP_GCM_TLS_EXPLICIT_IV_LEN;
/* If decrypting correct for tag too */
if (!c->encrypt) {
if (len < EVP_GCM_TLS_TAG_LEN)
return 0;
len -= EVP_GCM_TLS_TAG_LEN;
}
c->buf[arg - 2] = len >> 8;
c->buf[arg - 1] = len & 0xff;
}
/* Extra padding: tag appended to record */
return EVP_GCM_TLS_TAG_LEN;
case EVP_CTRL_COPY:
{
EVP_CIPHER_CTX *out = ptr;
EVP_AES_GCM_CTX *gctx_out = out->cipher_data;
if (gctx->gcm.key) {
if (gctx->gcm.key != &gctx->ks)
return 0;
gctx_out->gcm.key = &gctx_out->ks;
}
if (gctx->iv == c->iv) {
gctx_out->iv = out->iv;
} else {
if ((gctx_out->iv = calloc(1, gctx->ivlen)) == NULL)
return 0;
memcpy(gctx_out->iv, gctx->iv, gctx->ivlen);
}
return 1;
}
default:
return -1;
}
}
static ctr128_f
aes_gcm_set_key(AES_KEY *aes_key, GCM128_CONTEXT *gcm_ctx,
const unsigned char *key, size_t key_len)
{
#ifdef BSAES_CAPABLE
if (BSAES_CAPABLE) {
AES_set_encrypt_key(key, key_len * 8, aes_key);
CRYPTO_gcm128_init(gcm_ctx, aes_key, (block128_f)AES_encrypt);
return (ctr128_f)bsaes_ctr32_encrypt_blocks;
} else
#endif
#ifdef VPAES_CAPABLE
if (VPAES_CAPABLE) {
vpaes_set_encrypt_key(key, key_len * 8, aes_key);
CRYPTO_gcm128_init(gcm_ctx, aes_key, (block128_f)vpaes_encrypt);
return NULL;
} else
#endif
(void)0; /* terminate potentially open 'else' */
AES_set_encrypt_key(key, key_len * 8, aes_key);
CRYPTO_gcm128_init(gcm_ctx, aes_key, (block128_f)AES_encrypt);
#ifdef AES_CTR_ASM
return (ctr128_f)AES_ctr32_encrypt;
#else
return NULL;
#endif
}
static int
aes_gcm_init_key(EVP_CIPHER_CTX *ctx, const unsigned char *key,
const unsigned char *iv, int enc)
{
EVP_AES_GCM_CTX *gctx = ctx->cipher_data;
if (!iv && !key)
return 1;
if (key) {
gctx->ctr = aes_gcm_set_key(&gctx->ks, &gctx->gcm,
key, ctx->key_len);
/* If we have an iv can set it directly, otherwise use
* saved IV.
*/
if (iv == NULL && gctx->iv_set)
iv = gctx->iv;
if (iv) {
CRYPTO_gcm128_setiv(&gctx->gcm, iv, gctx->ivlen);
gctx->iv_set = 1;
}
gctx->key_set = 1;
} else {
/* If key set use IV, otherwise copy */
if (gctx->key_set)
CRYPTO_gcm128_setiv(&gctx->gcm, iv, gctx->ivlen);
else
memcpy(gctx->iv, iv, gctx->ivlen);
gctx->iv_set = 1;
gctx->iv_gen = 0;
}
return 1;
}
/* Handle TLS GCM packet format. This consists of the last portion of the IV
* followed by the payload and finally the tag. On encrypt generate IV,
* encrypt payload and write the tag. On verify retrieve IV, decrypt payload
* and verify tag.
*/
static int
aes_gcm_tls_cipher(EVP_CIPHER_CTX *ctx, unsigned char *out,
const unsigned char *in, size_t len)
{
EVP_AES_GCM_CTX *gctx = ctx->cipher_data;
int rv = -1;
/* Encrypt/decrypt must be performed in place */
if (out != in ||
len < (EVP_GCM_TLS_EXPLICIT_IV_LEN + EVP_GCM_TLS_TAG_LEN))
return -1;
/* Set IV from start of buffer or generate IV and write to start
* of buffer.
*/
if (EVP_CIPHER_CTX_ctrl(ctx, ctx->encrypt ?
