early-access version 1269

This commit is contained in:
pineappleEA 2020-12-31 11:02:49 +01:00
parent f79987a2cb
commit e4e12386d2
37 changed files with 1012 additions and 819 deletions

View File

@ -1,7 +1,7 @@
yuzu emulator early access
=============
This is the source code for early-access 1272.
This is the source code for early-access 1269.
## Legal Notice

View File

@ -123,7 +123,6 @@ add_library(common STATIC
hash.h
hex_util.cpp
hex_util.h
intrusive_red_black_tree.h
logging/backend.cpp
logging/backend.h
logging/filter.cpp
@ -146,7 +145,6 @@ add_library(common STATIC
page_table.h
param_package.cpp
param_package.h
parent_of_member.h
quaternion.h
ring_buffer.h
scm_rev.cpp
@ -171,7 +169,6 @@ add_library(common STATIC
time_zone.h
timer.cpp
timer.h
tree.h
uint128.cpp
uint128.h
uuid.cpp

View File

@ -93,14 +93,6 @@ __declspec(dllimport) void __stdcall DebugBreak(void);
return static_cast<T>(key) == 0; \
}
/// Evaluates a boolean expression, and returns a result unless that expression is true.
#define R_UNLESS(expr, res) \
{ \
if (!(expr)) { \
return res; \
} \
}
namespace Common {
[[nodiscard]] constexpr u32 MakeMagic(char a, char b, char c, char d) {

View File

@ -141,6 +141,8 @@ add_library(core STATIC
hardware_interrupt_manager.h
hle/ipc.h
hle/ipc_helpers.h
hle/kernel/address_arbiter.cpp
hle/kernel/address_arbiter.h
hle/kernel/client_port.cpp
hle/kernel/client_port.h
hle/kernel/client_session.cpp
@ -154,19 +156,13 @@ add_library(core STATIC
hle/kernel/handle_table.h
hle/kernel/hle_ipc.cpp
hle/kernel/hle_ipc.h
hle/kernel/k_address_arbiter.cpp
hle/kernel/k_address_arbiter.h
hle/kernel/k_affinity_mask.h
hle/kernel/k_condition_variable.cpp
hle/kernel/k_condition_variable.h
hle/kernel/k_priority_queue.h
hle/kernel/k_scheduler.cpp
hle/kernel/k_scheduler.h
hle/kernel/k_scheduler_lock.h
hle/kernel/k_scoped_lock.h
hle/kernel/k_scoped_scheduler_lock_and_sleep.h
hle/kernel/k_synchronization_object.cpp
hle/kernel/k_synchronization_object.h
hle/kernel/kernel.cpp
hle/kernel/kernel.h
hle/kernel/memory/address_space_info.cpp
@ -186,6 +182,8 @@ add_library(core STATIC
hle/kernel/memory/slab_heap.h
hle/kernel/memory/system_control.cpp
hle/kernel/memory/system_control.h
hle/kernel/mutex.cpp
hle/kernel/mutex.h
hle/kernel/object.cpp
hle/kernel/object.h
hle/kernel/physical_core.cpp
@ -211,10 +209,12 @@ add_library(core STATIC
hle/kernel/shared_memory.h
hle/kernel/svc.cpp
hle/kernel/svc.h
hle/kernel/svc_common.h
hle/kernel/svc_results.h
hle/kernel/svc_types.h
hle/kernel/svc_wrap.h
hle/kernel/synchronization_object.cpp
hle/kernel/synchronization_object.h
hle/kernel/synchronization.cpp
hle/kernel/synchronization.h
hle/kernel/thread.cpp
hle/kernel/thread.h
hle/kernel/time_manager.cpp

View File

@ -49,7 +49,6 @@ void CoreTiming::ThreadEntry(CoreTiming& instance) {
Common::SetCurrentThreadPriority(Common::ThreadPriority::VeryHigh);
instance.on_thread_init();
instance.ThreadLoop();
MicroProfileOnThreadExit();
}
void CoreTiming::Initialize(std::function<void()>&& on_thread_init_) {

View File

@ -33,6 +33,9 @@ ResultVal<std::shared_ptr<ClientSession>> ClientPort::Connect() {
server_port->AppendPendingSession(std::move(server));
}
// Wake the threads waiting on the ServerPort
server_port->Signal();
return MakeResult(std::move(client));
}

View File

@ -12,7 +12,7 @@
namespace Kernel {
ClientSession::ClientSession(KernelCore& kernel) : KSynchronizationObject{kernel} {}
ClientSession::ClientSession(KernelCore& kernel) : SynchronizationObject{kernel} {}
ClientSession::~ClientSession() {
// This destructor will be called automatically when the last ClientSession handle is closed by
@ -22,6 +22,15 @@ ClientSession::~ClientSession() {
}
}
bool ClientSession::ShouldWait(const Thread* thread) const {
UNIMPLEMENTED();
return {};
}
void ClientSession::Acquire(Thread* thread) {
UNIMPLEMENTED();
}
bool ClientSession::IsSignaled() const {
UNIMPLEMENTED();
return true;

View File

@ -7,7 +7,7 @@
#include <memory>
#include <string>
#include "core/hle/kernel/k_synchronization_object.h"
#include "core/hle/kernel/synchronization_object.h"
#include "core/hle/result.h"
union ResultCode;
@ -26,7 +26,7 @@ class KernelCore;
class Session;
class Thread;
class ClientSession final : public KSynchronizationObject {
class ClientSession final : public SynchronizationObject {
public:
explicit ClientSession(KernelCore& kernel);
~ClientSession() override;
@ -49,6 +49,10 @@ public:
ResultCode SendSyncRequest(std::shared_ptr<Thread> thread, Core::Memory::Memory& memory,
Core::Timing::CoreTiming& core_timing);
bool ShouldWait(const Thread* thread) const override;
void Acquire(Thread* thread) override;
bool IsSignaled() const override;
private:

View File

@ -13,14 +13,12 @@ namespace Kernel {
constexpr ResultCode ERR_MAX_CONNECTIONS_REACHED{ErrorModule::Kernel, 7};
constexpr ResultCode ERR_INVALID_CAPABILITY_DESCRIPTOR{ErrorModule::Kernel, 14};
constexpr ResultCode ERR_THREAD_TERMINATING{ErrorModule::Kernel, 59};
constexpr ResultCode ERR_TERMINATION_REQUESTED{ErrorModule::Kernel, 59};
constexpr ResultCode ERR_INVALID_SIZE{ErrorModule::Kernel, 101};
constexpr ResultCode ERR_INVALID_ADDRESS{ErrorModule::Kernel, 102};
constexpr ResultCode ERR_OUT_OF_RESOURCES{ErrorModule::Kernel, 103};
constexpr ResultCode ERR_OUT_OF_MEMORY{ErrorModule::Kernel, 104};
constexpr ResultCode ERR_HANDLE_TABLE_FULL{ErrorModule::Kernel, 105};
constexpr ResultCode ERR_INVALID_ADDRESS_STATE{ErrorModule::Kernel, 106};
constexpr ResultCode ERR_INVALID_CURRENT_MEMORY{ErrorModule::Kernel, 106};
constexpr ResultCode ERR_INVALID_MEMORY_PERMISSIONS{ErrorModule::Kernel, 108};
constexpr ResultCode ERR_INVALID_MEMORY_RANGE{ErrorModule::Kernel, 110};
constexpr ResultCode ERR_INVALID_PROCESSOR_ID{ErrorModule::Kernel, 113};
@ -30,7 +28,6 @@ constexpr ResultCode ERR_INVALID_POINTER{ErrorModule::Kernel, 115};
constexpr ResultCode ERR_INVALID_COMBINATION{ErrorModule::Kernel, 116};
constexpr ResultCode RESULT_TIMEOUT{ErrorModule::Kernel, 117};
constexpr ResultCode ERR_SYNCHRONIZATION_CANCELED{ErrorModule::Kernel, 118};
constexpr ResultCode ERR_CANCELLED{ErrorModule::Kernel, 118};
constexpr ResultCode ERR_OUT_OF_RANGE{ErrorModule::Kernel, 119};
constexpr ResultCode ERR_INVALID_ENUM_VALUE{ErrorModule::Kernel, 120};
constexpr ResultCode ERR_NOT_FOUND{ErrorModule::Kernel, 121};

View File

@ -180,22 +180,22 @@ u64 KScheduler::UpdateHighestPriorityThreadsImpl(KernelCore& kernel) {
return cores_needing_scheduling;
}
void KScheduler::OnThreadStateChanged(KernelCore& kernel, Thread* thread, ThreadState old_state) {
void KScheduler::OnThreadStateChanged(KernelCore& kernel, Thread* thread, u32 old_state) {
ASSERT(kernel.GlobalSchedulerContext().IsLocked());
// Check if the state has changed, because if it hasn't there's nothing to do.
const auto cur_state = thread->GetRawState();
const auto cur_state = thread->scheduling_state;
if (cur_state == old_state) {
return;
}
// Update the priority queues.
if (old_state == ThreadState::Runnable) {
if (old_state == static_cast<u32>(ThreadSchedStatus::Runnable)) {
// If we were previously runnable, then we're not runnable now, and we should remove.
GetPriorityQueue(kernel).Remove(thread);
IncrementScheduledCount(thread);
SetSchedulerUpdateNeeded(kernel);
} else if (cur_state == ThreadState::Runnable) {
} else if (cur_state == static_cast<u32>(ThreadSchedStatus::Runnable)) {
// If we're now runnable, then we weren't previously, and we should add.
GetPriorityQueue(kernel).PushBack(thread);
IncrementScheduledCount(thread);
@ -203,11 +203,13 @@ void KScheduler::OnThreadStateChanged(KernelCore& kernel, Thread* thread, Thread
}
}
void KScheduler::OnThreadPriorityChanged(KernelCore& kernel, Thread* thread, s32 old_priority) {
void KScheduler::OnThreadPriorityChanged(KernelCore& kernel, Thread* thread, Thread* current_thread,
u32 old_priority) {
ASSERT(kernel.GlobalSchedulerContext().IsLocked());
// If the thread is runnable, we want to change its priority in the queue.
if (thread->GetRawState() == ThreadState::Runnable) {
if (thread->scheduling_state == static_cast<u32>(ThreadSchedStatus::Runnable)) {
GetPriorityQueue(kernel).ChangePriority(
old_priority, thread == kernel.CurrentScheduler()->GetCurrentThread(), thread);
IncrementScheduledCount(thread);
@ -220,7 +222,7 @@ void KScheduler::OnThreadAffinityMaskChanged(KernelCore& kernel, Thread* thread,
ASSERT(kernel.GlobalSchedulerContext().IsLocked());
// If the thread is runnable, we want to change its affinity in the queue.
if (thread->GetRawState() == ThreadState::Runnable) {
if (thread->scheduling_state == static_cast<u32>(ThreadSchedStatus::Runnable)) {
GetPriorityQueue(kernel).ChangeAffinityMask(old_core, old_affinity, thread);
IncrementScheduledCount(thread);
SetSchedulerUpdateNeeded(kernel);
@ -290,7 +292,7 @@ void KScheduler::RotateScheduledQueue(s32 core_id, s32 priority) {
// If the best thread we can choose has a priority the same or worse than ours, try to
// migrate a higher priority thread.
if (best_thread != nullptr && best_thread->GetPriority() >= priority) {
if (best_thread != nullptr && best_thread->GetPriority() >= static_cast<u32>(priority)) {
Thread* suggested = priority_queue.GetSuggestedFront(core_id);
while (suggested != nullptr) {
// If the suggestion's priority is the same as ours, don't bother.
@ -393,8 +395,8 @@ void KScheduler::YieldWithoutCoreMigration() {
{
KScopedSchedulerLock lock(kernel);
const auto cur_state = cur_thread.GetRawState();
if (cur_state == ThreadState::Runnable) {
const auto cur_state = cur_thread.scheduling_state;
if (cur_state == static_cast<u32>(ThreadSchedStatus::Runnable)) {
// Put the current thread at the back of the queue.
Thread* next_thread = priority_queue.MoveToScheduledBack(std::addressof(cur_thread));
IncrementScheduledCount(std::addressof(cur_thread));
@ -434,8 +436,8 @@ void KScheduler::YieldWithCoreMigration() {
{
KScopedSchedulerLock lock(kernel);
const auto cur_state = cur_thread.GetRawState();
if (cur_state == ThreadState::Runnable) {
const auto cur_state = cur_thread.scheduling_state;
if (cur_state == static_cast<u32>(ThreadSchedStatus::Runnable)) {
// Get the current active core.
const s32 core_id = cur_thread.GetActiveCore();
@ -524,8 +526,8 @@ void KScheduler::YieldToAnyThread() {
{
KScopedSchedulerLock lock(kernel);
const auto cur_state = cur_thread.GetRawState();
if (cur_state == ThreadState::Runnable) {
const auto cur_state = cur_thread.scheduling_state;
if (cur_state == static_cast<u32>(ThreadSchedStatus::Runnable)) {
// Get the current active core.
const s32 core_id = cur_thread.GetActiveCore();
@ -643,7 +645,8 @@ void KScheduler::Unload(Thread* thread) {
void KScheduler::Reload(Thread* thread) {
if (thread) {
ASSERT_MSG(thread->GetState() == ThreadState::Runnable, "Thread must be runnable.");
ASSERT_MSG(thread->GetSchedulingStatus() == ThreadSchedStatus::Runnable,
"Thread must be runnable.");
// Cancel any outstanding wakeup events for this thread
thread->SetIsRunning(true);
@ -722,7 +725,7 @@ void KScheduler::SwitchToCurrent() {
do {
if (current_thread != nullptr && !current_thread->IsHLEThread()) {
current_thread->context_guard.lock();
if (current_thread->GetRawState() != ThreadState::Runnable) {
if (!current_thread->IsRunnable()) {
current_thread->context_guard.unlock();
break;
}
@ -769,7 +772,7 @@ void KScheduler::Initialize() {
{
KScopedSchedulerLock lock{system.Kernel()};
idle_thread->SetState(ThreadState::Runnable);
idle_thread->SetStatus(ThreadStatus::Ready);
}
}

View File

@ -100,10 +100,11 @@ public:
void YieldToAnyThread();
/// Notify the scheduler a thread's status has changed.
static void OnThreadStateChanged(KernelCore& kernel, Thread* thread, ThreadState old_state);
static void OnThreadStateChanged(KernelCore& kernel, Thread* thread, u32 old_state);
/// Notify the scheduler a thread's priority has changed.
static void OnThreadPriorityChanged(KernelCore& kernel, Thread* thread, s32 old_priority);
static void OnThreadPriorityChanged(KernelCore& kernel, Thread* thread, Thread* current_thread,
u32 old_priority);
/// Notify the scheduler a thread's core and/or affinity mask has changed.
static void OnThreadAffinityMaskChanged(KernelCore& kernel, Thread* thread,