EVP_CTRL_GCM_IV_GEN : EVP_CTRL_GCM_SET_IV_INV,
EVP_GCM_TLS_EXPLICIT_IV_LEN, out) <= 0)
goto err;
/* Use saved AAD */
if (CRYPTO_gcm128_aad(&gctx->gcm, ctx->buf, gctx->tls_aad_len))
goto err;
/* Fix buffer and length to point to payload */
in += EVP_GCM_TLS_EXPLICIT_IV_LEN;
out += EVP_GCM_TLS_EXPLICIT_IV_LEN;
len -= EVP_GCM_TLS_EXPLICIT_IV_LEN + EVP_GCM_TLS_TAG_LEN;
if (ctx->encrypt) {
/* Encrypt payload */
if (gctx->ctr) {
if (CRYPTO_gcm128_encrypt_ctr32(&gctx->gcm, in, out,
len, gctx->ctr))
goto err;
} else {
if (CRYPTO_gcm128_encrypt(&gctx->gcm, in, out, len))
goto err;
}
out += len;
/* Finally write tag */
CRYPTO_gcm128_tag(&gctx->gcm, out, EVP_GCM_TLS_TAG_LEN);
rv = len + EVP_GCM_TLS_EXPLICIT_IV_LEN + EVP_GCM_TLS_TAG_LEN;
} else {
/* Decrypt */
if (gctx->ctr) {
if (CRYPTO_gcm128_decrypt_ctr32(&gctx->gcm, in, out,
len, gctx->ctr))
goto err;
} else {
if (CRYPTO_gcm128_decrypt(&gctx->gcm, in, out, len))
goto err;
}
/* Retrieve tag */
CRYPTO_gcm128_tag(&gctx->gcm, ctx->buf, EVP_GCM_TLS_TAG_LEN);
/* If tag mismatch wipe buffer */
if (memcmp(ctx->buf, in + len, EVP_GCM_TLS_TAG_LEN)) {
explicit_bzero(out, len);
goto err;
}
rv = len;
}
err:
gctx->iv_set = 0;
gctx->tls_aad_len = -1;
return rv;
}
static int
aes_gcm_cipher(EVP_CIPHER_CTX *ctx, unsigned char *out,
const unsigned char *in, size_t len)
{
EVP_AES_GCM_CTX *gctx = ctx->cipher_data;
/* If not set up, return error */
if (!gctx->key_set)
return -1;
if (gctx->tls_aad_len >= 0)
return aes_gcm_tls_cipher(ctx, out, in, len);
if (!gctx->iv_set)
return -1;
if (in) {
if (out == NULL) {
if (CRYPTO_gcm128_aad(&gctx->gcm, in, len))
return -1;
} else if (ctx->encrypt) {
if (gctx->ctr) {
if (CRYPTO_gcm128_encrypt_ctr32(&gctx->gcm,
in, out, len, gctx->ctr))
return -1;
} else {
if (CRYPTO_gcm128_encrypt(&gctx->gcm,
in, out, len))
return -1;
}
} else {
if (gctx->ctr) {
if (CRYPTO_gcm128_decrypt_ctr32(&gctx->gcm,
in, out, len, gctx->ctr))
return -1;
} else {
if (CRYPTO_gcm128_decrypt(&gctx->gcm,
in, out, len))
return -1;
}
}
return len;
} else {
if (!ctx->encrypt) {
if (gctx->taglen < 0)
return -1;
if (CRYPTO_gcm128_finish(&gctx->gcm, ctx->buf,
gctx->taglen) != 0)
return -1;
gctx->iv_set = 0;
return 0;
}
CRYPTO_gcm128_tag(&gctx->gcm, ctx->buf, 16);
gctx->taglen = 16;
/* Don't reuse the IV */
gctx->iv_set = 0;
return 0;
}
}
#define CUSTOM_FLAGS \
( EVP_CIPH_FLAG_DEFAULT_ASN1 | EVP_CIPH_CUSTOM_IV | \
EVP_CIPH_FLAG_CUSTOM_CIPHER | EVP_CIPH_ALWAYS_CALL_INIT | \
EVP_CIPH_CTRL_INIT | EVP_CIPH_CUSTOM_COPY )
BLOCK_CIPHER_custom(NID_aes, 128, 1, 12, gcm, GCM,
EVP_CIPH_FLAG_FIPS|EVP_CIPH_FLAG_AEAD_CIPHER|CUSTOM_FLAGS)
BLOCK_CIPHER_custom(NID_aes, 192, 1, 12, gcm, GCM,
EVP_CIPH_FLAG_FIPS|EVP_CIPH_FLAG_AEAD_CIPHER|CUSTOM_FLAGS)