View File

@ -38,6 +38,7 @@
#include "core/hle/kernel/resource_limit.h"
#include "core/hle/kernel/service_thread.h"
#include "core/hle/kernel/shared_memory.h"
#include "core/hle/kernel/synchronization.h"
#include "core/hle/kernel/thread.h"
#include "core/hle/kernel/time_manager.h"
#include "core/hle/lock.h"
@ -50,7 +51,8 @@ namespace Kernel {
struct KernelCore::Impl {
explicit Impl(Core::System& system, KernelCore& kernel)
: time_manager{system}, global_handle_table{kernel}, system{system} {}
: synchronization{system}, time_manager{system}, global_handle_table{kernel}, system{
system} {}
void SetMulticore(bool is_multicore) {
this->is_multicore = is_multicore;
@ -305,6 +307,7 @@ struct KernelCore::Impl {
std::vector<std::shared_ptr<Process>> process_list;
Process* current_process = nullptr;
std::unique_ptr<Kernel::GlobalSchedulerContext> global_scheduler_context;
Kernel::Synchronization synchronization;
Kernel::TimeManager time_manager;
std::shared_ptr<ResourceLimit> system_resource_limit;
@ -458,6 +461,14 @@ const std::array<Core::CPUInterruptHandler, Core::Hardware::NUM_CPU_CORES>& Kern
return impl->interrupts;
}
Kernel::Synchronization& KernelCore::Synchronization() {
return impl->synchronization;
}
const Kernel::Synchronization& KernelCore::Synchronization() const {
return impl->synchronization;
}
Kernel::TimeManager& KernelCore::TimeManager() {
return impl->time_manager;
}
@ -602,9 +613,9 @@ void KernelCore::Suspend(bool in_suspention) {
const bool should_suspend = exception_exited || in_suspention;
{
KScopedSchedulerLock lock(*this);
const auto state = should_suspend ? ThreadState::Runnable : ThreadState::Waiting;
ThreadStatus status = should_suspend ? ThreadStatus::Ready : ThreadStatus::WaitSleep;
for (std::size_t i = 0; i < Core::Hardware::NUM_CPU_CORES; i++) {
impl->suspend_threads[i]->SetState(state);
impl->suspend_threads[i]->SetStatus(status);
}
}
}

View File

@ -33,6 +33,7 @@ template <typename T>
class SlabHeap;
} // namespace Memory
class AddressArbiter;
class ClientPort;
class GlobalSchedulerContext;
class HandleTable;
@ -128,6 +129,12 @@ public:
/// Gets the an instance of the current physical CPU core.
const Kernel::PhysicalCore& CurrentPhysicalCore() const;
/// Gets the an instance of the Synchronization Interface.
Kernel::Synchronization& Synchronization();
/// Gets the an instance of the Synchronization Interface.
const Kernel::Synchronization& Synchronization() const;
/// Gets the an instance of the TimeManager Interface.
Kernel::TimeManager& TimeManager();

View File

@ -5,28 +5,9 @@
#pragma once
#include "common/common_types.h"
#include "core/device_memory.h"
namespace Kernel::Memory {
constexpr std::size_t KernelAslrAlignment = 2 * 1024 * 1024;
constexpr std::size_t KernelVirtualAddressSpaceWidth = 1ULL << 39;
constexpr std::size_t KernelPhysicalAddressSpaceWidth = 1ULL << 48;
constexpr std::size_t KernelVirtualAddressSpaceBase = 0ULL - KernelVirtualAddressSpaceWidth;
constexpr std::size_t KernelVirtualAddressSpaceEnd =
KernelVirtualAddressSpaceBase + (KernelVirtualAddressSpaceWidth - KernelAslrAlignment);
constexpr std::size_t KernelVirtualAddressSpaceLast = KernelVirtualAddressSpaceEnd - 1;
constexpr std::size_t KernelVirtualAddressSpaceSize =
KernelVirtualAddressSpaceEnd - KernelVirtualAddressSpaceBase;
constexpr bool IsKernelAddressKey(VAddr key) {
return KernelVirtualAddressSpaceBase <= key && key <= KernelVirtualAddressSpaceLast;
}
constexpr bool IsKernelAddress(VAddr address) {
return KernelVirtualAddressSpaceBase <= address && address < KernelVirtualAddressSpaceEnd;
}
class MemoryRegion final {
friend class MemoryLayout;

View File

@ -50,11 +50,6 @@ public:
}
virtual HandleType GetHandleType() const = 0;
void Close() {
// TODO(bunnei): This is a placeholder to decrement the reference count, which we will use
// when we implement KAutoObject instead of using shared_ptr.
}
/**
* Check if a thread can wait on the object
* @return True if a thread can wait on the object, otherwise false

View File

@ -55,7 +55,7 @@ void SetupMainThread(Core::System& system, Process& owner_process, u32 priority,
// Threads by default are dormant, wake up the main thread so it runs when the scheduler fires
{
KScopedSchedulerLock lock{kernel};
thread->SetState(ThreadState::Runnable);
thread->SetStatus(ThreadStatus::Ready);
}
}
} // Anonymous namespace
@ -162,6 +162,48 @@ u64 Process::GetTotalPhysicalMemoryUsedWithoutSystemResource() const {
return GetTotalPhysicalMemoryUsed() - GetSystemResourceUsage();
}
void Process::InsertConditionVariableThread(std::shared_ptr<Thread> thread) {
VAddr cond_var_addr = thread->GetCondVarWaitAddress();
std::list<std::shared_ptr<Thread>>& thread_list = cond_var_threads[cond_var_addr];
auto it = thread_list.begin();
while (it != thread_list.end()) {
const std::shared_ptr<Thread> current_thread = *it;
if (current_thread->GetPriority() > thread->GetPriority()) {
thread_list.insert(it, thread);
return;
}
++it;
}
thread_list.push_back(thread);
}
void Process::RemoveConditionVariableThread(std::shared_ptr<Thread> thread) {
VAddr cond_var_addr = thread->GetCondVarWaitAddress();
std::list<std::shared_ptr<Thread>>& thread_list = cond_var_threads[cond_var_addr];
auto it = thread_list.begin();
while (it != thread_list.end()) {
const std::shared_ptr<Thread> current_thread = *it;
if (current_thread.get() == thread.get()) {
thread_list.erase(it);
return;
}
++it;
}
}
std::vector<std::shared_ptr<Thread>> Process::GetConditionVariableThreads(
const VAddr cond_var_addr) {
std::vector<std::shared_ptr<Thread>> result{};
std::list<std::shared_ptr<Thread>>& thread_list = cond_var_threads[cond_var_addr];
auto it = thread_list.begin();
while (it != thread_list.end()) {
std::shared_ptr<Thread> current_thread = *it;
result.push_back(current_thread);
++it;
}
return result;
}
void Process::RegisterThread(const Thread* thread) {
thread_list.push_back(thread);
}
@ -276,7 +318,7 @@ void Process::PrepareForTermination() {
continue;
// TODO(Subv): When are the other running/ready threads terminated?
ASSERT_MSG(thread->GetState() == ThreadState::Waiting,
ASSERT_MSG(thread->GetStatus() == ThreadStatus::WaitSynch,
"Exiting processes with non-waiting threads is currently unimplemented");
thread->Stop();
@ -364,18 +406,21 @@ void Process::LoadModule(CodeSet code_set, VAddr base_addr) {
ReprotectSegment(code_set.DataSegment(), Memory::MemoryPermission::ReadAndWrite);
}
bool Process::IsSignaled() const {
ASSERT(kernel.GlobalSchedulerContext().IsLocked());
return is_signaled;
}
Process::Process(Core::System& system)
: KSynchronizationObject{system.Kernel()},
page_table{std::make_unique<Memory::PageTable>(system)}, handle_table{system.Kernel()},
address_arbiter{system}, condition_var{system}, system{system} {}
: SynchronizationObject{system.Kernel()}, page_table{std::make_unique<Memory::PageTable>(
system)},
handle_table{system.Kernel()}, address_arbiter{system}, mutex{system}, system{system} {}
Process::~Process() = default;
void Process::Acquire(Thread* thread) {
ASSERT_MSG(!ShouldWait(thread), "Object unavailable!");
}
bool Process::ShouldWait(const Thread* thread) const {
return !is_signaled;
}
void Process::ChangeStatus(ProcessStatus new_status) {
if (status == new_status) {
return;
@ -383,7 +428,7 @@ void Process::ChangeStatus(ProcessStatus new_status) {
status = new_status;
is_signaled = true;
NotifyAvailable();
Signal();
}
ResultCode Process::AllocateMainThreadStack(std::size_t stack_size) {

View File

@ -11,11 +11,11 @@
#include <unordered_map>
#include <vector>
#include "common/common_types.h"
#include "core/hle/kernel/address_arbiter.h"
#include "core/hle/kernel/handle_table.h"
#include "core/hle/kernel/k_address_arbiter.h"
#include "core/hle/kernel/k_condition_variable.h"
#include "core/hle/kernel/k_synchronization_object.h"
#include "core/hle/kernel/mutex.h"
#include "core/hle/kernel/process_capability.h"
#include "core/hle/kernel/synchronization_object.h"
#include "core/hle/result.h"
namespace Core {
@ -63,7 +63,7 @@ enum class ProcessStatus {
DebugBreak,
};
class Process final : public KSynchronizationObject {
class Process final : public SynchronizationObject {
public:
explicit Process(Core::System& system);
~Process() override;
@ -123,30 +123,24 @@ public:
return handle_table;
}
ResultCode SignalToAddress(VAddr address) {
return condition_var.SignalToAddress(address);
/// Gets a reference to the process' address arbiter.
AddressArbiter& GetAddressArbiter() {
return address_arbiter;
}
ResultCode WaitForAddress(Handle handle, VAddr address, u32 tag) {
return condition_var.WaitForAddress(handle, address, tag);
/// Gets a const reference to the process' address arbiter.
const AddressArbiter& GetAddressArbiter() const {
return address_arbiter;
}
void SignalConditionVariable(u64 cv_key, int32_t count) {
return condition_var.Signal(cv_key, count);
/// Gets a reference to the process' mutex lock.
Mutex& GetMutex() {
return mutex;
}
ResultCode WaitConditionVariable(VAddr address, u64 cv_key, u32 tag, s64 ns) {
return condition_var.Wait(address, cv_key, tag, ns);
}
ResultCode SignalAddressArbiter(VAddr address, Svc::SignalType signal_type, s32 value,
s32 count) {
return address_arbiter.SignalToAddress(address, signal_type, value, count);
}
ResultCode WaitAddressArbiter(VAddr address, Svc::ArbitrationType arb_type, s32 value,
s64 timeout) {
return address_arbiter.WaitForAddress(address, arb_type, value, timeout);
/// Gets a const reference to the process' mutex lock
const Mutex& GetMutex() const {
return mutex;
}
/// Gets the address to the process' dedicated TLS region.
@ -256,6 +250,15 @@ public:
return thread_list;
}
/// Insert a thread into the condition variable wait container
void InsertConditionVariableThread(std::shared_ptr<Thread> thread);
/// Remove a thread from the condition variable wait container
void RemoveConditionVariableThread(std::shared_ptr<Thread> thread);
/// Obtain all condition variable threads waiting for some address
std::vector<std::shared_ptr<Thread>> GetConditionVariableThreads(VAddr cond_var_addr);
/// Registers a thread as being created under this process,
/// adding it to this process' thread list.
void RegisterThread(const Thread* thread);
@ -301,8 +304,6 @@ public:
void LoadModule(CodeSet code_set, VAddr base_addr);
virtual bool IsSignaled() const override;
///////////////////////////////////////////////////////////////////////////////////////////////
// Thread-local storage management
@ -313,6 +314,12 @@ public:
void FreeTLSRegion(VAddr tls_address);
private:
/// Checks if the specified thread should wait until this process is available.
bool ShouldWait(const Thread* thread) const override;
/// Acquires/locks this process for the specified thread if it's available.
void Acquire(Thread* thread) override;
/// Changes the process status. If the status is different
/// from the current process status, then this will trigger
/// a process signal.
@ -366,12 +373,12 @@ private:
HandleTable handle_table;
/// Per-process address arbiter.
KAddressArbiter address_arbiter;
AddressArbiter address_arbiter;
/// The per-process mutex lock instance used for handling various
/// forms of services, such as lock arbitration, and condition
/// variable related facilities.
KConditionVariable condition_var;
Mutex mutex;
/// Address indicating the location of the process' dedicated TLS region.
VAddr tls_region_address = 0;
@ -382,6 +389,9 @@ private:
/// List of threads that are running with this process as their owner.
std::list<const Thread*> thread_list;
/// List of threads waiting for a condition variable
std::unordered_map<VAddr, std::list<std::shared_ptr<Thread>>> cond_var_threads;
/// Address of the top of the main thread's stack
VAddr main_thread_stack_top{};
@ -400,8 +410,6 @@ private:
/// Schedule count of this process
s64 schedule_count{};
bool is_signaled{};
/// System context
Core::System& system;
};

View File

@ -14,22 +14,24 @@
namespace Kernel {
ReadableEvent::ReadableEvent(KernelCore& kernel) : KSynchronizationObject{kernel} {}
ReadableEvent::ReadableEvent(KernelCore& kernel) : SynchronizationObject{kernel} {}
ReadableEvent::~ReadableEvent() = default;
bool ReadableEvent::ShouldWait(const Thread* thread) const {
return !is_signaled;
}
void ReadableEvent::Acquire(Thread* thread) {
ASSERT_MSG(IsSignaled(), "object unavailable!");
}
void ReadableEvent::Signal() {
if (is_signaled) {
return;
}
is_signaled = true;
NotifyAvailable();
}
bool ReadableEvent::IsSignaled() const {
ASSERT(kernel.GlobalSchedulerContext().IsLocked());
return is_signaled;
SynchronizationObject::Signal();
}
void ReadableEvent::Clear() {

View File

@ -4,8 +4,8 @@
#pragma once
#include "core/hle/kernel/k_synchronization_object.h"
#include "core/hle/kernel/object.h"
#include "core/hle/kernel/synchronization_object.h"
union ResultCode;
@ -14,7 +14,7 @@ namespace Kernel {
class KernelCore;
class WritableEvent;
class ReadableEvent final : public KSynchronizationObject {
class ReadableEvent final : public SynchronizationObject {
friend class WritableEvent;
public:
@ -32,6 +32,9 @@ public:
return HANDLE_TYPE;
}
bool ShouldWait(const Thread* thread) const override;
void Acquire(Thread* thread) override;
/// Unconditionally clears the readable event's state.
void Clear();
@ -43,14 +46,11 @@ public:
/// then ERR_INVALID_STATE will be returned.
ResultCode Reset();
void Signal();
virtual bool IsSignaled() const override;
void Signal() override;
private:
explicit ReadableEvent(KernelCore& kernel);
bool is_signaled{};
std::string name; ///< Name of event (optional)
};