BLOCK_CIPHER_custom(NID_aes, 256, 1, 12, gcm, GCM,
EVP_CIPH_FLAG_FIPS|EVP_CIPH_FLAG_AEAD_CIPHER|CUSTOM_FLAGS)
static int
aes_xts_ctrl(EVP_CIPHER_CTX *c, int type, int arg, void *ptr)
{
EVP_AES_XTS_CTX *xctx = c->cipher_data;
switch (type) {
case EVP_CTRL_INIT:
/*
* key1 and key2 are used as an indicator both key and IV
* are set
*/
xctx->xts.key1 = NULL;
xctx->xts.key2 = NULL;
return 1;
case EVP_CTRL_COPY:
{
EVP_CIPHER_CTX *out = ptr;
EVP_AES_XTS_CTX *xctx_out = out->cipher_data;
if (xctx->xts.key1) {
if (xctx->xts.key1 != &xctx->ks1)
return 0;
xctx_out->xts.key1 = &xctx_out->ks1;
}
if (xctx->xts.key2) {
if (xctx->xts.key2 != &xctx->ks2)
return 0;
xctx_out->xts.key2 = &xctx_out->ks2;
}
return 1;
}
}
return -1;
}
static int
aes_xts_init_key(EVP_CIPHER_CTX *ctx, const unsigned char *key,
const unsigned char *iv, int enc)
{
EVP_AES_XTS_CTX *xctx = ctx->cipher_data;
if (!iv && !key)
return 1;
if (key) do {
#ifdef AES_XTS_ASM
xctx->stream = enc ? AES_xts_encrypt : AES_xts_decrypt;
#else
xctx->stream = NULL;
#endif
/* key_len is two AES keys */
#ifdef BSAES_CAPABLE
if (BSAES_CAPABLE)
xctx->stream = enc ? bsaes_xts_encrypt :
bsaes_xts_decrypt;
else
#endif
#ifdef VPAES_CAPABLE
if (VPAES_CAPABLE) {
if (enc) {
vpaes_set_encrypt_key(key, ctx->key_len * 4,
&xctx->ks1);
xctx->xts.block1 = (block128_f)vpaes_encrypt;
} else {
vpaes_set_decrypt_key(key, ctx->key_len * 4,
&xctx->ks1);
xctx->xts.block1 = (block128_f)vpaes_decrypt;
}
vpaes_set_encrypt_key(key + ctx->key_len / 2,
ctx->key_len * 4, &xctx->ks2);
xctx->xts.block2 = (block128_f)vpaes_encrypt;
xctx->xts.key1 = &xctx->ks1;
break;
} else
#endif
(void)0; /* terminate potentially open 'else' */
if (enc) {
AES_set_encrypt_key(key, ctx->key_len * 4, &xctx->ks1);
xctx->xts.block1 = (block128_f)AES_encrypt;
} else {
AES_set_decrypt_key(key, ctx->key_len * 4, &xctx->ks1);
xctx->xts.block1 = (block128_f)AES_decrypt;
}
AES_set_encrypt_key(key + ctx->key_len / 2,
ctx->key_len * 4, &xctx->ks2);
xctx->xts.block2 = (block128_f)AES_encrypt;
xctx->xts.key1 = &xctx->ks1;
} while (0);
if (iv) {
xctx->xts.key2 = &xctx->ks2;
memcpy(ctx->iv, iv, 16);
}
return 1;
}
static int
aes_xts_cipher(EVP_CIPHER_CTX *ctx, unsigned char *out,
const unsigned char *in, size_t len)
{
EVP_AES_XTS_CTX *xctx = ctx->cipher_data;
if (!xctx->xts.key1 || !xctx->xts.key2)
return 0;
if (!out || !in || len < AES_BLOCK_SIZE)
return 0;
if (xctx->stream)
(*xctx->stream)(in, out, len, xctx->xts.key1, xctx->xts.key2,
ctx->iv);
else if (CRYPTO_xts128_encrypt(&xctx->xts, ctx->iv, in, out, len,
ctx->encrypt))
return 0;
return 1;
}
#define aes_xts_cleanup NULL
#define XTS_FLAGS \
( EVP_CIPH_FLAG_DEFAULT_ASN1 | EVP_CIPH_CUSTOM_IV | \