View File

@ -13,7 +13,7 @@
namespace Kernel {
ServerPort::ServerPort(KernelCore& kernel) : KSynchronizationObject{kernel} {}
ServerPort::ServerPort(KernelCore& kernel) : SynchronizationObject{kernel} {}
ServerPort::~ServerPort() = default;
ResultVal<std::shared_ptr<ServerSession>> ServerPort::Accept() {
@ -28,9 +28,15 @@ ResultVal<std::shared_ptr<ServerSession>> ServerPort::Accept() {
void ServerPort::AppendPendingSession(std::shared_ptr<ServerSession> pending_session) {
pending_sessions.push_back(std::move(pending_session));
if (pending_sessions.size() == 1) {
NotifyAvailable();
}
}
bool ServerPort::ShouldWait(const Thread* thread) const {
// If there are no pending sessions, we wait until a new one is added.
return pending_sessions.empty();
}
void ServerPort::Acquire(Thread* thread) {
ASSERT_MSG(!ShouldWait(thread), "object unavailable!");
}
bool ServerPort::IsSignaled() const {

View File

@ -9,8 +9,8 @@
#include <utility>
#include <vector>
#include "common/common_types.h"
#include "core/hle/kernel/k_synchronization_object.h"
#include "core/hle/kernel/object.h"
#include "core/hle/kernel/synchronization_object.h"
#include "core/hle/result.h"
namespace Kernel {
@ -20,7 +20,7 @@ class KernelCore;
class ServerSession;
class SessionRequestHandler;
class ServerPort final : public KSynchronizationObject {
class ServerPort final : public SynchronizationObject {
public:
explicit ServerPort(KernelCore& kernel);
~ServerPort() override;
@ -79,7 +79,10 @@ public:
/// waiting to be accepted by this port.
void AppendPendingSession(std::shared_ptr<ServerSession> pending_session);
virtual bool IsSignaled() const override;
bool ShouldWait(const Thread* thread) const override;
void Acquire(Thread* thread) override;
bool IsSignaled() const override;
private:
/// ServerSessions waiting to be accepted by the port

View File

@ -24,7 +24,7 @@
namespace Kernel {
ServerSession::ServerSession(KernelCore& kernel) : KSynchronizationObject{kernel} {}
ServerSession::ServerSession(KernelCore& kernel) : SynchronizationObject{kernel} {}
ServerSession::~ServerSession() {
kernel.ReleaseServiceThread(service_thread);
@ -42,6 +42,16 @@ ResultVal<std::shared_ptr<ServerSession>> ServerSession::Create(KernelCore& kern
return MakeResult(std::move(session));
}
bool ServerSession::ShouldWait(const Thread* thread) const {
// Closed sessions should never wait, an error will be returned from svcReplyAndReceive.
if (!parent->Client()) {
return false;
}
// Wait if we have no pending requests, or if we're currently handling a request.
return pending_requesting_threads.empty() || currently_handling != nullptr;
}
bool ServerSession::IsSignaled() const {
// Closed sessions should never wait, an error will be returned from svcReplyAndReceive.
if (!parent->Client()) {
@ -52,6 +62,15 @@ bool ServerSession::IsSignaled() const {
return !pending_requesting_threads.empty() && currently_handling == nullptr;
}
void ServerSession::Acquire(Thread* thread) {
ASSERT_MSG(!ShouldWait(thread), "object unavailable!");
// We are now handling a request, pop it from the stack.
// TODO(Subv): What happens if the client endpoint is closed before any requests are made?
ASSERT(!pending_requesting_threads.empty());
currently_handling = pending_requesting_threads.back();
pending_requesting_threads.pop_back();
}
void ServerSession::ClientDisconnected() {
// We keep a shared pointer to the hle handler to keep it alive throughout
// the call to ClientDisconnected, as ClientDisconnected invalidates the
@ -153,7 +172,7 @@ ResultCode ServerSession::CompleteSyncRequest(HLERequestContext& context) {
{
KScopedSchedulerLock lock(kernel);
if (!context.IsThreadWaiting()) {
context.GetThread().Wakeup();
context.GetThread().ResumeFromWait();
context.GetThread().SetSynchronizationResults(nullptr, result);
}
}

View File

@ -10,8 +10,8 @@
#include <vector>
#include "common/threadsafe_queue.h"
#include "core/hle/kernel/k_synchronization_object.h"
#include "core/hle/kernel/service_thread.h"
#include "core/hle/kernel/synchronization_object.h"
#include "core/hle/result.h"
namespace Core::Memory {
@ -43,7 +43,7 @@ class Thread;
* After the server replies to the request, the response is marshalled back to the caller's
* TLS buffer and control is transferred back to it.
*/
class ServerSession final : public KSynchronizationObject {
class ServerSession final : public SynchronizationObject {
friend class ServiceThread;
public:
@ -77,6 +77,8 @@ public:
return parent.get();
}
bool IsSignaled() const override;
/**
* Sets the HLE handler for the session. This handler will be called to service IPC requests
* instead of the regular IPC machinery. (The regular IPC machinery is currently not
@ -98,6 +100,10 @@ public:
ResultCode HandleSyncRequest(std::shared_ptr<Thread> thread, Core::Memory::Memory& memory,
Core::Timing::CoreTiming& core_timing);
bool ShouldWait(const Thread* thread) const override;
void Acquire(Thread* thread) override;
/// Called when a client disconnection occurs.
void ClientDisconnected();
@ -124,8 +130,6 @@ public:
convert_to_domain = true;
}
virtual bool IsSignaled() const override;
private:
/// Queues a sync request from the emulated application.
ResultCode QueueSyncRequest(std::shared_ptr<Thread> thread, Core::Memory::Memory& memory);

View File

@ -9,7 +9,7 @@
namespace Kernel {
Session::Session(KernelCore& kernel) : KSynchronizationObject{kernel} {}
Session::Session(KernelCore& kernel) : SynchronizationObject{kernel} {}
Session::~Session() = default;
Session::SessionPair Session::Create(KernelCore& kernel, std::string name) {
@ -24,9 +24,18 @@ Session::SessionPair Session::Create(KernelCore& kernel, std::string name) {
return std::make_pair(std::move(client_session), std::move(server_session));
}
bool Session::ShouldWait(const Thread* thread) const {
UNIMPLEMENTED();
return {};
}
bool Session::IsSignaled() const {
UNIMPLEMENTED();
return true;
}
void Session::Acquire(Thread* thread) {
UNIMPLEMENTED();
}
} // namespace Kernel

View File

@ -8,7 +8,7 @@
#include <string>
#include <utility>
#include "core/hle/kernel/k_synchronization_object.h"
#include "core/hle/kernel/synchronization_object.h"
namespace Kernel {
@ -19,7 +19,7 @@ class ServerSession;
* Parent structure to link the client and server endpoints of a session with their associated
* client port.
*/
class Session final : public KSynchronizationObject {
class Session final : public SynchronizationObject {
public:
explicit Session(KernelCore& kernel);
~Session() override;
@ -37,8 +37,12 @@ public:
return HANDLE_TYPE;
}
bool ShouldWait(const Thread* thread) const override;
bool IsSignaled() const override;
void Acquire(Thread* thread) override;
std::shared_ptr<ClientSession> Client() {
if (auto result{client.lock()}) {
return result;