EVP_CIPH_ALWAYS_CALL_INIT | EVP_CIPH_CTRL_INIT | EVP_CIPH_CUSTOM_COPY )
BLOCK_CIPHER_custom(NID_aes, 128, 1, 16, xts, XTS, EVP_CIPH_FLAG_FIPS|XTS_FLAGS)
BLOCK_CIPHER_custom(NID_aes, 256, 1, 16, xts, XTS, EVP_CIPH_FLAG_FIPS|XTS_FLAGS)
static int
aes_ccm_ctrl(EVP_CIPHER_CTX *c, int type, int arg, void *ptr)
{
EVP_AES_CCM_CTX *cctx = c->cipher_data;
switch (type) {
case EVP_CTRL_INIT:
cctx->key_set = 0;
cctx->iv_set = 0;
cctx->L = 8;
cctx->M = 12;
cctx->tag_set = 0;
cctx->len_set = 0;
return 1;
case EVP_CTRL_CCM_SET_IVLEN:
arg = 15 - arg;
case EVP_CTRL_CCM_SET_L:
if (arg < 2 || arg > 8)
return 0;
cctx->L = arg;
return 1;
case EVP_CTRL_CCM_SET_TAG:
if ((arg & 1) || arg < 4 || arg > 16)
return 0;
if ((c->encrypt && ptr) || (!c->encrypt && !ptr))
return 0;
if (ptr) {
cctx->tag_set = 1;
memcpy(c->buf, ptr, arg);
}
cctx->M = arg;
return 1;
case EVP_CTRL_CCM_GET_TAG:
if (!c->encrypt || !cctx->tag_set)
return 0;
if (!CRYPTO_ccm128_tag(&cctx->ccm, ptr, (size_t)arg))
return 0;
cctx->tag_set = 0;
cctx->iv_set = 0;
cctx->len_set = 0;
return 1;
case EVP_CTRL_COPY:
{
EVP_CIPHER_CTX *out = ptr;
EVP_AES_CCM_CTX *cctx_out = out->cipher_data;
if (cctx->ccm.key) {
if (cctx->ccm.key != &cctx->ks)
return 0;
cctx_out->ccm.key = &cctx_out->ks;
}
return 1;
}
default:
return -1;
}
}
static int
aes_ccm_init_key(EVP_CIPHER_CTX *ctx, const unsigned char *key,
const unsigned char *iv, int enc)
{
EVP_AES_CCM_CTX *cctx = ctx->cipher_data;
if (!iv && !key)
return 1;
if (key) do {
#ifdef VPAES_CAPABLE
if (VPAES_CAPABLE) {
vpaes_set_encrypt_key(key, ctx->key_len*8, &cctx->ks);
CRYPTO_ccm128_init(&cctx->ccm, cctx->M, cctx->L,
&cctx->ks, (block128_f)vpaes_encrypt);
cctx->str = NULL;
cctx->key_set = 1;
break;
}
#endif
AES_set_encrypt_key(key, ctx->key_len * 8, &cctx->ks);
CRYPTO_ccm128_init(&cctx->ccm, cctx->M, cctx->L,
&cctx->ks, (block128_f)AES_encrypt);
cctx->str = NULL;
cctx->key_set = 1;
} while (0);
if (iv) {
memcpy(ctx->iv, iv, 15 - cctx->L);
cctx->iv_set = 1;
}
return 1;
}
static int
aes_ccm_cipher(EVP_CIPHER_CTX *ctx, unsigned char *out,
const unsigned char *in, size_t len)
{
EVP_AES_CCM_CTX *cctx = ctx->cipher_data;
CCM128_CONTEXT *ccm = &cctx->ccm;
/* If not set up, return error */
if (!cctx->iv_set && !cctx->key_set)
return -1;
if (!ctx->encrypt && !cctx->tag_set)
return -1;
if (!out) {
if (!in) {
if (CRYPTO_ccm128_setiv(ccm, ctx->iv, 15 - cctx->L,
len))
return -1;
cctx->len_set = 1;
return len;
}
/* If have AAD need message length */
if (!cctx->len_set && len)
return -1;
CRYPTO_ccm128_aad(ccm, in, len);
return len;
}
/* EVP_*Final() doesn't return any data */
if (!in)
return 0;
/* If not set length yet do it */
if (!cctx->len_set) {
if (CRYPTO_ccm128_setiv(ccm, ctx->iv, 15 - cctx->L, len))
return -1;
cctx->len_set = 1;
}
if (ctx->encrypt) {
if (cctx->str ? CRYPTO_ccm128_encrypt_ccm64(ccm, in, out, len,
cctx->str) : CRYPTO_ccm128_encrypt(ccm, in, out, len))
return -1;
cctx->tag_set = 1;
return len;
} else {
int rv = -1;
if (cctx->str ? !CRYPTO_ccm128_decrypt_ccm64(ccm, in, out, len,
cctx->str) : !CRYPTO_ccm128_decrypt(ccm, in, out, len)) {
unsigned char tag[16];
if (CRYPTO_ccm128_tag(ccm, tag, cctx->M)) {
if (!memcmp(tag, ctx->buf, cctx->M))
rv = len;
}
}
if (rv == -1)
explicit_bzero(out, len);
cctx->iv_set = 0;
cctx->tag_set = 0;
cctx->len_set = 0;
return rv;
}
}
#define aes_ccm_cleanup NULL
BLOCK_CIPHER_custom(NID_aes, 128, 1, 12, ccm, CCM,
EVP_CIPH_FLAG_FIPS|CUSTOM_FLAGS)
BLOCK_CIPHER_custom(NID_aes, 192, 1, 12, ccm, CCM,
EVP_CIPH_FLAG_FIPS|CUSTOM_FLAGS)
BLOCK_CIPHER_custom(NID_aes, 256, 1, 12, ccm, CCM,
EVP_CIPH_FLAG_FIPS|CUSTOM_FLAGS)
#define EVP_AEAD_AES_GCM_TAG_LEN 16
struct aead_aes_gcm_ctx {
union {
double align;
AES_KEY ks;
} ks;
GCM128_CONTEXT gcm;
ctr128_f ctr;
unsigned char tag_len;
};
static int
aead_aes_gcm_init(EVP_AEAD_CTX *ctx, const unsigned char *key, size_t key_len,
size_t tag_len)
{
struct aead_aes_gcm_ctx *gcm_ctx;
const size_t key_bits = key_len * 8;
/* EVP_AEAD_CTX_init should catch this. */
if (key_bits != 128 && key_bits != 256) {
EVPerror(EVP_R_BAD_KEY_LENGTH);
return 0;
}
if (tag_len == EVP_AEAD_DEFAULT_TAG_LENGTH)
tag_len = EVP_AEAD_AES_GCM_TAG_LEN;
if (tag_len > EVP_AEAD_AES_GCM_TAG_LEN) {
EVPerror(EVP_R_TAG_TOO_LARGE);
return 0;
}
if ((gcm_ctx = calloc(1, sizeof(struct aead_aes_gcm_ctx))) == NULL)
return 0;
#ifdef AESNI_CAPABLE
if (AESNI_CAPABLE) {
aesni_set_encrypt_key(key, key_bits, &gcm_ctx->ks.ks);
CRYPTO_gcm128_init(&gcm_ctx->gcm, &gcm_ctx->ks.ks,
(block128_f)aesni_encrypt);
gcm_ctx->ctr = (ctr128_f) aesni_ctr32_encrypt_blocks;
} else
#endif
{
gcm_ctx->ctr = aes_gcm_set_key(&gcm_ctx->ks.ks, &gcm_ctx->gcm,
key, key_len);
}
gcm_ctx->tag_len = tag_len;
ctx->aead_state = gcm_ctx;
return 1;
}
static void
aead_aes_gcm_cleanup(EVP_AEAD_CTX *ctx)
{
struct aead_aes_gcm_ctx *gcm_ctx = ctx->aead_state;
freezero(gcm_ctx, sizeof(*gcm_ctx));
}
static int
aead_aes_gcm_seal(const EVP_AEAD_CTX *ctx, unsigned char *out, size_t *out_len,
size_t max_out_len, const unsigned char *nonce, size_t nonce_len,
const unsigned char *in, size_t in_len, const unsigned char *ad,
size_t ad_len)
{
const struct aead_aes_gcm_ctx *gcm_ctx = ctx->aead_state;
GCM128_CONTEXT gcm;
size_t bulk = 0;
if (max_out_len < in_len + gcm_ctx->tag_len) {
EVPerror(EVP_R_BUFFER_TOO_SMALL);
return 0;
}
memcpy(&gcm, &gcm_ctx->gcm, sizeof(gcm));
if (nonce_len == 0) {
EVPerror(EVP_R_INVALID_IV_LENGTH);
return 0;
}