View File

@ -10,7 +10,6 @@
#include "common/alignment.h"
#include "common/assert.h"
#include "common/common_funcs.h"
#include "common/fiber.h"
#include "common/logging/log.h"
#include "common/microprofile.h"
@ -20,28 +19,26 @@
#include "core/core_timing.h"
#include "core/core_timing_util.h"
#include "core/cpu_manager.h"
#include "core/hle/kernel/address_arbiter.h"
#include "core/hle/kernel/client_port.h"
#include "core/hle/kernel/client_session.h"
#include "core/hle/kernel/errors.h"
#include "core/hle/kernel/handle_table.h"
#include "core/hle/kernel/k_address_arbiter.h"
#include "core/hle/kernel/k_condition_variable.h"
#include "core/hle/kernel/k_scheduler.h"
#include "core/hle/kernel/k_scoped_scheduler_lock_and_sleep.h"
#include "core/hle/kernel/k_synchronization_object.h"
#include "core/hle/kernel/kernel.h"
#include "core/hle/kernel/memory/memory_block.h"
#include "core/hle/kernel/memory/memory_layout.h"
#include "core/hle/kernel/memory/page_table.h"
#include "core/hle/kernel/mutex.h"
#include "core/hle/kernel/physical_core.h"
#include "core/hle/kernel/process.h"
#include "core/hle/kernel/readable_event.h"
#include "core/hle/kernel/resource_limit.h"
#include "core/hle/kernel/shared_memory.h"
#include "core/hle/kernel/svc.h"
#include "core/hle/kernel/svc_results.h"
#include "core/hle/kernel/svc_types.h"
#include "core/hle/kernel/svc_wrap.h"
#include "core/hle/kernel/synchronization.h"
#include "core/hle/kernel/thread.h"
#include "core/hle/kernel/time_manager.h"
#include "core/hle/kernel/transfer_memory.h"
@ -346,10 +343,27 @@ static ResultCode SendSyncRequest(Core::System& system, Handle handle) {
auto thread = kernel.CurrentScheduler()->GetCurrentThread();
{
KScopedSchedulerLock lock(kernel);
thread->SetState(ThreadState::Waiting);
thread->InvalidateHLECallback();
thread->SetStatus(ThreadStatus::WaitIPC);
session->SendSyncRequest(SharedFrom(thread), system.Memory(), system.CoreTiming());
}
if (thread->HasHLECallback()) {
Handle event_handle = thread->GetHLETimeEvent();
if (event_handle != InvalidHandle) {
auto& time_manager = kernel.TimeManager();
time_manager.UnscheduleTimeEvent(event_handle);
}
{
KScopedSchedulerLock lock(kernel);
auto* sync_object = thread->GetHLESyncObject();
sync_object->RemoveWaitingThread(SharedFrom(thread));
}
thread->InvokeHLECallback(SharedFrom(thread));
}
return thread->GetSignalingResult();
}
@ -422,7 +436,7 @@ static ResultCode GetProcessId32(Core::System& system, u32* process_id_low, u32*
}
/// Wait for the given handles to synchronize, timeout after the specified nanoseconds
static ResultCode WaitSynchronization(Core::System& system, s32* index, VAddr handles_address,
static ResultCode WaitSynchronization(Core::System& system, Handle* index, VAddr handles_address,
u64 handle_count, s64 nano_seconds) {
LOG_TRACE(Kernel_SVC, "called handles_address=0x{:X}, handle_count={}, nano_seconds={}",
handles_address, handle_count, nano_seconds);
@ -444,26 +458,28 @@ static ResultCode WaitSynchronization(Core::System& system, s32* index, VAddr ha
}
auto& kernel = system.Kernel();
std::vector<KSynchronizationObject*> objects(handle_count);
Thread::ThreadSynchronizationObjects objects(handle_count);
const auto& handle_table = kernel.CurrentProcess()->GetHandleTable();
for (u64 i = 0; i < handle_count; ++i) {
const Handle handle = memory.Read32(handles_address + i * sizeof(Handle));
const auto object = handle_table.Get<KSynchronizationObject>(handle);
const auto object = handle_table.Get<SynchronizationObject>(handle);
if (object == nullptr) {
LOG_ERROR(Kernel_SVC, "Object is a nullptr");
return ERR_INVALID_HANDLE;
}
objects[i] = object.get();
objects[i] = object;
}
return KSynchronizationObject::Wait(kernel, index, objects.data(),
static_cast<s32>(objects.size()), nano_seconds);
auto& synchronization = kernel.Synchronization();
const auto [result, handle_result] = synchronization.WaitFor(objects, nano_seconds);
*index = handle_result;
return result;
}
static ResultCode WaitSynchronization32(Core::System& system, u32 timeout_low, u32 handles_address,
s32 handle_count, u32 timeout_high, s32* index) {
s32 handle_count, u32 timeout_high, Handle* index) {
const s64 nano_seconds{(static_cast<s64>(timeout_high) << 32) | static_cast<s64>(timeout_low)};
return WaitSynchronization(system, index, handles_address, handle_count, nano_seconds);
}
@ -488,37 +504,56 @@ static ResultCode CancelSynchronization32(Core::System& system, Handle thread_ha
return CancelSynchronization(system, thread_handle);
}
/// Attempts to locks a mutex
static ResultCode ArbitrateLock(Core::System& system, Handle thread_handle, VAddr address,
u32 tag) {
LOG_TRACE(Kernel_SVC, "called thread_handle=0x{:08X}, address=0x{:X}, tag=0x{:08X}",
thread_handle, address, tag);
/// Attempts to locks a mutex, creating it if it does not already exist
static ResultCode ArbitrateLock(Core::System& system, Handle holding_thread_handle,
VAddr mutex_addr, Handle requesting_thread_handle) {
LOG_TRACE(Kernel_SVC,
"called holding_thread_handle=0x{:08X}, mutex_addr=0x{:X}, "
"requesting_current_thread_handle=0x{:08X}",
holding_thread_handle, mutex_addr, requesting_thread_handle);
// Validate the input address.
R_UNLESS(!Memory::IsKernelAddress(address), Svc::ResultInvalidCurrentMemory);
R_UNLESS(Common::IsAligned(address, sizeof(u32)), Svc::ResultInvalidAddress);
if (Core::Memory::IsKernelVirtualAddress(mutex_addr)) {
LOG_ERROR(Kernel_SVC, "Mutex Address is a kernel virtual address, mutex_addr={:016X}",
mutex_addr);
return ERR_INVALID_ADDRESS_STATE;
}
return system.Kernel().CurrentProcess()->WaitForAddress(thread_handle, address, tag);
if (!Common::IsWordAligned(mutex_addr)) {
LOG_ERROR(Kernel_SVC, "Mutex Address is not word aligned, mutex_addr={:016X}", mutex_addr);
return ERR_INVALID_ADDRESS;
}
auto* const current_process = system.Kernel().CurrentProcess();
return current_process->GetMutex().TryAcquire(mutex_addr, holding_thread_handle,
requesting_thread_handle);
}
static ResultCode ArbitrateLock32(Core::System& system, Handle thread_handle, u32 address,
u32 tag) {
return ArbitrateLock(system, thread_handle, address, tag);
static ResultCode ArbitrateLock32(Core::System& system, Handle holding_thread_handle,
u32 mutex_addr, Handle requesting_thread_handle) {
return ArbitrateLock(system, holding_thread_handle, mutex_addr, requesting_thread_handle);
}
/// Unlock a mutex
static ResultCode ArbitrateUnlock(Core::System& system, VAddr address) {
LOG_TRACE(Kernel_SVC, "called address=0x{:X}", address);
static ResultCode ArbitrateUnlock(Core::System& system, VAddr mutex_addr) {
LOG_TRACE(Kernel_SVC, "called mutex_addr=0x{:X}", mutex_addr);
// Validate the input address.
R_UNLESS(!Memory::IsKernelAddress(address), Svc::ResultInvalidCurrentMemory);
R_UNLESS(Common::IsAligned(address, sizeof(u32)), Svc::ResultInvalidAddress);
if (Core::Memory::IsKernelVirtualAddress(mutex_addr)) {
LOG_ERROR(Kernel_SVC, "Mutex Address is a kernel virtual address, mutex_addr={:016X}",
mutex_addr);
return ERR_INVALID_ADDRESS_STATE;
}
return system.Kernel().CurrentProcess()->SignalToAddress(address);
if (!Common::IsWordAligned(mutex_addr)) {
LOG_ERROR(Kernel_SVC, "Mutex Address is not word aligned, mutex_addr={:016X}", mutex_addr);
return ERR_INVALID_ADDRESS;
}
auto* const current_process = system.Kernel().CurrentProcess();
return current_process->GetMutex().Release(mutex_addr);
}
static ResultCode ArbitrateUnlock32(Core::System& system, u32 address) {
return ArbitrateUnlock(system, address);
static ResultCode ArbitrateUnlock32(Core::System& system, u32 mutex_addr) {
return ArbitrateUnlock(system, mutex_addr);
}
enum class BreakType : u32 {
@ -1145,7 +1180,7 @@ static ResultCode SetThreadPriority(Core::System& system, Handle handle, u32 pri
return ERR_INVALID_HANDLE;
}
thread->SetBasePriority(priority);
thread->SetPriority(priority);
return RESULT_SUCCESS;
}
@ -1524,7 +1559,7 @@ static ResultCode StartThread(Core::System& system, Handle thread_handle) {
return ERR_INVALID_HANDLE;
}
ASSERT(thread->GetState() == ThreadState::Initialized);
ASSERT(thread->GetStatus() == ThreadStatus::Dormant);
return thread->Start();
}
@ -1585,135 +1620,224 @@ static void SleepThread32(Core::System& system, u32 nanoseconds_low, u32 nanosec
}
/// Wait process wide key atomic
static ResultCode WaitProcessWideKeyAtomic(Core::System& system, VAddr address, VAddr cv_key,
u32 tag, s64 timeout_ns) {
LOG_TRACE(Kernel_SVC, "called address={:X}, cv_key={:X}, tag=0x{:08X}, timeout_ns={}", address,
cv_key, tag, timeout_ns);
static ResultCode WaitProcessWideKeyAtomic(Core::System& system, VAddr mutex_addr,
VAddr condition_variable_addr, Handle thread_handle,
s64 nano_seconds) {
LOG_TRACE(
Kernel_SVC,
"called mutex_addr={:X}, condition_variable_addr={:X}, thread_handle=0x{:08X}, timeout={}",
mutex_addr, condition_variable_addr, thread_handle, nano_seconds);
// Validate input.
R_UNLESS(!Memory::IsKernelAddress(address), Svc::ResultInvalidCurrentMemory);
R_UNLESS(Common::IsAligned(address, sizeof(int32_t)), Svc::ResultInvalidAddress);
// Convert timeout from nanoseconds to ticks.
s64 timeout{};
if (timeout_ns > 0) {
const s64 offset_tick(timeout_ns);
if (offset_tick > 0) {
timeout = offset_tick + 2;
if (timeout <= 0) {
timeout = std::numeric_limits<s64>::max();
}
} else {
timeout = std::numeric_limits<s64>::max();
}
} else {
timeout = timeout_ns;
if (Core::Memory::IsKernelVirtualAddress(mutex_addr)) {
LOG_ERROR(
Kernel_SVC,
"Given mutex address must not be within the kernel address space. address=0x{:016X}",
mutex_addr);
return ERR_INVALID_ADDRESS_STATE;
}
// Wait on the condition variable.
return system.Kernel().CurrentProcess()->WaitConditionVariable(
address, Common::AlignDown(cv_key, sizeof(u32)), tag, timeout);
if (!Common::IsWordAligned(mutex_addr)) {
LOG_ERROR(Kernel_SVC, "Given mutex address must be word-aligned. address=0x{:016X}",
mutex_addr);
return ERR_INVALID_ADDRESS;
}
ASSERT(condition_variable_addr == Common::AlignDown(condition_variable_addr, 4));
auto& kernel = system.Kernel();
Handle event_handle;
Thread* current_thread = kernel.CurrentScheduler()->GetCurrentThread();
auto* const current_process = kernel.CurrentProcess();
{
KScopedSchedulerLockAndSleep lock(kernel, event_handle, current_thread, nano_seconds);
const auto& handle_table = current_process->GetHandleTable();
std::shared_ptr<Thread> thread = handle_table.Get<Thread>(thread_handle);
ASSERT(thread);
current_thread->SetSynchronizationResults(nullptr, RESULT_TIMEOUT);
if (thread->IsPendingTermination()) {
lock.CancelSleep();
return ERR_THREAD_TERMINATING;
}
const auto release_result = current_process->GetMutex().Release(mutex_addr);
if (release_result.IsError()) {
lock.CancelSleep();
return release_result;
}
if (nano_seconds == 0) {
lock.CancelSleep();
return RESULT_TIMEOUT;
}
current_thread->SetCondVarWaitAddress(condition_variable_addr);
current_thread->SetMutexWaitAddress(mutex_addr);
current_thread->SetWaitHandle(thread_handle);
current_thread->SetStatus(ThreadStatus::WaitCondVar);
current_process->InsertConditionVariableThread(SharedFrom(current_thread));
}
if (event_handle != InvalidHandle) {
auto& time_manager = kernel.TimeManager();
time_manager.UnscheduleTimeEvent(event_handle);
}
{
KScopedSchedulerLock lock(kernel);
auto* owner = current_thread->GetLockOwner();
if (owner != nullptr) {
owner->RemoveMutexWaiter(SharedFrom(current_thread));
}
current_process->RemoveConditionVariableThread(SharedFrom(current_thread));
}
// Note: Deliberately don't attempt to inherit the lock owner's priority.
return current_thread->GetSignalingResult();
}
static ResultCode WaitProcessWideKeyAtomic32(Core::System& system, u32 address, u32 cv_key, u32 tag,
u32 timeout_ns_low, u32 timeout_ns_high) {
const auto timeout_ns = static_cast<s64>(timeout_ns_low | (u64{timeout_ns_high} << 32));
return WaitProcessWideKeyAtomic(system, address, cv_key, tag, timeout_ns);
static ResultCode WaitProcessWideKeyAtomic32(Core::System& system, u32 mutex_addr,
u32 condition_variable_addr, Handle thread_handle,
u32 nanoseconds_low, u32 nanoseconds_high) {
const auto nanoseconds = static_cast<s64>(nanoseconds_low | (u64{nanoseconds_high} << 32));
return WaitProcessWideKeyAtomic(system, mutex_addr, condition_variable_addr, thread_handle,
nanoseconds);
}
/// Signal process wide key
static void SignalProcessWideKey(Core::System& system, VAddr cv_key, s32 count) {
LOG_TRACE(Kernel_SVC, "called, cv_key=0x{:X}, count=0x{:08X}", cv_key, count);
static void SignalProcessWideKey(Core::System& system, VAddr condition_variable_addr, s32 target) {
LOG_TRACE(Kernel_SVC, "called, condition_variable_addr=0x{:X}, target=0x{:08X}",
condition_variable_addr, target);
// Signal the condition variable.
return system.Kernel().CurrentProcess()->SignalConditionVariable(
Common::AlignDown(cv_key, sizeof(u32)), count);
}
ASSERT(condition_variable_addr == Common::AlignDown(condition_variable_addr, 4));
static void SignalProcessWideKey32(Core::System& system, u32 cv_key, s32 count) {
SignalProcessWideKey(system, cv_key, count);
}
// Retrieve a list of all threads that are waiting for this condition variable.
auto& kernel = system.Kernel();
KScopedSchedulerLock lock(kernel);
auto* const current_process = kernel.CurrentProcess();
std::vector<std::shared_ptr<Thread>> waiting_threads =
current_process->GetConditionVariableThreads(condition_variable_addr);
namespace {
// Only process up to 'target' threads, unless 'target' is less equal 0, in which case process
// them all.
std::size_t last = waiting_threads.size();
if (target > 0) {
last = std::min(waiting_threads.size(), static_cast<std::size_t>(target));
}
for (std::size_t index = 0; index < last; ++index) {
auto& thread = waiting_threads[index];
constexpr bool IsValidSignalType(Svc::SignalType type) {
switch (type) {
case Svc::SignalType::Signal:
case Svc::SignalType::SignalAndIncrementIfEqual:
case Svc::SignalType::SignalAndModifyByWaitingCountIfEqual:
return true;
default:
return false;
ASSERT(thread->GetCondVarWaitAddress() == condition_variable_addr);
// liberate Cond Var Thread.
current_process->RemoveConditionVariableThread(thread);
const std::size_t current_core = system.CurrentCoreIndex();
auto& monitor = system.Monitor();
// Atomically read the value of the mutex.
u32 mutex_val = 0;
u32 update_val = 0;
const VAddr mutex_address = thread->GetMutexWaitAddress();
do {
// If the mutex is not yet acquired, acquire it.
mutex_val = monitor.ExclusiveRead32(current_core, mutex_address);
if (mutex_val != 0) {
update_val = mutex_val | Mutex::MutexHasWaitersFlag;
} else {
update_val = thread->GetWaitHandle();
}
} while (!monitor.ExclusiveWrite32(current_core, mutex_address, update_val));
monitor.ClearExclusive();
if (mutex_val == 0) {
// We were able to acquire the mutex, resume this thread.
auto* const lock_owner = thread->GetLockOwner();
if (lock_owner != nullptr) {
lock_owner->RemoveMutexWaiter(thread);
}
thread->SetLockOwner(nullptr);
thread->SetSynchronizationResults(nullptr, RESULT_SUCCESS);
thread->ResumeFromWait();
} else {
// The mutex is already owned by some other thread, make this thread wait on it.
const Handle owner_handle = static_cast<Handle>(mutex_val & Mutex::MutexOwnerMask);
const auto& handle_table = system.Kernel().CurrentProcess()->GetHandleTable();
auto owner = handle_table.Get<Thread>(owner_handle);
ASSERT(owner);
if (thread->GetStatus() == ThreadStatus::WaitCondVar) {
thread->SetStatus(ThreadStatus::WaitMutex);
}
owner->AddMutexWaiter(thread);
}
}
}
constexpr bool IsValidArbitrationType(Svc::ArbitrationType type) {
switch (type) {
case Svc::ArbitrationType::WaitIfLessThan:
case Svc::ArbitrationType::DecrementAndWaitIfLessThan:
case Svc::ArbitrationType::WaitIfEqual:
return true;
default:
return false;
}
static void SignalProcessWideKey32(Core::System& system, u32 condition_variable_addr, s32 target) {
SignalProcessWideKey(system, condition_variable_addr, target);
}
} // namespace
// Wait for an address (via Address Arbiter)
static ResultCode WaitForAddress(Core::System& system, VAddr address, Svc::ArbitrationType arb_type,
s32 value, s64 timeout_ns) {
LOG_TRACE(Kernel_SVC, "called, address=0x{:X}, arb_type=0x{:X}, value=0x{:X}, timeout_ns={}",
address, arb_type, value, timeout_ns);
static ResultCode WaitForAddress(Core::System& system, VAddr address, u32 type, s32 value,
s64 timeout) {
LOG_TRACE(Kernel_SVC, "called, address=0x{:X}, type=0x{:X}, value=0x{:X}, timeout={}", address,
type, value, timeout);
// Validate input.
R_UNLESS(!Memory::IsKernelAddress(address), Svc::ResultInvalidCurrentMemory);
R_UNLESS(Common::IsAligned(address, sizeof(int32_t)), Svc::ResultInvalidAddress);
R_UNLESS(IsValidArbitrationType(arb_type), Svc::ResultInvalidEnumValue);
// Convert timeout from nanoseconds to ticks.
s64 timeout{};
if (timeout_ns > 0) {
const s64 offset_tick(timeout_ns);
if (offset_tick > 0) {
timeout = offset_tick + 2;
if (timeout <= 0) {
timeout = std::numeric_limits<s64>::max();
}
} else {
timeout = std::numeric_limits<s64>::max();
}
} else {
timeout = timeout_ns;
// If the passed address is a kernel virtual address, return invalid memory state.
if (Core::Memory::IsKernelVirtualAddress(address)) {
LOG_ERROR(Kernel_SVC, "Address is a kernel virtual address, address={:016X}", address);
return ERR_INVALID_ADDRESS_STATE;
}
return system.Kernel().CurrentProcess()->WaitAddressArbiter(address, arb_type, value, timeout);
// If the address is not properly aligned to 4 bytes, return invalid address.
if (!Common::IsWordAligned(address)) {
LOG_ERROR(Kernel_SVC, "Address is not word aligned, address={:016X}", address);
return ERR_INVALID_ADDRESS;
}
const auto arbitration_type = static_cast<AddressArbiter::ArbitrationType>(type);
auto& address_arbiter = system.Kernel().CurrentProcess()->GetAddressArbiter();
const ResultCode result =
address_arbiter.WaitForAddress(address, arbitration_type, value, timeout);
return result;
}
static ResultCode WaitForAddress32(Core::System& system, u32 address, Svc::ArbitrationType arb_type,
s32 value, u32 timeout_ns_low, u32 timeout_ns_high) {
const auto timeout = static_cast<s64>(timeout_ns_low | (u64{timeout_ns_high} << 32));
return WaitForAddress(system, address, arb_type, value, timeout);
static ResultCode WaitForAddress32(Core::System& system, u32 address, u32 type, s32 value,
u32 timeout_low, u32 timeout_high) {
const auto timeout = static_cast<s64>(timeout_low | (u64{timeout_high} << 32));
return WaitForAddress(system, address, type, value, timeout);
}
// Signals to an address (via Address Arbiter)
static ResultCode SignalToAddress(Core::System& system, VAddr address, Svc::SignalType signal_type,
s32 value, s32 count) {
LOG_TRACE(Kernel_SVC, "called, address=0x{:X}, signal_type=0x{:X}, value=0x{:X}, count=0x{:X}",
address, signal_type, value, count);
static ResultCode SignalToAddress(Core::System& system, VAddr address, u32 type, s32 value,
s32 num_to_wake) {
LOG_TRACE(Kernel_SVC, "called, address=0x{:X}, type=0x{:X}, value=0x{:X}, num_to_wake=0x{:X}",
address, type, value, num_to_wake);
// Validate input.
R_UNLESS(!Memory::IsKernelAddress(address), Svc::ResultInvalidCurrentMemory);
R_UNLESS(Common::IsAligned(address, sizeof(s32)), Svc::ResultInvalidAddress);
R_UNLESS(IsValidSignalType(signal_type), Svc::ResultInvalidEnumValue);
// If the passed address is a kernel virtual address, return invalid memory state.
if (Core::Memory::IsKernelVirtualAddress(address)) {
LOG_ERROR(Kernel_SVC, "Address is a kernel virtual address, address={:016X}", address);
return ERR_INVALID_ADDRESS_STATE;
}
return system.Kernel().CurrentProcess()->SignalAddressArbiter(address, signal_type, value,
count);
// If the address is not properly aligned to 4 bytes, return invalid address.
if (!Common::IsWordAligned(address)) {
LOG_ERROR(Kernel_SVC, "Address is not word aligned, address={:016X}", address);
return ERR_INVALID_ADDRESS;
}
const auto signal_type = static_cast<AddressArbiter::SignalType>(type);
auto& address_arbiter = system.Kernel().CurrentProcess()->GetAddressArbiter();
return address_arbiter.SignalToAddress(address, signal_type, value, num_to_wake);
}
static ResultCode SignalToAddress32(Core::System& system, u32 address, Svc::SignalType signal_type,
s32 value, s32 count) {
return SignalToAddress(system, address, signal_type, value, count);
static ResultCode SignalToAddress32(Core::System& system, u32 address, u32 type, s32 value,
s32 num_to_wake) {
return SignalToAddress(system, address, type, value, num_to_wake);
}
static void KernelDebug([[maybe_unused]] Core::System& system,