CRYPTO_gcm128_setiv(&gcm, nonce, nonce_len);
if (ad_len > 0 && CRYPTO_gcm128_aad(&gcm, ad, ad_len))
return 0;
if (gcm_ctx->ctr) {
if (CRYPTO_gcm128_encrypt_ctr32(&gcm, in + bulk, out + bulk,
in_len - bulk, gcm_ctx->ctr))
return 0;
} else {
if (CRYPTO_gcm128_encrypt(&gcm, in + bulk, out + bulk,
in_len - bulk))
return 0;
}
CRYPTO_gcm128_tag(&gcm, out + in_len, gcm_ctx->tag_len);
*out_len = in_len + gcm_ctx->tag_len;
return 1;
}
static int
aead_aes_gcm_open(const EVP_AEAD_CTX *ctx, unsigned char *out, size_t *out_len,
size_t max_out_len, const unsigned char *nonce, size_t nonce_len,
const unsigned char *in, size_t in_len, const unsigned char *ad,
size_t ad_len)
{
const struct aead_aes_gcm_ctx *gcm_ctx = ctx->aead_state;
unsigned char tag[EVP_AEAD_AES_GCM_TAG_LEN];
GCM128_CONTEXT gcm;
size_t plaintext_len;
size_t bulk = 0;
if (in_len < gcm_ctx->tag_len) {
EVPerror(EVP_R_BAD_DECRYPT);
return 0;
}
plaintext_len = in_len - gcm_ctx->tag_len;
if (max_out_len < plaintext_len) {
EVPerror(EVP_R_BUFFER_TOO_SMALL);
return 0;
}
memcpy(&gcm, &gcm_ctx->gcm, sizeof(gcm));
if (nonce_len == 0) {
EVPerror(EVP_R_INVALID_IV_LENGTH);
return 0;
}
CRYPTO_gcm128_setiv(&gcm, nonce, nonce_len);
if (CRYPTO_gcm128_aad(&gcm, ad, ad_len))
return 0;
if (gcm_ctx->ctr) {
if (CRYPTO_gcm128_decrypt_ctr32(&gcm, in + bulk, out + bulk,
in_len - bulk - gcm_ctx->tag_len, gcm_ctx->ctr))
return 0;
} else {
if (CRYPTO_gcm128_decrypt(&gcm, in + bulk, out + bulk,
in_len - bulk - gcm_ctx->tag_len))
return 0;
}
CRYPTO_gcm128_tag(&gcm, tag, gcm_ctx->tag_len);
if (timingsafe_memcmp(tag, in + plaintext_len, gcm_ctx->tag_len) != 0) {
EVPerror(EVP_R_BAD_DECRYPT);
return 0;
}
*out_len = plaintext_len;
return 1;
}
static const EVP_AEAD aead_aes_128_gcm = {
.key_len = 16,
.nonce_len = 12,
.overhead = EVP_AEAD_AES_GCM_TAG_LEN,
.max_tag_len = EVP_AEAD_AES_GCM_TAG_LEN,
.init = aead_aes_gcm_init,
.cleanup = aead_aes_gcm_cleanup,
.seal = aead_aes_gcm_seal,
.open = aead_aes_gcm_open,
};
static const EVP_AEAD aead_aes_256_gcm = {
.key_len = 32,
.nonce_len = 12,
.overhead = EVP_AEAD_AES_GCM_TAG_LEN,
.max_tag_len = EVP_AEAD_AES_GCM_TAG_LEN,
.init = aead_aes_gcm_init,
.cleanup = aead_aes_gcm_cleanup,
.seal = aead_aes_gcm_seal,
.open = aead_aes_gcm_open,
};
const EVP_AEAD *
EVP_aead_aes_128_gcm(void)
{
return &aead_aes_128_gcm;
}
const EVP_AEAD *
EVP_aead_aes_256_gcm(void)
{
return &aead_aes_256_gcm;
}
typedef struct {
union {
double align;
AES_KEY ks;
} ks;
unsigned char *iv;
} EVP_AES_WRAP_CTX;
static int
aes_wrap_init_key(EVP_CIPHER_CTX *ctx, const unsigned char *key,
const unsigned char *iv, int enc)
{
EVP_AES_WRAP_CTX *wctx = (EVP_AES_WRAP_CTX *)ctx->cipher_data;
if (iv == NULL && key == NULL)
return 1;