View File

@ -65,16 +65,4 @@ struct MemoryInfo {
u32 padding{};
};
enum class SignalType : u32 {
Signal = 0,
SignalAndIncrementIfEqual = 1,
SignalAndModifyByWaitingCountIfEqual = 2,
};
enum class ArbitrationType : u32 {
WaitIfLessThan = 0,
DecrementAndWaitIfLessThan = 1,
WaitIfEqual = 2,
};
} // namespace Kernel::Svc

View File

@ -7,7 +7,6 @@
#include "common/common_types.h"
#include "core/arm/arm_interface.h"
#include "core/core.h"
#include "core/hle/kernel/svc_types.h"
#include "core/hle/result.h"
namespace Kernel {
@ -216,10 +215,9 @@ void SvcWrap64(Core::System& system) {
func(system, static_cast<u32>(Param(system, 0)), Param(system, 1), Param(system, 2)).raw);
}
// Used by WaitSynchronization
template <ResultCode func(Core::System&, s32*, u64, u64, s64)>
template <ResultCode func(Core::System&, u32*, u64, u64, s64)>
void SvcWrap64(Core::System& system) {
s32 param_1 = 0;
u32 param_1 = 0;
const u32 retval = func(system, &param_1, Param(system, 1), static_cast<u32>(Param(system, 2)),
static_cast<s64>(Param(system, 3)))
.raw;
@ -278,22 +276,18 @@ void SvcWrap64(Core::System& system) {
FuncReturn(system, retval);
}
// Used by WaitForAddress
template <ResultCode func(Core::System&, u64, Svc::ArbitrationType, s32, s64)>
template <ResultCode func(Core::System&, u64, u32, s32, s64)>
void SvcWrap64(Core::System& system) {
FuncReturn(system,
func(system, Param(system, 0), static_cast<Svc::ArbitrationType>(Param(system, 1)),
static_cast<s32>(Param(system, 2)), static_cast<s64>(Param(system, 3)))
.raw);
FuncReturn(system, func(system, Param(system, 0), static_cast<u32>(Param(system, 1)),
static_cast<s32>(Param(system, 2)), static_cast<s64>(Param(system, 3)))
.raw);
}
// Used by SignalToAddress
template <ResultCode func(Core::System&, u64, Svc::SignalType, s32, s32)>
template <ResultCode func(Core::System&, u64, u32, s32, s32)>
void SvcWrap64(Core::System& system) {
FuncReturn(system,
func(system, Param(system, 0), static_cast<Svc::SignalType>(Param(system, 1)),
static_cast<s32>(Param(system, 2)), static_cast<s32>(Param(system, 3)))
.raw);
FuncReturn(system, func(system, Param(system, 0), static_cast<u32>(Param(system, 1)),
static_cast<s32>(Param(system, 2)), static_cast<s32>(Param(system, 3)))
.raw);
}
////////////////////////////////////////////////////////////////////////////////////////////////////
@ -509,23 +503,22 @@ void SvcWrap32(Core::System& system) {
}
// Used by WaitForAddress32
template <ResultCode func(Core::System&, u32, Svc::ArbitrationType, s32, u32, u32)>
template <ResultCode func(Core::System&, u32, u32, s32, u32, u32)>
void SvcWrap32(Core::System& system) {
const u32 retval = func(system, static_cast<u32>(Param(system, 0)),
static_cast<Svc::ArbitrationType>(Param(system, 1)),
static_cast<s32>(Param(system, 2)), static_cast<u32>(Param(system, 3)),
static_cast<u32>(Param(system, 4)))
static_cast<u32>(Param(system, 1)), static_cast<s32>(Param(system, 2)),
static_cast<u32>(Param(system, 3)), static_cast<u32>(Param(system, 4)))
.raw;
FuncReturn(system, retval);
}
// Used by SignalToAddress32
template <ResultCode func(Core::System&, u32, Svc::SignalType, s32, s32)>
template <ResultCode func(Core::System&, u32, u32, s32, s32)>
void SvcWrap32(Core::System& system) {
const u32 retval = func(system, static_cast<u32>(Param(system, 0)),
static_cast<Svc::SignalType>(Param(system, 1)),
static_cast<s32>(Param(system, 2)), static_cast<s32>(Param(system, 3)))
.raw;
const u32 retval =
func(system, static_cast<u32>(Param(system, 0)), static_cast<u32>(Param(system, 1)),
static_cast<s32>(Param(system, 2)), static_cast<s32>(Param(system, 3)))
.raw;
FuncReturn(system, retval);
}
@ -546,9 +539,9 @@ void SvcWrap32(Core::System& system) {
}
// Used by WaitSynchronization32
template <ResultCode func(Core::System&, u32, u32, s32, u32, s32*)>
template <ResultCode func(Core::System&, u32, u32, s32, u32, Handle*)>
void SvcWrap32(Core::System& system) {
s32 param_1 = 0;
u32 param_1 = 0;
const u32 retval = func(system, Param32(system, 0), Param32(system, 1), Param32(system, 2),
Param32(system, 3), &param_1)
.raw;

View File

@ -17,11 +17,9 @@
#include "core/hardware_properties.h"
#include "core/hle/kernel/errors.h"
#include "core/hle/kernel/handle_table.h"
#include "core/hle/kernel/k_condition_variable.h"
#include "core/hle/kernel/k_scheduler.h"
#include "core/hle/kernel/k_scoped_scheduler_lock_and_sleep.h"
#include "core/hle/kernel/kernel.h"
#include "core/hle/kernel/memory/memory_layout.h"
#include "core/hle/kernel/object.h"
#include "core/hle/kernel/process.h"
#include "core/hle/kernel/thread.h"
@ -36,19 +34,26 @@
namespace Kernel {
bool Thread::IsSignaled() const {
return signaled;
bool Thread::ShouldWait(const Thread* thread) const {
return status != ThreadStatus::Dead;
}
Thread::Thread(KernelCore& kernel) : KSynchronizationObject{kernel} {}
bool Thread::IsSignaled() const {
return status == ThreadStatus::Dead;
}
void Thread::Acquire(Thread* thread) {
ASSERT_MSG(!ShouldWait(thread), "object unavailable!");
}
Thread::Thread(KernelCore& kernel) : SynchronizationObject{kernel} {}
Thread::~Thread() = default;
void Thread::Stop() {
{
KScopedSchedulerLock lock(kernel);
SetState(ThreadState::Terminated);
signaled = true;
NotifyAvailable();
SetStatus(ThreadStatus::Dead);
Signal();
kernel.GlobalHandleTable().Close(global_handle);
if (owner_process) {
@ -62,27 +67,59 @@ void Thread::Stop() {
global_handle = 0;
}
void Thread::Wakeup() {
void Thread::ResumeFromWait() {
KScopedSchedulerLock lock(kernel);
SetState(ThreadState::Runnable);
switch (status) {
case ThreadStatus::Paused:
case ThreadStatus::WaitSynch:
case ThreadStatus::WaitHLEEvent:
case ThreadStatus::WaitSleep:
case ThreadStatus::WaitIPC:
case ThreadStatus::WaitMutex:
case ThreadStatus::WaitCondVar:
case ThreadStatus::WaitArb:
case ThreadStatus::Dormant:
break;
case ThreadStatus::Ready:
// The thread's wakeup callback must have already been cleared when the thread was first
// awoken.
ASSERT(hle_callback == nullptr);
// If the thread is waiting on multiple wait objects, it might be awoken more than once
// before actually resuming. We can ignore subsequent wakeups if the thread status has
// already been set to ThreadStatus::Ready.
return;
case ThreadStatus::Dead:
// This should never happen, as threads must complete before being stopped.
DEBUG_ASSERT_MSG(false, "Thread with object id {} cannot be resumed because it's DEAD.",
GetObjectId());
return;
}
SetStatus(ThreadStatus::Ready);
}
void Thread::OnWakeUp() {
KScopedSchedulerLock lock(kernel);
SetStatus(ThreadStatus::Ready);
}
ResultCode Thread::Start() {
KScopedSchedulerLock lock(kernel);
SetState(ThreadState::Runnable);
SetStatus(ThreadStatus::Ready);
return RESULT_SUCCESS;
}
void Thread::CancelWait() {
KScopedSchedulerLock lock(kernel);
if (GetState() != ThreadState::Waiting || !is_cancellable) {
if (GetSchedulingStatus() != ThreadSchedStatus::Paused || !is_waiting_on_sync) {
is_sync_cancelled = true;
return;
}
// TODO(Blinkhawk): Implement cancel of server session
is_sync_cancelled = false;
SetSynchronizationResults(nullptr, ERR_SYNCHRONIZATION_CANCELED);
SetState(ThreadState::Runnable);
SetStatus(ThreadStatus::Ready);
}
static void ResetThreadContext32(Core::ARM_Interface::ThreadContext32& context, u32 stack_top,
@ -146,24 +183,25 @@ ResultVal<std::shared_ptr<Thread>> Thread::Create(Core::System& system, ThreadTy
std::shared_ptr<Thread> thread = std::make_shared<Thread>(kernel);
thread->thread_id = kernel.CreateNewThreadID();
thread->thread_state = ThreadState::Initialized;
thread->status = ThreadStatus::Dormant;
thread->entry_point = entry_point;
thread->stack_top = stack_top;
thread->disable_count = 1;
thread->tpidr_el0 = 0;
thread->current_priority = priority;
thread->base_priority = priority;
thread->lock_owner = nullptr;
thread->nominal_priority = thread->current_priority = priority;
thread->schedule_count = -1;
thread->last_scheduled_tick = 0;
thread->processor_id = processor_id;
thread->ideal_core = processor_id;
thread->affinity_mask.SetAffinity(processor_id, true);
thread->wait_objects = nullptr;
thread->mutex_wait_address = 0;
thread->condvar_wait_address = 0;
thread->wait_handle = 0;
thread->name = std::move(name);
thread->global_handle = kernel.GlobalHandleTable().Create(thread).Unwrap();
thread->owner_process = owner_process;
thread->type = type_flags;
thread->signaled = false;
if ((type_flags & THREADTYPE_IDLE) == 0) {
auto& scheduler = kernel.GlobalSchedulerContext();
scheduler.AddThread(thread);
@ -188,182 +226,153 @@ ResultVal<std::shared_ptr<Thread>> Thread::Create(Core::System& system, ThreadTy
return MakeResult<std::shared_ptr<Thread>>(std::move(thread));
}
void Thread::SetBasePriority(u32 priority) {
void Thread::SetPriority(u32 priority) {
KScopedSchedulerLock lock(kernel);
ASSERT_MSG(priority <= THREADPRIO_LOWEST && priority >= THREADPRIO_HIGHEST,
"Invalid priority value.");
KScopedSchedulerLock lock(kernel);
// Change our base priority.
base_priority = priority;
// Perform a priority restoration.
RestorePriority(kernel, this);
nominal_priority = priority;
UpdatePriority();
}
void Thread::SetSynchronizationResults(KSynchronizationObject* object, ResultCode result) {
void Thread::SetSynchronizationResults(SynchronizationObject* object, ResultCode result) {
signaling_object = object;
signaling_result = result;
}
s32 Thread::GetSynchronizationObjectIndex(std::shared_ptr<SynchronizationObject> object) const {
ASSERT_MSG(!wait_objects->empty(), "Thread is not waiting for anything");
const auto match = std::find(wait_objects->rbegin(), wait_objects->rend(), object);
return static_cast<s32>(std::distance(match, wait_objects->rend()) - 1);
}
VAddr Thread::GetCommandBufferAddress() const {
// Offset from the start of TLS at which the IPC command buffer begins.
constexpr u64 command_header_offset = 0x80;
return GetTLSAddress() + command_header_offset;
}
void Thread::SetState(ThreadState state) {
KScopedSchedulerLock sl(kernel);
SetMutexWaitAddressForDebugging(0);
const ThreadState old_state = thread_state;
thread_state =
static_cast<ThreadState>((old_state & ~ThreadState::Mask) | (state & ThreadState::Mask));
if (thread_state != old_state) {
KScheduler::OnThreadStateChanged(kernel, this, old_state);
void Thread::SetStatus(ThreadStatus new_status) {
if (new_status == status) {
return;
}
switch (new_status) {
case ThreadStatus::Ready:
SetSchedulingStatus(ThreadSchedStatus::Runnable);
break;
case ThreadStatus::Dormant:
SetSchedulingStatus(ThreadSchedStatus::None);
break;
case ThreadStatus::Dead:
SetSchedulingStatus(ThreadSchedStatus::Exited);
break;
default:
SetSchedulingStatus(ThreadSchedStatus::Paused);
break;
}
status = new_status;
}
void Thread::AddWaiterImpl(Thread* thread) {
ASSERT(kernel.GlobalSchedulerContext().IsLocked());
// Find the right spot to insert the waiter.
auto it = waiter_list.begin();
while (it != waiter_list.end()) {
if (it->GetPriority() > thread->GetPriority()) {
break;
}
it++;
void Thread::AddMutexWaiter(std::shared_ptr<Thread> thread) {
if (thread->lock_owner.get() == this) {
// If the thread is already waiting for this thread to release the mutex, ensure that the
// waiters list is consistent and return without doing anything.
const auto iter = std::find(wait_mutex_threads.begin(), wait_mutex_threads.end(), thread);
ASSERT(iter != wait_mutex_threads.end());
return;
}
// Keep track of how many kernel waiters we have.
if (Memory::IsKernelAddressKey(thread->GetAddressKey())) {
ASSERT((num_kernel_waiters++) >= 0);
}
// A thread can't wait on two different mutexes at the same time.
ASSERT(thread->lock_owner == nullptr);
// Insert the waiter.
waiter_list.insert(it, *thread);
thread->SetLockOwner(this);
// Ensure that the thread is not already in the list of mutex waiters
const auto iter = std::find(wait_mutex_threads.begin(), wait_mutex_threads.end(), thread);
ASSERT(iter == wait_mutex_threads.end());
// Keep the list in an ordered fashion
const auto insertion_point = std::find_if(
wait_mutex_threads.begin(), wait_mutex_threads.end(),
[&thread](const auto& entry) { return entry->GetPriority() > thread->GetPriority(); });
wait_mutex_threads.insert(insertion_point, thread);
thread->lock_owner = SharedFrom(this);
UpdatePriority();
}
void Thread::RemoveWaiterImpl(Thread* thread) {
ASSERT(kernel.GlobalSchedulerContext().IsLocked());
void Thread::RemoveMutexWaiter(std::shared_ptr<Thread> thread) {
ASSERT(thread->lock_owner.get() == this);
// Keep track of how many kernel waiters we have.
if (Memory::IsKernelAddressKey(thread->GetAddressKey())) {
ASSERT((num_kernel_waiters--) > 0);
}
// Ensure that the thread is in the list of mutex waiters
const auto iter = std::find(wait_mutex_threads.begin(), wait_mutex_threads.end(), thread);
ASSERT(iter != wait_mutex_threads.end());
// Remove the waiter.
waiter_list.erase(waiter_list.iterator_to(*thread));
thread->SetLockOwner(nullptr);
wait_mutex_threads.erase(iter);
thread->lock_owner = nullptr;
UpdatePriority();
}
void Thread::RestorePriority(KernelCore& kernel, Thread* thread) {
ASSERT(kernel.GlobalSchedulerContext().IsLocked());
while (true) {
// We want to inherit priority where possible.
s32 new_priority = thread->GetBasePriority();
if (thread->HasWaiters()) {
new_priority = std::min(new_priority, thread->waiter_list.front().GetPriority());
}
// If the priority we would inherit is not different from ours, don't do anything.
if (new_priority == thread->GetPriority()) {
return;
}
// Ensure we don't violate condition variable red black tree invariants.
if (auto* cv_tree = thread->GetConditionVariableTree(); cv_tree != nullptr) {
BeforeUpdatePriority(kernel, cv_tree, thread);
}
// Change the priority.
const s32 old_priority = thread->GetPriority();
thread->SetPriority(new_priority);
// Restore the condition variable, if relevant.
if (auto* cv_tree = thread->GetConditionVariableTree(); cv_tree != nullptr) {
AfterUpdatePriority(kernel, cv_tree, thread);
}
// Update the scheduler.
KScheduler::OnThreadPriorityChanged(kernel, thread, old_priority);
// Keep the lock owner up to date.
Thread* lock_owner = thread->GetLockOwner();
if (lock_owner == nullptr) {
return;
}
// Update the thread in the lock owner's sorted list, and continue inheriting.
lock_owner->RemoveWaiterImpl(thread);
lock_owner->AddWaiterImpl(thread);
thread = lock_owner;
}
}
void Thread::AddWaiter(Thread* thread) {
AddWaiterImpl(thread);
RestorePriority(kernel, this);
}
void Thread::RemoveWaiter(Thread* thread) {
RemoveWaiterImpl(thread);
RestorePriority(kernel, this);
}
Thread* Thread::RemoveWaiterByKey(s32* out_num_waiters, VAddr key) {
ASSERT(kernel.GlobalSchedulerContext().IsLocked());
s32 num_waiters{};
Thread* next_lock_owner{};
auto it = waiter_list.begin();
while (it != waiter_list.end()) {
if (it->GetAddressKey() == key) {
Thread* thread = std::addressof(*it);
// Keep track of how many kernel waiters we have.
if (Memory::IsKernelAddressKey(thread->GetAddressKey())) {
ASSERT((num_kernel_waiters--) > 0);
}
it = waiter_list.erase(it);
// Update the next lock owner.
if (next_lock_owner == nullptr) {
next_lock_owner = thread;
next_lock_owner->SetLockOwner(nullptr);
} else {
next_lock_owner->AddWaiterImpl(thread);
}
num_waiters++;
} else {
it++;
void Thread::UpdatePriority() {
// If any of the threads waiting on the mutex have a higher priority
// (taking into account priority inheritance), then this thread inherits
// that thread's priority.
u32 new_priority = nominal_priority;
if (!wait_mutex_threads.empty()) {
if (wait_mutex_threads.front()->current_priority < new_priority) {
new_priority = wait_mutex_threads.front()->current_priority;
}
}
// Do priority updates, if we have a next owner.
if (next_lock_owner) {
RestorePriority(kernel, this);
RestorePriority(kernel, next_lock_owner);
if (new_priority == current_priority) {
return;
}
// Return output.
*out_num_waiters = num_waiters;
return next_lock_owner;
if (GetStatus() == ThreadStatus::WaitCondVar) {
owner_process->RemoveConditionVariableThread(SharedFrom(this));
}
SetCurrentPriority(new_priority);
if (GetStatus() == ThreadStatus::WaitCondVar) {
owner_process->InsertConditionVariableThread(SharedFrom(this));
}
if (!lock_owner) {
return;
}
// Ensure that the thread is within the correct location in the waiting list.
auto old_owner = lock_owner;
lock_owner->RemoveMutexWaiter(SharedFrom(this));
old_owner->AddMutexWaiter(SharedFrom(this));
// Recursively update the priority of the thread that depends on the priority of this one.
lock_owner->UpdatePriority();
}
bool Thread::AllSynchronizationObjectsReady() const {
return std::none_of(wait_objects->begin(), wait_objects->end(),
[this](const std::shared_ptr<SynchronizationObject>& object) {
return object->ShouldWait(this);
});
}
bool Thread::InvokeHLECallback(std::shared_ptr<Thread> thread) {
ASSERT(hle_callback);
return hle_callback(std::move(thread));
}
ResultCode Thread::SetActivity(ThreadActivity value) {
KScopedSchedulerLock lock(kernel);
auto sched_status = GetState();
auto sched_status = GetSchedulingStatus();
if (sched_status != ThreadState::Runnable && sched_status != ThreadState::Waiting) {
if (sched_status != ThreadSchedStatus::Runnable && sched_status != ThreadSchedStatus::Paused) {
return ERR_INVALID_STATE;
}
if (IsTerminationRequested()) {
if (IsPendingTermination()) {
return RESULT_SUCCESS;
}
@ -385,7 +394,7 @@ ResultCode Thread::Sleep(s64 nanoseconds) {
Handle event_handle{};
{
KScopedSchedulerLockAndSleep lock(kernel, event_handle, this, nanoseconds);
SetState(ThreadState::Waiting);
SetStatus(ThreadStatus::WaitSleep);
}
if (event_handle != InvalidHandle) {
@ -396,21 +405,34 @@ ResultCode Thread::Sleep(s64 nanoseconds) {
}
void Thread::AddSchedulingFlag(ThreadSchedFlags flag) {
const auto old_state = GetRawState();
const u32 old_state = scheduling_state;
pausing_state |= static_cast<u32>(flag);
const auto base_scheduling = GetState();
thread_state = base_scheduling | static_cast<ThreadState>(pausing_state);
const u32 base_scheduling = static_cast<u32>(GetSchedulingStatus());
scheduling_state = base_scheduling | pausing_state;
KScheduler::OnThreadStateChanged(kernel, this, old_state);
}
void Thread::RemoveSchedulingFlag(ThreadSchedFlags flag) {
const auto old_state = GetRawState();
const u32 old_state = scheduling_state;
pausing_state &= ~static_cast<u32>(flag);
const auto base_scheduling = GetState();
thread_state = base_scheduling | static_cast<ThreadState>(pausing_state);
const u32 base_scheduling = static_cast<u32>(GetSchedulingStatus());
scheduling_state = base_scheduling | pausing_state;
KScheduler::OnThreadStateChanged(kernel, this, old_state);
}
void Thread::SetSchedulingStatus(ThreadSchedStatus new_status) {
const u32 old_state = scheduling_state;
scheduling_state = (scheduling_state & static_cast<u32>(ThreadSchedMasks::HighMask)) |
static_cast<u32>(new_status);
KScheduler::OnThreadStateChanged(kernel, this, old_state);
}
void Thread::SetCurrentPriority(u32 new_priority) {
const u32 old_priority = std::exchange(current_priority, new_priority);
KScheduler::OnThreadPriorityChanged(kernel, this, kernel.CurrentScheduler()->GetCurrentThread(),
old_priority);
}
ResultCode Thread::SetCoreAndAffinityMask(s32 new_core, u64 new_affinity_mask) {
KScopedSchedulerLock lock(kernel);
const auto HighestSetCore = [](u64 mask, u32 max_cores) {

View File

@ -10,16 +10,12 @@
#include <utility>
#include <vector>
#include <boost/intrusive/list.hpp>
#include "common/common_types.h"
#include "common/intrusive_red_black_tree.h"
#include "common/spin_lock.h"
#include "core/arm/arm_interface.h"
#include "core/hle/kernel/k_affinity_mask.h"
#include "core/hle/kernel/k_synchronization_object.h"
#include "core/hle/kernel/object.h"
#include "core/hle/kernel/svc_common.h"
#include "core/hle/kernel/synchronization_object.h"
#include "core/hle/result.h"
namespace Common {
@ -77,24 +73,19 @@ enum ThreadProcessorId : s32 {
(1 << THREADPROCESSORID_2) | (1 << THREADPROCESSORID_3)
};
enum class ThreadState : u16 {
Initialized = 0,
Waiting = 1,
Runnable = 2,
Terminated = 3,
SuspendShift = 4,
Mask = (1 << SuspendShift) - 1,
ProcessSuspended = (1 << (0 + SuspendShift)),
ThreadSuspended = (1 << (1 + SuspendShift)),
DebugSuspended = (1 << (2 + SuspendShift)),
BacktraceSuspended = (1 << (3 + SuspendShift)),
InitSuspended = (1 << (4 + SuspendShift)),
SuspendFlagMask = ((1 << 5) - 1) << SuspendShift,
enum class ThreadStatus {
Ready, ///< Ready to run
Paused, ///< Paused by SetThreadActivity or debug
WaitHLEEvent, ///< Waiting for hle event to finish
WaitSleep, ///< Waiting due to a SleepThread SVC
WaitIPC, ///< Waiting for the reply from an IPC request
WaitSynch, ///< Waiting due to WaitSynchronization
WaitMutex, ///< Waiting due to an ArbitrateLock svc
WaitCondVar, ///< Waiting due to an WaitProcessWideKey svc
WaitArb, ///< Waiting due to a SignalToAddress/WaitForAddress svc
Dormant, ///< Created but not yet made ready
Dead ///< Run to completion, or forcefully terminated
};
DECLARE_ENUM_FLAG_OPERATORS(ThreadState);
enum class ThreadWakeupReason {
Signal, // The thread was woken up by WakeupAllWaitingThreads due to an object signal.
@ -106,6 +97,13 @@ enum class ThreadActivity : u32 {
Paused = 1,
};
enum class ThreadSchedStatus : u32 {
None = 0,
Paused = 1,
Runnable = 2,
Exited = 3,
};
enum class ThreadSchedFlags : u32 {
ProcessPauseFlag = 1 << 4,
ThreadPauseFlag = 1 << 5,
@ -113,10 +111,13 @@ enum class ThreadSchedFlags : u32 {
KernelInitPauseFlag = 1 << 8,
};
class Thread final : public KSynchronizationObject, public boost::intrusive::list_base_hook<> {
friend class KScheduler;
friend class Process;
enum class ThreadSchedMasks : u32 {
LowMask = 0x000f,
HighMask = 0xfff0,
ForcePauseMask = 0x0070,
};
class Thread final : public SynchronizationObject {
public:
explicit Thread(KernelCore& kernel);
~Thread() override;
@ -126,6 +127,10 @@ public:
using ThreadContext32 = Core::ARM_Interface::ThreadContext32;
using ThreadContext64 = Core::ARM_Interface::ThreadContext64;
using ThreadSynchronizationObjects = std::vector<std::shared_ptr<SynchronizationObject>>;
using HLECallback = std::function<bool(std::shared_ptr<Thread> thread)>;
/**
* Creates and returns a new thread. The new thread is immediately scheduled
* @param system The instance of the whole system
@ -181,54 +186,59 @@ public:
return HANDLE_TYPE;
}
bool ShouldWait(const Thread* thread) const override;
void Acquire(Thread* thread) override;
bool IsSignaled() const override;
/**
* Gets the thread's current priority
* @return The current thread's priority
*/
[[nodiscard]] s32 GetPriority() const {
u32 GetPriority() const {
return current_priority;
}
/**
* Sets the thread's current priority.
* @param priority The new priority.
*/
void SetPriority(s32 priority) {
current_priority = priority;
}
/**
* Gets the thread's nominal priority.
* @return The current thread's nominal priority.
*/
[[nodiscard]] s32 GetBasePriority() const {
return base_priority;
u32 GetNominalPriority() const {
return nominal_priority;
}
/**
* Sets the thread's nominal priority.
* @param priority The new priority.
* Sets the thread's current priority
* @param priority The new priority
*/
void SetBasePriority(u32 priority);
void SetPriority(u32 priority);
/// Adds a thread to the list of threads that are waiting for a lock held by this thread.
void AddMutexWaiter(std::shared_ptr<Thread> thread);
/// Removes a thread from the list of threads that are waiting for a lock held by this thread.
void RemoveMutexWaiter(std::shared_ptr<Thread> thread);
/// Recalculates the current priority taking into account priority inheritance.
void UpdatePriority();
/// Changes the core that the thread is running or scheduled to run on.
[[nodiscard]] ResultCode SetCoreAndAffinityMask(s32 new_core, u64 new_affinity_mask);
ResultCode SetCoreAndAffinityMask(s32 new_core, u64 new_affinity_mask);
/**
* Gets the thread's thread ID
* @return The thread's ID
*/
[[nodiscard]] u64 GetThreadID() const {
u64 GetThreadID() const {
return thread_id;
}
/// Resumes a thread from waiting
void Wakeup();
void ResumeFromWait();
void OnWakeUp();
ResultCode Start();
virtual bool IsSignaled() const override;
/// Cancels a waiting operation that this thread may or may not be within.
///
/// When the thread is within a waiting state, this will set the thread's
@ -237,21 +247,30 @@ public:
///
void CancelWait();
void SetSynchronizationResults(KSynchronizationObject* object, ResultCode result);
void SetSynchronizationResults(SynchronizationObject* object, ResultCode result);
void SetSyncedObject(KSynchronizationObject* object, ResultCode result) {
SetSynchronizationResults(object, result);
}
ResultCode GetWaitResult(KSynchronizationObject** out) const {
*out = signaling_object;
return signaling_result;
SynchronizationObject* GetSignalingObject() const {
return signaling_object;
}
ResultCode GetSignalingResult() const {
return signaling_result;
}
/**
* Retrieves the index that this particular object occupies in the list of objects
* that the thread passed to WaitSynchronization, starting the search from the last element.
*
* It is used to set the output index of WaitSynchronization when the thread is awakened.
*
* When a thread wakes up due to an object signal, the kernel will use the index of the last
* matching object in the wait objects list in case of having multiple instances of the same
* object in the list.
*
* @param object Object to query the index of.
*/
s32 GetSynchronizationObjectIndex(std::shared_ptr<SynchronizationObject> object) const;
/**
* Stops a thread, invalidating it from further use
*/
@ -322,22 +341,18 @@ public:
std::shared_ptr<Common::Fiber>& GetHostContext();
ThreadState GetState() const {
return thread_state & ThreadState::Mask;
ThreadStatus GetStatus() const {
return status;
}
ThreadState GetRawState() const {
return thread_state;
}
void SetState(ThreadState state);
void SetStatus(ThreadStatus new_status);
s64 GetLastScheduledTick() const {
return last_scheduled_tick;
return this->last_scheduled_tick;
}
void SetLastScheduledTick(s64 tick) {
last_scheduled_tick = tick;
this->last_scheduled_tick = tick;
}
u64 GetTotalCPUTimeTicks() const {
@ -372,18 +387,98 @@ public:
return owner_process;
}
const ThreadSynchronizationObjects& GetSynchronizationObjects() const {
return *wait_objects;
}
void SetSynchronizationObjects(ThreadSynchronizationObjects* objects) {
wait_objects = objects;
}
void ClearSynchronizationObjects() {
for (const auto& waiting_object : *wait_objects) {
waiting_object->RemoveWaitingThread(SharedFrom(this));
}
wait_objects->clear();
}
/// Determines whether all the objects this thread is waiting on are ready.
bool AllSynchronizationObjectsReady() const;
const MutexWaitingThreads& GetMutexWaitingThreads() const {
return wait_mutex_threads;
}
Thread* GetLockOwner() const {
return lock_owner;
return lock_owner.get();
}
void SetLockOwner(Thread* owner) {
lock_owner = owner;
void SetLockOwner(std::shared_ptr<Thread> owner) {
lock_owner = std::move(owner);
}
VAddr GetCondVarWaitAddress() const {
return condvar_wait_address;
}
void SetCondVarWaitAddress(VAddr address) {
condvar_wait_address = address;
}
VAddr GetMutexWaitAddress() const {
return mutex_wait_address;
}
void SetMutexWaitAddress(VAddr address) {
mutex_wait_address = address;
}
Handle GetWaitHandle() const {
return wait_handle;
}
void SetWaitHandle(Handle handle) {
wait_handle = handle;
}
VAddr GetArbiterWaitAddress() const {
return arb_wait_address;
}
void SetArbiterWaitAddress(VAddr address) {
arb_wait_address = address;
}
bool HasHLECallback() const {
return hle_callback != nullptr;
}
void SetHLECallback(HLECallback callback) {
hle_callback = std::move(callback);
}
void SetHLETimeEvent(Handle time_event) {
hle_time_event = time_event;
}
void SetHLESyncObject(SynchronizationObject* object) {
hle_object = object;
}
Handle GetHLETimeEvent() const {
return hle_time_event;
}
SynchronizationObject* GetHLESyncObject() const {
return hle_object;
}
void InvalidateHLECallback() {
SetHLECallback(nullptr);
}
bool InvokeHLECallback(std::shared_ptr<Thread> thread);
u32 GetIdealCore() const {
return ideal_core;
}
@ -398,11 +493,20 @@ public:
ResultCode Sleep(s64 nanoseconds);
s64 GetYieldScheduleCount() const {
return schedule_count;
return this->schedule_count;
}
void SetYieldScheduleCount(s64 count) {
schedule_count = count;
this->schedule_count = count;
}
ThreadSchedStatus GetSchedulingStatus() const {
return static_cast<ThreadSchedStatus>(scheduling_state &
static_cast<u32>(ThreadSchedMasks::LowMask));
}
bool IsRunnable() const {
return scheduling_state == static_cast<u32>(ThreadSchedStatus::Runnable);
}
bool IsRunning() const {
@ -413,32 +517,36 @@ public:
is_running = value;
}
bool IsWaitCancelled() const {
bool IsSyncCancelled() const {
return is_sync_cancelled;
}
void ClearWaitCancelled() {
is_sync_cancelled = false;
void SetSyncCancelled(bool value) {
is_sync_cancelled = value;
}
Handle GetGlobalHandle() const {
return global_handle;
}
bool IsCancellable() const {
return is_cancellable;
bool IsWaitingForArbitration() const {
return waiting_for_arbitration;
}
void SetCancellable() {
is_cancellable = true;
void WaitForArbitration(bool set) {
waiting_for_arbitration = set;
}
void ClearCancellable() {
is_cancellable = false;
bool IsWaitingSync() const {
return is_waiting_on_sync;
}
bool IsTerminationRequested() const {
return will_be_terminated || GetRawState() == ThreadState::Terminated;
void SetWaitingSync(bool is_waiting) {
is_waiting_on_sync = is_waiting;
}
bool IsPendingTermination() const {
return will_be_terminated || GetSchedulingStatus() == ThreadSchedStatus::Exited;
}
bool IsPaused() const {
@ -470,21 +578,21 @@ public:
constexpr QueueEntry() = default;
constexpr void Initialize() {
prev = nullptr;
next = nullptr;
this->prev = nullptr;
this->next = nullptr;
}
constexpr Thread* GetPrev() const {
return prev;
return this->prev;
}
constexpr Thread* GetNext() const {
return next;
return this->next;
}
constexpr void SetPrev(Thread* thread) {
prev = thread;
this->prev = thread;
}
constexpr void SetNext(Thread* thread) {
next = thread;
this->next = thread;
}
private:
@ -493,11 +601,11 @@ public:
};
QueueEntry& GetPriorityQueueEntry(s32 core) {
return per_core_priority_queue_entry[core];
return this->per_core_priority_queue_entry[core];
}
const QueueEntry& GetPriorityQueueEntry(s32 core) const {
return per_core_priority_queue_entry[core];
return this->per_core_priority_queue_entry[core];
}
s32 GetDisableDispatchCount() const {
@ -514,162 +622,24 @@ public:
disable_count--;
}
void SetWaitObjectsForDebugging(KSynchronizationObject** objects, s32 num_objects) {
wait_objects_for_debugging.clear();
wait_objects_for_debugging.reserve(num_objects);
for (auto i = 0; i < num_objects; ++i) {
wait_objects_for_debugging.emplace_back(objects[i]);
}
}
[[nodiscard]] const std::vector<KSynchronizationObject*>& GetWaitObjectsForDebugging() const {
return wait_objects_for_debugging;
}
void SetMutexWaitAddressForDebugging(VAddr address) {
mutex_wait_address_for_debugging = address;
}
[[nodiscard]] VAddr GetMutexWaitAddressForDebugging() const {
return mutex_wait_address_for_debugging;
}
void AddWaiter(Thread* thread);
void RemoveWaiter(Thread* thread);
[[nodiscard]] Thread* RemoveWaiterByKey(s32* out_num_waiters, VAddr key);
[[nodiscard]] VAddr GetAddressKey() const {
return address_key;
}
[[nodiscard]] u32 GetAddressKeyValue() const {
return address_key_value;
}
[[nodiscard]] void SetAddressKey(VAddr key) {
address_key = key;
}
[[nodiscard]] void SetAddressKey(VAddr key, u32 val) {
address_key = key;
address_key_value = val;
}
private:
static constexpr size_t PriorityInheritanceCountMax = 10;
union SyncObjectBuffer {
std::array<KSynchronizationObject*, Svc::ArgumentHandleCountMax> sync_objects;
std::array<Handle,
Svc::ArgumentHandleCountMax*(sizeof(KSynchronizationObject*) / sizeof(Handle))>
handles;
constexpr SyncObjectBuffer() : sync_objects() {}
};
static_assert(sizeof(SyncObjectBuffer::sync_objects) == sizeof(SyncObjectBuffer::handles));
friend class GlobalSchedulerContext;
friend class KScheduler;
friend class Process;
struct ConditionVariableComparator {
struct LightCompareType {
u64 cv_key{};
s32 priority{};
[[nodiscard]] constexpr u64 GetConditionVariableKey() const {
return cv_key;
}
[[nodiscard]] constexpr s32 GetPriority() const {
return priority;
}
};
template <typename T>
requires(
std::same_as<T, Thread> ||
std::same_as<T, LightCompareType>) static constexpr int Compare(const T& lhs,
const Thread& rhs) {
const uintptr_t l_key = lhs.GetConditionVariableKey();
const uintptr_t r_key = rhs.GetConditionVariableKey();
if (l_key < r_key) {
// Sort first by key
return -1;
} else if (l_key == r_key && lhs.GetPriority() < rhs.GetPriority()) {
// And then by priority.
return -1;
} else {
return 1;
}
}
};
Common::IntrusiveRedBlackTreeNode condvar_arbiter_tree_node{};
using ConditionVariableThreadTreeTraits =
Common::IntrusiveRedBlackTreeMemberTraitsDeferredAssert<&Thread::condvar_arbiter_tree_node>;
using ConditionVariableThreadTree =
ConditionVariableThreadTreeTraits::TreeType<ConditionVariableComparator>;
public:
using ConditionVariableThreadTreeType = ConditionVariableThreadTree;
[[nodiscard]] uintptr_t GetConditionVariableKey() const {
return condvar_key;
}
[[nodiscard]] uintptr_t GetAddressArbiterKey() const {
return condvar_key;
}
void SetConditionVariable(ConditionVariableThreadTree* tree, VAddr address, uintptr_t cv_key,
u32 value) {
condvar_tree = tree;
condvar_key = cv_key;
address_key = address;
address_key_value = value;
}
void ClearConditionVariable() {
condvar_tree = nullptr;
}
[[nodiscard]] bool IsWaitingForConditionVariable() const {
return condvar_tree != nullptr;
}
void SetAddressArbiter(ConditionVariableThreadTree* tree, uintptr_t address) {
condvar_tree = tree;
condvar_key = address;
}
void ClearAddressArbiter() {
condvar_tree = nullptr;
}
[[nodiscard]] bool IsWaitingForAddressArbiter() const {
return condvar_tree != nullptr;
}
[[nodiscard]] ConditionVariableThreadTree* GetConditionVariableTree() const {
return condvar_tree;
}
[[nodiscard]] bool HasWaiters() const {
return !waiter_list.empty();
}
private:
void SetSchedulingStatus(ThreadSchedStatus new_status);
void AddSchedulingFlag(ThreadSchedFlags flag);
void RemoveSchedulingFlag(ThreadSchedFlags flag);
void AddWaiterImpl(Thread* thread);
void RemoveWaiterImpl(Thread* thread);
static void RestorePriority(KernelCore& kernel, Thread* thread);
void SetCurrentPriority(u32 new_priority);
Common::SpinLock context_guard{};
ThreadContext32 context_32{};
ThreadContext64 context_64{};
std::shared_ptr<Common::Fiber> host_context{};
ThreadState thread_state = ThreadState::Initialized;
ThreadStatus status = ThreadStatus::Dormant;
u32 scheduling_state = 0;
u64 thread_id = 0;
@ -682,11 +652,11 @@ private:
/// Nominal thread priority, as set by the emulated application.
/// The nominal priority is the thread priority without priority
/// inheritance taken into account.
s32 base_priority{};
u32 nominal_priority = 0;
/// Current thread priority. This may change over the course of the
/// thread's lifetime in order to facilitate priority inheritance.
s32 current_priority{};
u32 current_priority = 0;
u64 total_cpu_time_ticks = 0; ///< Total CPU running ticks.
s64 schedule_count{};
@ -701,24 +671,37 @@ private:
Process* owner_process;
/// Objects that the thread is waiting on, in the same order as they were
/// passed to WaitSynchronization. This is used for debugging only.
std::vector<KSynchronizationObject*> wait_objects_for_debugging;
/// passed to WaitSynchronization.
ThreadSynchronizationObjects* wait_objects;
/// The current mutex wait address. This is used for debugging only.
VAddr mutex_wait_address_for_debugging{};
KSynchronizationObject* signaling_object;
SynchronizationObject* signaling_object;
ResultCode signaling_result{RESULT_SUCCESS};
/// List of threads that are waiting for a mutex that is held by this thread.
MutexWaitingThreads wait_mutex_threads;
/// Thread that owns the lock that this thread is waiting for.
Thread* lock_owner{};
std::shared_ptr<Thread> lock_owner;
/// If waiting on a ConditionVariable, this is the ConditionVariable address
VAddr condvar_wait_address = 0;
/// If waiting on a Mutex, this is the mutex address
VAddr mutex_wait_address = 0;
/// The handle used to wait for the mutex.
Handle wait_handle = 0;
/// If waiting for an AddressArbiter, this is the address being waited on.
VAddr arb_wait_address{0};
bool waiting_for_arbitration{};
/// Handle used as userdata to reference this object when inserting into the CoreTiming queue.
Handle global_handle = 0;
/// Callback for HLE Events
HLECallback hle_callback;
Handle hle_time_event;
SynchronizationObject* hle_object;
KScheduler* scheduler = nullptr;
std::array<QueueEntry, Core::Hardware::NUM_CPU_CORES> per_core_priority_queue_entry{};
@ -731,7 +714,7 @@ private:
u32 pausing_state = 0;
bool is_running = false;
bool is_cancellable = false;
bool is_waiting_on_sync = false;
bool is_sync_cancelled = false;
bool is_continuous_on_svc = false;
@ -742,18 +725,6 @@ private:
bool was_running = false;
bool signaled{};
ConditionVariableThreadTree* condvar_tree{};
uintptr_t condvar_key{};
VAddr address_key{};
u32 address_key_value{};
s32 num_kernel_waiters{};
using WaiterList = boost::intrusive::list<Thread>;
WaiterList waiter_list{};
WaiterList pinned_waiter_list{};
std::string name;
};

View File

@ -18,10 +18,12 @@ TimeManager::TimeManager(Core::System& system_) : system{system_} {
time_manager_event_type = Core::Timing::CreateEvent(
"Kernel::TimeManagerCallback",
[this](std::uintptr_t thread_handle, std::chrono::nanoseconds) {
const KScopedSchedulerLock lock(system.Kernel());
const auto proper_handle = static_cast<Handle>(thread_handle);
std::shared_ptr<Thread> thread;
{
std::lock_guard lock{mutex};
const auto proper_handle = static_cast<Handle>(thread_handle);
if (cancelled_events[proper_handle]) {
return;
}
@ -30,7 +32,7 @@ TimeManager::TimeManager(Core::System& system_) : system{system_} {
if (thread) {
// Thread can be null if process has exited
thread->Wakeup();
thread->OnWakeUp();
}
});
}
@ -40,7 +42,8 @@ void TimeManager::ScheduleTimeEvent(Handle& event_handle, Thread* timetask, s64
event_handle = timetask->GetGlobalHandle();
if (nanoseconds > 0) {
ASSERT(timetask);
ASSERT(timetask->GetState() != ThreadState::Runnable);
ASSERT(timetask->GetStatus() != ThreadStatus::Ready);
ASSERT(timetask->GetStatus() != ThreadStatus::WaitMutex);
system.CoreTiming().ScheduleEvent(std::chrono::nanoseconds{nanoseconds},
time_manager_event_type, event_handle);
} else {

View File

@ -190,6 +190,12 @@ private:
void GetDeviceState(Kernel::HLERequestContext& ctx) {
LOG_DEBUG(Service_NFP, "called");
auto nfc_event = nfp_interface.GetNFCEvent();
if (!nfc_event->ShouldWait(&ctx.GetThread()) && !has_attached_handle) {
device_state = DeviceState::TagFound;
nfc_event->Clear();
}
IPC::ResponseBuilder rb{ctx, 3};
rb.Push(RESULT_SUCCESS);
rb.Push<u32>(static_cast<u32>(device_state));

View File

@ -38,10 +38,6 @@ void NVFlinger::SplitVSync() {
system.RegisterHostThread();
std::string name = "yuzu:VSyncThread";
MicroProfileOnThreadCreate(name.c_str());
// Cleanup
SCOPE_EXIT({ MicroProfileOnThreadExit(); });
Common::SetCurrentThreadName(name.c_str());
Common::SetCurrentThreadPriority(Common::ThreadPriority::High);
s64 delay = 0;