if (key != NULL) {
if (ctx->encrypt)
AES_set_encrypt_key(key, 8 * ctx->key_len,
&wctx->ks.ks);
else
AES_set_decrypt_key(key, 8 * ctx->key_len,
&wctx->ks.ks);
if (iv == NULL)
wctx->iv = NULL;
}
if (iv != NULL) {
memcpy(ctx->iv, iv, EVP_CIPHER_CTX_iv_length(ctx));
wctx->iv = ctx->iv;
}
return 1;
}
static int
aes_wrap_cipher(EVP_CIPHER_CTX *ctx, unsigned char *out,
const unsigned char *in, size_t inlen)
{
EVP_AES_WRAP_CTX *wctx = ctx->cipher_data;
int ret;
if (in == NULL)
return 0;
if (inlen % 8 != 0)
return -1;
if (ctx->encrypt && inlen < 8)
return -1;
if (!ctx->encrypt && inlen < 16)
return -1;
if (inlen > INT_MAX)
return -1;
if (out == NULL) {
if (ctx->encrypt)
return inlen + 8;
else
return inlen - 8;
}
if (ctx->encrypt)
ret = AES_wrap_key(&wctx->ks.ks, wctx->iv, out, in,
(unsigned int)inlen);
else
ret = AES_unwrap_key(&wctx->ks.ks, wctx->iv, out, in,
(unsigned int)inlen);
return ret != 0 ? ret : -1;
}
static int
aes_wrap_ctrl(EVP_CIPHER_CTX *c, int type, int arg, void *ptr)
{
EVP_AES_WRAP_CTX *wctx = c->cipher_data;
switch (type) {
case EVP_CTRL_COPY:
{
EVP_CIPHER_CTX *out = ptr;
EVP_AES_WRAP_CTX *wctx_out = out->cipher_data;
if (wctx->iv != NULL) {
if (c->iv != wctx->iv)
return 0;
wctx_out->iv = out->iv;
}
return 1;
}
}
return -1;
}
#define WRAP_FLAGS \
( EVP_CIPH_WRAP_MODE | EVP_CIPH_CUSTOM_IV | EVP_CIPH_FLAG_CUSTOM_CIPHER | \
EVP_CIPH_ALWAYS_CALL_INIT | EVP_CIPH_FLAG_DEFAULT_ASN1 | \
EVP_CIPH_CUSTOM_COPY )
static const EVP_CIPHER aes_128_wrap = {
.nid = NID_id_aes128_wrap,
.block_size = 8,
.key_len = 16,
.iv_len = 8,
.flags = WRAP_FLAGS,
.init = aes_wrap_init_key,
.do_cipher = aes_wrap_cipher,
.cleanup = NULL,
.ctx_size = sizeof(EVP_AES_WRAP_CTX),
.set_asn1_parameters = NULL,
.get_asn1_parameters = NULL,
.ctrl = aes_wrap_ctrl,
.app_data = NULL,
};
const EVP_CIPHER *
EVP_aes_128_wrap(void)
{
return &aes_128_wrap;
}
static const EVP_CIPHER aes_192_wrap = {
.nid = NID_id_aes192_wrap,
.block_size = 8,
.key_len = 24,
.iv_len = 8,
.flags = WRAP_FLAGS,
.init = aes_wrap_init_key,
.do_cipher = aes_wrap_cipher,
.cleanup = NULL,
.ctx_size = sizeof(EVP_AES_WRAP_CTX),
.set_asn1_parameters = NULL,
.get_asn1_parameters = NULL,
.ctrl = aes_wrap_ctrl,
.app_data = NULL,
};
const EVP_CIPHER *
EVP_aes_192_wrap(void)
{
return &aes_192_wrap;
}
static const EVP_CIPHER aes_256_wrap = {
.nid = NID_id_aes256_wrap,
.block_size = 8,
.key_len = 32,
.iv_len = 8,
.flags = WRAP_FLAGS,
.init = aes_wrap_init_key,
.do_cipher = aes_wrap_cipher,
.cleanup = NULL,
.ctx_size = sizeof(EVP_AES_WRAP_CTX),
.set_asn1_parameters = NULL,
.get_asn1_parameters = NULL,
.ctrl = aes_wrap_ctrl,
.app_data = NULL,
};
const EVP_CIPHER *
EVP_aes_256_wrap(void)
{
return &aes_256_wrap;
}
#endif