View File

@ -139,6 +139,9 @@ void SM::GetService(Kernel::HLERequestContext& ctx) {
server_port->AppendPendingSession(server);
}
// Wake the threads waiting on the ServerPort
server_port->Signal();
LOG_DEBUG(Service_SM, "called service={} -> session={}", name, client->GetObjectId());
IPC::ResponseBuilder rb{ctx, 2, 0, 1, IPC::ResponseBuilder::Flags::AlwaysMoveHandles};
rb.Push(RESULT_SUCCESS);

View File

@ -1030,44 +1030,11 @@ public:
}
return {};
}
[[nodiscard]] std::optional<Common::ParamPackage> FromEvent(SDL_Event& event) {
[[nodiscard]] std::optional<Common::ParamPackage> FromEvent(const SDL_Event& event) const {
switch (event.type) {
case SDL_JOYAXISMOTION:
if (!axis_memory.count(event.jaxis.which) ||
!axis_memory[event.jaxis.which].count(event.jaxis.axis)) {
axis_memory[event.jaxis.which][event.jaxis.axis] = event.jaxis.value;
axis_event_count[event.jaxis.which][event.jaxis.axis] = 1;
if (std::abs(event.jaxis.value / 32767.0) < 0.5) {
break;
} else {
axis_event_count[event.jaxis.which][event.jaxis.axis]++;
// The joystick and axis exist in our map if we take this branch, so no checks
// needed
if (std::abs(
(event.jaxis.value - axis_memory[event.jaxis.which][event.jaxis.axis]) /
32767.0) < 0.5) {
break;
} else {
if (axis_event_count[event.jaxis.which][event.jaxis.axis] == 2 &&
IsAxisAtPole(event.jaxis.value) &&
IsAxisAtPole(axis_memory[event.jaxis.which][event.jaxis.axis])) {
// If we have exactly two events and both are near a pole, this is
// likely a digital input masquerading as an analog axis; Instead of
// trying to look at the direction the axis travelled, assume the first
// event was press and the second was release; This should handle most
// digital axes while deferring to the direction of travel for analog
// axes
event.jaxis.value = static_cast<Sint16>(
std::copysign(32767, axis_memory[event.jaxis.which][event.jaxis.axis]));
} else {
// There are more than two events, so this is likely a true analog axis,
// check the direction it travelled
event.jaxis.value = static_cast<Sint16>(std::copysign(
32767,
event.jaxis.value - axis_memory[event.jaxis.which][event.jaxis.axis]));
}
axis_memory.clear();
axis_event_count.clear();
}
}
[[fallthrough]];
case SDL_JOYBUTTONUP:
@ -1076,16 +1043,6 @@ public:
}
return std::nullopt;
}
private:
// Determine whether an axis value is close to an extreme or center
// Some controllers have a digital D-Pad as a pair of analog sticks, with 3 possible values per
// axis, which is why the center must be considered a pole
bool IsAxisAtPole(int16_t value) const {
return std::abs(value) >= 32767 || std::abs(value) < 327;
}
std::unordered_map<SDL_JoystickID, std::unordered_map<uint8_t, int16_t>> axis_memory;
std::unordered_map<SDL_JoystickID, std::unordered_map<uint8_t, uint32_t>> axis_event_count;
};
class SDLMotionPoller final : public SDLPoller {

View File

@ -14,10 +14,10 @@
#include "core/core.h"
#include "core/hle/kernel/handle_table.h"
#include "core/hle/kernel/k_scheduler.h"
#include "core/hle/kernel/k_synchronization_object.h"
#include "core/hle/kernel/mutex.h"
#include "core/hle/kernel/process.h"
#include "core/hle/kernel/readable_event.h"
#include "core/hle/kernel/svc_common.h"
#include "core/hle/kernel/synchronization_object.h"
#include "core/hle/kernel/thread.h"
#include "core/memory.h"
@ -116,7 +116,7 @@ QString WaitTreeText::GetText() const {
WaitTreeMutexInfo::WaitTreeMutexInfo(VAddr mutex_address, const Kernel::HandleTable& handle_table)
: mutex_address(mutex_address) {
mutex_value = Core::System::GetInstance().Memory().Read32(mutex_address);
owner_handle = static_cast<Kernel::Handle>(mutex_value & Kernel::Svc::HandleWaitMask);
owner_handle = static_cast<Kernel::Handle>(mutex_value & Kernel::Mutex::MutexOwnerMask);
owner = handle_table.Get<Kernel::Thread>(owner_handle);
}
@ -127,7 +127,7 @@ QString WaitTreeMutexInfo::GetText() const {
}
std::vector<std::unique_ptr<WaitTreeItem>> WaitTreeMutexInfo::GetChildren() const {
const bool has_waiters = (mutex_value & Kernel::Svc::HandleWaitMask) != 0;
const bool has_waiters = (mutex_value & Kernel::Mutex::MutexHasWaitersFlag) != 0;
std::vector<std::unique_ptr<WaitTreeItem>> list;
list.push_back(std::make_unique<WaitTreeText>(tr("has waiters: %1").arg(has_waiters)));
@ -169,8 +169,7 @@ std::vector<std::unique_ptr<WaitTreeItem>> WaitTreeCallstack::GetChildren() cons
return list;
}
WaitTreeSynchronizationObject::WaitTreeSynchronizationObject(
const Kernel::KSynchronizationObject& o)
WaitTreeSynchronizationObject::WaitTreeSynchronizationObject(const Kernel::SynchronizationObject& o)
: object(o) {}
WaitTreeSynchronizationObject::~WaitTreeSynchronizationObject() = default;
@ -189,7 +188,7 @@ QString WaitTreeSynchronizationObject::GetText() const {
}
std::unique_ptr<WaitTreeSynchronizationObject> WaitTreeSynchronizationObject::make(
const Kernel::KSynchronizationObject& object) {
const Kernel::SynchronizationObject& object) {
switch (object.GetHandleType()) {
case Kernel::HandleType::ReadableEvent:
return std::make_unique<WaitTreeEvent>(static_cast<const Kernel::ReadableEvent&>(object));
@ -203,7 +202,7 @@ std::unique_ptr<WaitTreeSynchronizationObject> WaitTreeSynchronizationObject::ma
std::vector<std::unique_ptr<WaitTreeItem>> WaitTreeSynchronizationObject::GetChildren() const {
std::vector<std::unique_ptr<WaitTreeItem>> list;
const auto& threads = object.GetWaitingThreadsForDebugging();
const auto& threads = object.GetWaitingThreads();
if (threads.empty()) {
list.push_back(std::make_unique<WaitTreeText>(tr("waited by no thread")));
} else {
@ -212,8 +211,8 @@ std::vector<std::unique_ptr<WaitTreeItem>> WaitTreeSynchronizationObject::GetChi
return list;
}
WaitTreeObjectList::WaitTreeObjectList(const std::vector<Kernel::KSynchronizationObject*>& list,
bool w_all)
WaitTreeObjectList::WaitTreeObjectList(
const std::vector<std::shared_ptr<Kernel::SynchronizationObject>>& list, bool w_all)
: object_list(list), wait_all(w_all) {}
WaitTreeObjectList::~WaitTreeObjectList() = default;
@ -238,8 +237,8 @@ WaitTreeThread::~WaitTreeThread() = default;
QString WaitTreeThread::GetText() const {
const auto& thread = static_cast<const Kernel::Thread&>(object);
QString status;
switch (thread.GetState()) {
case Kernel::ThreadState::Runnable:
switch (thread.GetStatus()) {
case Kernel::ThreadStatus::Ready:
if (!thread.IsPaused()) {
if (thread.WasRunning()) {
status = tr("running");
@ -250,14 +249,35 @@ QString WaitTreeThread::GetText() const {
status = tr("paused");
}
break;
case Kernel::ThreadState::Waiting:
status = tr("waiting");
case Kernel::ThreadStatus::Paused:
status = tr("paused");
break;
case Kernel::ThreadState::Initialized:
status = tr("initialized");
case Kernel::ThreadStatus::WaitHLEEvent:
status = tr("waiting for HLE return");
break;
case Kernel::ThreadState::Terminated:
status = tr("terminated");
case Kernel::ThreadStatus::WaitSleep:
status = tr("sleeping");
break;
case Kernel::ThreadStatus::WaitIPC:
status = tr("waiting for IPC reply");
break;
case Kernel::ThreadStatus::WaitSynch:
status = tr("waiting for objects");
break;
case Kernel::ThreadStatus::WaitMutex:
status = tr("waiting for mutex");
break;
case Kernel::ThreadStatus::WaitCondVar:
status = tr("waiting for condition variable");
break;
case Kernel::ThreadStatus::WaitArb:
status = tr("waiting for address arbiter");
break;
case Kernel::ThreadStatus::Dormant:
status = tr("dormant");
break;
case Kernel::ThreadStatus::Dead:
status = tr("dead");
break;
}
@ -273,8 +293,8 @@ QColor WaitTreeThread::GetColor() const {
const std::size_t color_index = IsDarkTheme() ? 1 : 0;
const auto& thread = static_cast<const Kernel::Thread&>(object);
switch (thread.GetState()) {
case Kernel::ThreadState::Runnable:
switch (thread.GetStatus()) {
case Kernel::ThreadStatus::Ready:
if (!thread.IsPaused()) {
if (thread.WasRunning()) {
return QColor(WaitTreeColors[0][color_index]);
@ -284,11 +304,21 @@ QColor WaitTreeThread::GetColor() const {
} else {
return QColor(WaitTreeColors[2][color_index]);
}
case Kernel::ThreadState::Waiting:
case Kernel::ThreadStatus::Paused:
return QColor(WaitTreeColors[3][color_index]);
case Kernel::ThreadState::Initialized:
case Kernel::ThreadStatus::WaitHLEEvent:
case Kernel::ThreadStatus::WaitIPC:
return QColor(WaitTreeColors[4][color_index]);
case Kernel::ThreadStatus::WaitSleep:
return QColor(WaitTreeColors[5][color_index]);
case Kernel::ThreadStatus::WaitSynch:
case Kernel::ThreadStatus::WaitMutex:
case Kernel::ThreadStatus::WaitCondVar:
case Kernel::ThreadStatus::WaitArb:
return QColor(WaitTreeColors[6][color_index]);
case Kernel::ThreadStatus::Dormant:
return QColor(WaitTreeColors[7][color_index]);
case Kernel::ThreadState::Terminated:
case Kernel::ThreadStatus::Dead:
return QColor(WaitTreeColors[8][color_index]);
default:
return WaitTreeItem::GetColor();
@ -324,11 +354,11 @@ std::vector<std::unique_ptr<WaitTreeItem>> WaitTreeThread::GetChildren() const {
list.push_back(std::make_unique<WaitTreeText>(tr("thread id = %1").arg(thread.GetThreadID())));
list.push_back(std::make_unique<WaitTreeText>(tr("priority = %1(current) / %2(normal)")
.arg(thread.GetPriority())
.arg(thread.GetBasePriority())));
.arg(thread.GetNominalPriority())));
list.push_back(std::make_unique<WaitTreeText>(
tr("last running ticks = %1").arg(thread.GetLastScheduledTick())));
const VAddr mutex_wait_address = thread.GetMutexWaitAddressForDebugging();
const VAddr mutex_wait_address = thread.GetMutexWaitAddress();
if (mutex_wait_address != 0) {
const auto& handle_table = thread.GetOwnerProcess()->GetHandleTable();
list.push_back(std::make_unique<WaitTreeMutexInfo>(mutex_wait_address, handle_table));
@ -336,9 +366,9 @@ std::vector<std::unique_ptr<WaitTreeItem>> WaitTreeThread::GetChildren() const {
list.push_back(std::make_unique<WaitTreeText>(tr("not waiting for mutex")));
}
if (thread.GetState() == Kernel::ThreadState::Waiting) {
list.push_back(std::make_unique<WaitTreeObjectList>(thread.GetWaitObjectsForDebugging(),
thread.IsCancellable()));
if (thread.GetStatus() == Kernel::ThreadStatus::WaitSynch) {
list.push_back(std::make_unique<WaitTreeObjectList>(thread.GetSynchronizationObjects(),
thread.IsWaitingSync()));
}
list.push_back(std::make_unique<WaitTreeCallstack>(thread));
@ -350,7 +380,7 @@ WaitTreeEvent::WaitTreeEvent(const Kernel::ReadableEvent& object)
: WaitTreeSynchronizationObject(object) {}
WaitTreeEvent::~WaitTreeEvent() = default;
WaitTreeThreadList::WaitTreeThreadList(const std::vector<Kernel::Thread*>& list)
WaitTreeThreadList::WaitTreeThreadList(const std::vector<std::shared_ptr<Kernel::Thread>>& list)
: thread_list(list) {}
WaitTreeThreadList::~WaitTreeThreadList() = default;

View File

@ -18,8 +18,8 @@ class EmuThread;
namespace Kernel {
class HandleTable;
class KSynchronizationObject;
class ReadableEvent;
class SynchronizationObject;
class Thread;
} // namespace Kernel
@ -102,29 +102,30 @@ private:
class WaitTreeSynchronizationObject : public WaitTreeExpandableItem {
Q_OBJECT
public:
explicit WaitTreeSynchronizationObject(const Kernel::KSynchronizationObject& object);
explicit WaitTreeSynchronizationObject(const Kernel::SynchronizationObject& object);
~WaitTreeSynchronizationObject() override;
static std::unique_ptr<WaitTreeSynchronizationObject> make(
const Kernel::KSynchronizationObject& object);
const Kernel::SynchronizationObject& object);
QString GetText() const override;
std::vector<std::unique_ptr<WaitTreeItem>> GetChildren() const override;
protected:
const Kernel::KSynchronizationObject& object;
const Kernel::SynchronizationObject& object;
};
class WaitTreeObjectList : public WaitTreeExpandableItem {
Q_OBJECT
public:
WaitTreeObjectList(const std::vector<Kernel::KSynchronizationObject*>& list, bool wait_all);
WaitTreeObjectList(const std::vector<std::shared_ptr<Kernel::SynchronizationObject>>& list,
bool wait_all);
~WaitTreeObjectList() override;
QString GetText() const override;
std::vector<std::unique_ptr<WaitTreeItem>> GetChildren() const override;
private:
const std::vector<Kernel::KSynchronizationObject*>& object_list;
const std::vector<std::shared_ptr<Kernel::SynchronizationObject>>& object_list;
bool wait_all;
};
@ -149,14 +150,14 @@ public:
class WaitTreeThreadList : public WaitTreeExpandableItem {
Q_OBJECT
public:
explicit WaitTreeThreadList(const std::vector<Kernel::Thread*>& list);
explicit WaitTreeThreadList(const std::vector<std::shared_ptr<Kernel::Thread>>& list);
~WaitTreeThreadList() override;
QString GetText() const override;
std::vector<std::unique_ptr<WaitTreeItem>> GetChildren() const override;
private:
const std::vector<Kernel::Thread*>& thread_list;
const std::vector<std::shared_ptr<Kernel::Thread>>& thread_list;
};
class WaitTreeModel : public QAbstractItemModel {